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Abstract

In this paper, we rigorously investigate the reduced density matrix (RDM) associated to
the ideal Bose gas in harmonic traps. We present a method based on a sum-decomposition
of the RDM allowing to treat not only the isotropic trap, but also general anisotropic traps.
When focusing on the isotropic trap, the method is analogous to the loop-gas approach devel-
oped by W.J. Mullin in [38]. Turning to the case of anisotropic traps, we examine the RDM
for some anisotropic trap models corresponding to some quasi-1D and quasi-2D regimes. For
such models, we bring out an additional contribution in the local density of particles which
arises from the mesoscopic loops. The close connection with the occurrence of generalized-
BEC is discussed. Our loop-gas-like approach provides relevant information which can help
guide numerical investigations on highly anisotropic systems based on the Path Integral Monte
Carlo (PIMC) method.
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1 Introduction.

1.1 Bose-Einstein condensation (BEC) in dilute cold alkali atoms gases.

BEC was for the first time observed in 1995 in a series of experiments on dilute cold alkali
atoms gases, such as Rubidium 87Rb [2], Sodium 2*Na [17] and Lithium “Li [11]. Although the
first theoretical predictions go back to the 1920s [10, 19] and were made for the ideal Bose gas in
isotropic cubic boxes [19], these recent experiments were realized in a magnetic-optical trap.

Let us give the two-key principles of these experiments. The first step consists in pre-cooling
the atoms by the laser cooling method. The dilute atoms gas is confined in a vacuum chamber
and is cooled by two lasers facing each other in each direction at a frequency slightly lower than
the resonance frequency of the atoms so that the moving atoms are slowed by Doppler effect.
A temperature of the order of 107#K can be reached. The second step consists in lowering the
temperature by the magnetic evaporative cooling method. An inhomogeneous magnetic field is
introduced to trap the atoms. After switching off the laser beams, the magnetic evaporation
allows to remove the high-energy atoms. The temperature is of the order of 107°K with about
10* — 10% atoms in the magnetic trap. The temperature of the gas can be adjusted by moving
the energy cutoff of the evaporating process, and then it can be below the predicted critical
temperature Tc ~ 107K at the center of the trap. Note that this critical temperature is a good
approximation for a dilute gas, see e.g. [16, 42, 43]. To observe the BEC, by an absorbing image
technics, one can measure the spatial density profile of the atomic cloud. At high temperature (or
at low density), one can observe a widely spread spatial distribution. At low temperature (or at
high density), one can observe a spatial condensation through a peak of density.

Since 1995, a very large number of experiments have been realized to study more precisely
the features of BEC created by cold alkali atoms gases and, naturally there is a huge amount of
literature on this topic. We refer the readers to the modern references [16, 42, 43]. In relation
with the problem treated in this review, we point out that many experiments have been realized
for anisotropic traps in [22, 21, 25] and have revealed that the Bose gas may manifest singular and
unusual phenomena, see e.g. [29, 56].

1.2 Investigating the features of BEC and the reduced density matrix.

e A review of different approaches.

To figure out at first stage BEC phenomenon created by cold alkali atom gases, the most
widespread model in literature is a d-dimensional ideal Bose gas trapped in an isotropic harmonic
potential Vi (x) := Zw?|x|? (here, w stands for the angular frequency of the harmonic oscilla-
tor). Such a system only has discrete energy levels whose the ground-state energy is Fy := %lh/vu.



When investigating the thermodynamics of the d-dimensional trapped ideal Bose gas in the grand-
canonical situation, the usual method consists in approximating the sum over the energy levels
involved in the thermodynamic functions (such as the average number of particles, total energy,
etc.) by an integral in the semiclassical regime hwpB < 1, 8 := (kgT)~!. It amounts to approxi-
mating the density of states by its high-energy value, i.e., when E > hw. We refer the reader to
the founding articles [23, 4], and also to the reference textbooks [16, 43, 42]. This procedure is
related to the thermodynamic limit concept, and because of the inhomogeneity arising from the
trap, the role of canonical parameter is given to an effective number of particles Nw?, see e.g. [16,
Sec. 10.4]. Actually, this procedure turns out to be necessary to make appear a critical average
number of particles N. when the chemical potential tends to Ey (similarly to the standard critical
density p. for homogeneous systems) for d > 2. When this critical number of particles is attained,
the number of particles computed by the integral is then saturated. In the semiclassical regime
hwpB < 1, if the total number of particles in the trap IV is greater than N, it is usually assumed
that the excess number of particles Ny = N — N, has to fall in the ground state, in accordance
with the Einstein criterion of BEC. We mention that the necessity of such a semiclassical approx-
imation to compute the thermodynamic functions has been discussed in [30, 26, 24, 31].

A crucial ingredient to study precisely the features of BEC is the local density function defined
as the diagonal part of the reduced density matrix. Detailed information on the local density of
particles allows to ’draw’ a density profile. This is actually what is measured in the experiments
to demonstrate the occurrence of BEC, see e.g. [42]. When N > N, it is usually assumed that
the 3-dimensional local density of particles is divided into two parts: a term corresponding to the
condensate plus a term corresponding to the non-condensate (often referred to as thermal gas):

p(x) = pPF (x) 4 p(them)(x), (1.1)
where:
2
. (1.2)

Here, Ng = N — N, > 0 is the number of particles in the ground-state and U0 the ground-state
eigenvector. Since N, = O((hwf)3) and |0 (x)[2 = O((hwf)?) when fiwf < 1, then it is found
that p(BEC) (x) = O((hwB)~2) when hwf < 1. As for the non-condensate part, the expression
that is generally given reads as:

erm dp 1
prme) = [ - - . (13)

27h)3 eB( RE 4 Voue (%)) _ 1

pEO (x) = No [00(x)

(1.3) is obtained by considering the semiclassical limit % | 0 (% being seen as a parameter). This is
justified by the fact that the semiclassical regime hwf < 1 is assumed. Note that if one considers
the limit of zero angular frequency of the harmonic trap, the expression for p(ther™)(x) is obtained
from (1.3) by setting Vosc(x) = 0. We stress the point that the two-terms decomposition in (1.1)
relies on the Einstein criterion of BEC, and a priori, it only holds for the isotropic harmonic traps.
Indeed, when considering highly anisotropic traps, we expect (1.1) to be modified because of the
possible occurrence of generalized-BEC (g-bec), see [8, 40] and also [6, 5] and references therein.

Since our article mainly deals with the reduced density matrix (RDM) associated to the ideal
Bose gas in harmonic traps, let us discuss some of the methods encountered in literature used to
examine the RDM. Some attempts have been made to study the RDM from its representation by
the sum involving directly the Hermite functions (see formula (2.28)), see [37] and [5] respectively
for the 2-dimensional and 3-dimensional ideal Bose gas trapped in the isotropic trap. In [37], it is
found that the non-condensate part of the 2-dimensional local density function at x = 0 diverges
as In(1/w) in the regime of weak angular frequencies. In [5], a decomposition of type (1.1) has
been recovered in the semiclassical regime, and the formula given for pte™) corresponds to the
zero angular frequency regime. To make this approach rigorous, the main difficulty is to have
a good control on the behavior of the Hermite polynomials associated to high eigenvalues which



oscillate rapidly in the regime of weak angular frequencies. At the same time, another approach
based on a path integral representation, originally introduced by R.P. Feynman in [20] for the
Bose gas in boxes with periodic boundary conditions, has been developed. This is the so-called
loop-gas approach (or cycles permutation), see [38, 39] for the ideal Bose gas in 3-dimensional
harmonic traps. Following the Feynman original idea, this approach consists in representing the
RDM as a sum of reduced density matrices associated to the loops of size [, which is given by the
Mehler kernel at a scaled inverse-temperature 5. In [38, 39], W. Mullin revisited the 3-dimensional
isotropic trap and recovered the well-known results related to the localization of the condensate
and thermal gas. Moreover, he identified the sizes of the loops in the scale of hwf3: the condensate
comes from the large loops corresponding to [ > (hw3)~!, and the non-condensate comes from the
small loops. This work is connected to the Path Integral Monte Carlo (PIMC) numerical method,
see e.g. [13, 32, 33, 27, 14]. Finally, we mention that there exists also a stochastic approach based
on the theory of random point fields. Considering a model of the mean-field interacting boson gas
trapped by a weak harmonic potential, Tamura et al. proved in [48] the existence of two phases
distinguished by the boson condensation and by a different behavior of the local particle density
in weak harmonic trap limit (WHT-limit) mimicking the regime of weak angular frequency. The
properties of the system are derived from the generating functional in the WHT-limit whose the
detailed study is the main subject of [48]. The same method has been used to investigate the
perfect Bose gas in exponential- and polynomial-anisotropic boxes in [49].

e Our approach: a loop-gas-like approach.

The purpose of this paper is to introduce a rigorous method allowing to derive in the semiclas-
sical regime hwp < 1, accurate information on the RDM associated to a d-dimensional ideal Bose
gas in harmonic traps. Our starting-point is the representation of the RDM by the sum involving
the Mehler’s kernel in which we introduce a dilatation of the angular frequency by a dimensionless
parameter x. The regime of small values of x mimics the regime of weak angular frequencies of the
trap. In the regimes in which BEC occurs, our method consists in a suitable sum-decomposition
of the RDM. The bounds of the sums are well-chosen monotone increasing functions of £ when
approaches zero. Performing the limit | 0 (the so-called open-trap limit) allows to identify the
parts of the decomposition from which arise the condensate and non-condensate contributions.
Our approach is similar to the so-called loop-gas approach developed in [38] for the ideal Bose gas
in isotropic traps in that sense that, our sum-decomposition resembles to the loops-decomposition.
To introduce the method, we first focus on the isotropic harmonic trap. From our loop-gas-like
approach, we investigate the RDM in open-trap limit which mimics the regime of weak angular
frequencies of the trap. By a suitable rescaling of the spatial variables, the semiclassical regime
corresponding to small values of /i (seen as a parameter) is also investigated. All the results stated
in the literature are recovered, and we provide accurate information on the localization of the
condensate/thermal gas via the local density function. Regarding the loop-gas approach in [38],
we give accurate information on the length scale of the loops from which arise the different con-
tributions involved in the RDM. We refer the reader to Remark 2.19.

The loop-gas-like approach that we develop extends to the case of anisotropic traps. Given a
model of anisotropic trap, our method allows an accurate study of the RDM in the regime of weak
angular frequencies (ensuring the semiclassical regime). For illustrative purposes, we treat two par-
ticular models of 3-dimensional anisotropic traps: an exponential-quasi-1D (w1 < hw, f < 1)
and an exponential-quasi-2D (hw) 8 < huw S < 1) model. We refer the reader to Sec. 3.3.1 and
3.3.2 respectively for a precise definition of these models. Remarks 3.2 and 3.7 provide guidance
on how to prepare experimentally such systems. Investigating the RDM for such models is rel-
evant because of the following. For the quasi-1D model that we consider, it has been shown in
[8] that the ideal Bose gas can manifest both BEC and generalized-BEC (g-BEC) in a suitable
regime corresponding to a second kind of transition. Therefore, we expect the RDM to exhibit a
non-usual behavior arising from the presence of g-BEC. As for the quasi-2D model that we con-
sider, it actually allows to mimic the properties of the 2-dimensional isotropic trap in a suitable
regime. Ergo, we expect the ’extra-dimension’ to regularize the logarithmic divergence occurring



in the 2-dimensional isotropic trap. In particular, we show for both models that the local density
of particles has the form:

p(x) = pB) () 4 D () 4 e (). (1.4)

The first and third contribution is the counterpart of the first and second term in (1.1). In the
regime of weak angular frequencies, the additional contribution p(29)(x) exhibits different behav-
iors according to the models: it is divergent for the exponential-quasi-1D model, whereas it is a
x-independent constant for the exponential-quasi-2D model. Our loop-gas-like approach allows to
bring out that the additional term comes from the loops of mesoscopic size, see Remarks 3.4 and
3.9 for further details. Due to this feature, the additional term for the exponential-quasi-1D and
exponential-quasi-2D model can be interpreted as a g-BEC' contribution and local g-BEC contri-
bution respectively. Further investigations on these models will be made in a companion paper.

To conclude this introduction, we stress the point that our method is related to the Path
Integral Monte Carlo (PIMC) numerical computations, see e.g. [13, 32, 33, 27, 14]. Since it permits
to treat anisotropic harmonic traps, then it could be useful for future numerical investigations.
We believe that PIMC numerical simulations might serve to exhibit the additional term appearing
in (1.4), and also might make the connections with the presence of g-BEC in anisotropic traps.

2 The setup & The main results.

2.1 The single-particle Hamiltonian and related operators.

Consider a d-dimensional (d = 1,2,3) ideal quantum gas composed of a large number of
non-relativistic spin-0 identical particles with rest mass m > 0, and obeying the Bose-Einstein
statistics. The gas is confined in a box given by A4 := {x € R? : —é <x < %, l=1,...,d}
with L > 0, and trapped in an external isotropic harmonic potential whose the angular frequency
is given by wy := wok, with wg > 0 and k > 0 being a dimensionless parameter. The interactions
between particles are neglected, and the system is at equilibrium with a thermal and particles
bath.

Introduce the one-particle Hamiltonian. On C§°(A4), define V& > 0 the family of operators:

Hy e i= g (<ihV)? + 3 (wor) (2.1)
Here and hereafter, m > 0 and wy > 0 are kept fixed. By standard arguments, (2.1) extends V& > 0
to a family of self-adjoint and bounded from below operators for any L € (0,00), denoted again
by Hy ., with domain D(Hy ) = Wy 2(A%) N W22(A%). This definition corresponds to choose
Dirichlet boundary conditions on the boundary dA¢. Since the inclusion Wy '*(A%) < L*(A%) is
compact, then Hy, . has a purely discrete spectrum with an accumulation point at infinity. In the
case of d = 1, we denote by {G(Ls,)n}sGN the set of eigenvalues counting multiplicities and in increasing
order. Due to the property of separation of variables, the eigenvalues of the multidimensional case
are related to those of the one-dimensional case by: EES)K = Z;l:l e(LS,j,_i), s = {s; ?:1 € N, Here
and hereafter, N denotes the set of non-negative integers and N* the set of strictly positive integers.
When A¢ fills the whole space (i.e., when L 1 o), define V& > 0 on C5°(R?) the operator:

1 ) 1
Hy . = %(—ZHVX)Q + §(w0n)2|x|2. (2.2)

From [45, Thm. X.28], Vx > 0 (2.2) is essentially self-adjoint and its self-adjoint extension, denoted
again by Heo x, is bounded from below. By [46, Thm. XIII.16], the spectrum of Ho, . is purely
discrete with eigenvalues increasing to infinity. From the one-dimensional problem, the eigenvalues
and eigenfunctions of the multidimensional case can be written down explicitly. The eigenvalues



of the one-dimensional problem are all non-degenerate and given by, see e.g. [9, Sec. 1.8]:

1
e&i{n = hwok (s + 5) , seN. (2.3)

The corresponding eigenfunctions, which form an orthonormal basis in L?(R), read as:

1 MWk \ i mwok 2 mwok
(s) o 0 Mok 7 0
VeeR, ¢ (z): 255!( 7 ) exp( W 2>.‘7{S< . x), s €N, (2.4)

where #;, s € N are the Hermite polynomials defined on R by: #;(x) := (—1)* exp(x?) dd; (—2?).
The eigenvalues and eigenfunctions of the multidimensional case (i.e., d = 2,3) are respectively
related to those of the one-dimensional case by:

d

d
1
E((;)’H = 6<(>fvj,2g = thHZ (Sj + 5) 5 S = {S] -1 € Nd (25)

j=1

Hwﬂ x)), x={z;}i, R (2.6)

From (2.3)-(2.5) and by the use of the min-max principle, one has for any L € (0, 00):
Vi >0, info(Hy,) > info(He,) = EQ), =del?, > 0. (2.7)

For the need of the following section let us introduce the one-parameter semigroup generated by
Heo i in (2.2), and by Hoo o := (fth) whose the self-adjointness domain is W22(R%). For any
K > 0, the one-parameter semlgroup is defined by {Goo x(t) := e oo o L2(RY) — L2(R%)};>0.
It is strongly continuous and it is a self-adjoint and positive operator by the spectral theorem and
the functional calculus. For any xk > 0, {Gwo x(t)}+>0 is an integral operator whose the integral
kernel, denoted by GS?,K(. ,-;1), is jointly continuous in (x,y,t) € R x R% x (0, 00), see e.g. [7,
Sec. A]. If k =0, it corresponds to the so-called heat kernel which reads for d =1 as:

_m (z—y)?
d=1 m e rn2 2t
V(z,y) € R27 vt >0, Gn(>o,0 )(xvy;t) =1/ WT (2.8)

If k > 0, the one-dimensional kernel is given by the so-called Mehler’s formula, see [34, pp. 176]:

V(z,y) €R%, Wt >0, GUD(x,yit) =

_ TR 5 [(wy)? tanh( 2445 )+ (2 —y)? coth( 244 )] (2.9)
2nhsinh(fwokt)

Note that the multidimensional kernel (i.e., d = 2, 3) is directly obtained from (2.8) or (2.9) by:

V>0, G@ (x,y;t HG<d D(xg,ypt), x:={z;}y, y = {y; . (2.10)

From (2.8)-(2.9)-(2.10), one gets V(x,y,t) € R? x R? x (0, 00) the following inequalities:

¥k >0, GO, (xyit) < G (x,yit) <m? (2mh?t)7%, (2.11)
_EW© t
5 o0, K d
Ve >0, GY (x,y:t) < (m‘”o“) G _. EO_ = Shugn. (2.12)
’ mh (1 — e—2hwort)? ’ 2



From the foregoing, for any x > 0 the semigroup {Goo x()}1>0 is a trace-class operator on L?(R%):

hwort \\ ¢ (0) —d
Trr2gay {Gook(t)} = (2sinh( ; )) = e Fooul (1 — e~ wort) ™0 (2.13)

Subsequently, we need to introduce a particular function of the semigroup generated by Ho .,
k > 0. Define Vd € {1,2,3}, V& > 0, VS > 0 and Vu < Egg?n the operator on L2?(R9):

-1

fE (B, 1 Hoo ) i= (eme,fm _ 1) , (2.14)

where fpg (8, u; - ) stands for the Bose-Einstein distribution function. (2.14) is defined via the Dun-
ford functional calculus as bounded operator on L2(R?), see e.g. [18, Sec. VIL.9]. By expanding
x> (1 —x)7! |z| <1 in power series, one has under the conditions of (2.14) the representation:

fBE(ﬁaM;Hoo,n) = ZelﬂuGoo,n(lﬁ)a (2'15)

=1

and the series is absolutely convergent in the trace-class operators sense on L?(R?) because of
(2.13). From (2.9)-(2.10) with (2.12), the operator (2.14) has a jointly continuous integral kernel
on R4

2.2 Preparing the open-trap limit—Some bulk statistical quantities.

We start by introducing some bulk quantities associated to the confined and harmonically
trapped Bose gas in the grand-canonical (G-C) situation. By bulk quantities, we mean independent
of the boundary effects arising from the confining box A¢. In accordance with the usual rules of
quantum statistical mechanics, the quantities are first defined at finite-volume. Subsequently, we
investigate the large-volume behavior to write down an expression for the usual thermodynamic
limit. The first quantities of interest are the G-C potential and average number of particles.

The grand-canonical potential and average number of particles.

In the G-C ensemble, let (3, z,|A%|) be the fixed external parameters, where 8 := (kgT)~! > 0

0)
is the ’inverse temperature’ (kp is the Boltzmann constant), z := e®# € (0,eFL.x) is the fugacity
(u stands for the chemical potential) and |[A%| denotes the Lebesgue-measure of the box A¢. We

recall that Eéol :=info(Hp, ) > 0. For the definitions below, we refer the reader to [47, 28].
)
The G-C partition function is defined Vd € {1,2,3}, VL > 0, Vk > 0, V3 > 0, Vz € (0, eﬁEéow) by:
—_ 7ﬂE(s) -1
ELx(B,2) = H (1 — ze Lw) . (2.16)
seNd

From (2.16), the finite-volume G-C potential and finite-volume G-C average number of particles
are respectively defined Vd € {1,2,3}, VL >0, Vk > 0, V5 > 0 and Vz € (O,eBE(LOw)N) by:

1 1 _aE®
(7)==~ 50 (Ere(B2)) = 5 D In (1 -z "), (2.17)
seNd
(=)
— o0« 2ze PPLx
Nin(B,2) = — EB)=y = 2.18
L, (6 Z) 62 az (6 Z) SGZNd 1_ ZefﬁE(Ls,)n ( )

The series in (2.17)-(2.18) are absolutely convergent since the semigroup {e #Hr.=} 5 4 is trace-

class on L2(A$), see (A.2). Moreover, Qy, .(3,) is real analytic on (0, eﬂE(LOvL), see Sec. A.l.



Next, we turn to the large-volume behavior of the two G-C quantities in (2.17)-(2.18). Below,
we summarize all the needed results. We refer the reader to Sec. A.1 for the proofs. When Ay, fills
the whole space, the thermodynamic limit of the G-C potential and average number of particles

generically exist. Denoting Vd € {1,2,3}, V& > 0, V8 > 0 and Vz € (O,GBEQ?H), the bulk G-C
potential by Qoo x (5, 2) = limr1ee Q1.1 (5, 2), then one has the pointwise convergence:

— N0k . 00

Noo(B,2) 1= =225 (8, 2) = lim —B2—525(5, 2), (2.19)

and the convergence is uniform on compact sets w.r.t. (k, 3, z). Moreover, one has the asymptotic
expansions:

O (8,2) = Qoan(8,2) + 0 (717}, Nip(B,2) = No(B,2) + 0 (7))

for some L-independent constant ¢ = ¢(/3, z) > 0. The thermodynamic limit of the grand-canonical
potential and average number of particles can be expressed Vd € {1,2,3}, Vk > 0, V3 > 0 and

Vz € (0, eﬁEgg?F») by a sum involving the eigenvalues {ES?K}SGNEL as in (2.17)-(2.18):

1 s
Qoon(8:2) = 5 > I (1 - ze‘ﬂEio)w) , (2.20)
seNd
—BE®
_ ze S
Naon(8,2) = - (2.21)
SEZNd 1 — ZG_BE‘X’)”‘

By involving the semigroup {Goo,x(t)}1>0, (2.21) can be rewritten under the same conditions as:

Noo,ﬁ(ﬁa z) = ZZZTFLZ(Rd){Goo,n(lm} = TYL?(Rd){fBE(ﬁa 23 Hoo )}, (2:22)
=1

where fpr(8, z; Heo,) is the operator defined by (2.14), see also (2.15).

The rescaled average number of particles.

So far, we have dealt with the basic bulk statistical quantities related to the Bose gas in the
G-C situation. As reviewed in Sec. 1, the experiments demonstrate the BEC in the semiclassical
regime hwolB < 1, i.e., kgT > hwy. In the experiments, wy usually is a given parameter and
the temperature is adapted so that the above condition is fulfilled. To investigate the global
properties of the gas (such as the average number of particles, total energy,...) from (2.20) in the
semiclassical regime, the method usually encountered in literature consists in approximating the
sum over the s-index by an integral. This boils down to identify the bulk quantity of interest by
the leading term of its asymptotic expansion in the semiclassical regime while disregarding the
remainder term. Preferring to deal with limits instead of equivalents, we introduce a rescaling of
the quantities in (2.20)-(2.21) by the dimensionless parameter k%, so that when performing the
limit & | 0, the resulting limit coincides with the leading term of the asymptotic expansion in the
semiclassical regime. Note that, the d-power on x naturally appears in view of the formula used for
the first-order approximation of the density of states. We give the name of open-trap limit’ to the
limit x | 0 since it mimics the large-opening regime of the trap (i.e., the regime of weak angular
frequencies wp). This explains the introduction of the dimensionless k-parameter in (2.1)-(2.2),
and through this procedure, we do not need to set restrictions on the range of 3. We emphasize
that, when investigating the global properties of the Bose gas, the open-trap limit allows to mimics
either the regime of weak angular frequencies wg, or the ’true’ semiclassical regime corresponding
to small values of A (here, h is seen as a parameter). In all cases, the results stated in literature
under the condition AwyfS < 1 are recovered. This is discussed in Sec. 3.1. Finally, we mention
that an analogous procedure is introduced in [48], the so-called 'weak harmonic trap limit’. This
limit has a slightly different meaning since it plays the role of thermodynamic limit.

In view of the foregoing, we introduce a x-rescaling of the bulk average number of particles:



Definition 2.1. Vd € {1,2,3},Vk >0,V > 0 and Vz € (O,eﬁEég?'@), we define the (bulk) rescaled

average number of particles from (2.19) by setting:

Voo (B,2) i= KN oo (8, 2). (2.23)

Note that (2.23) has to be seen as the thermodynamic limit of the finite-volume rescaled aver-
age number of particles defined as vy, (3, 2) := kYN, (8, 2), with N (3, 2) in (2.18).

Next, we switch to canonical-like conditions and we assume that the rescaled average number
of particles denoted by v > 0, becomes, in addition with the ’inverse’ temperature § > 0, an
external parameter. Note that, because of the confining harmonic potential, the density of particles
vanishes in thermodynamic limit. Thus, the (rescaled) average number of particles turns out to
be the 'right’ canonical parameter. Seeing the quantity in (2.23) as a function of the p-variable

instead of z, then V3 > 0, Vv > 0 and V& > 0, let Ji, , = fioo (5,V) € (—00, Eég?,{) satisfying:

V ="Vco,k (/Baﬁoo,n) ) (224>

and such a i, . is unique. The inversion of the relation between the bulk rescaled average number
of particles and the chemical potential is ensured by the fact that VG > 0, Vv > 0 and Vk > 0,
W Voo (B, 1) is a strictly increasing function on R, and actually it defines a C*°-diffeomorphism
of R into (0,00). Getting back to the finite-volume quantities, if fz;, . = 71y, .(8,v) € (—o0, EEOL)
denotes the unique solution of v = v, (8, v), then one can prove, see pp. 38:

lim EL,H = ﬁoo,n‘ (225)

L*Too
Motivated by the following rewriting of (2.23) obtained from (2.21):

K

Ve >0,V8>0,Vu e (—oo,Eég?K) , Voon(By i) = Z —
e P (Fnmn) g

: (2.26)

we end this section by introducing the (bulk) rescaled average number of particles in the s-state:
Definition 2.2. Vd € {1,2,3}, V& > 0, V8 > 0, Vv > 0 and Vs € N¢, we define the (bulk) rescaled
average number of particles in the s-state as:

P

C BELTw) _ 1

Voo,n(ﬁal/;s) = Voo,ﬁ(ﬁaﬂoo,;{;s) : (2'27)

where T, . = oo x(B,V) € (—oo,Eég?K) satisfies (2.24).

The reduced density matrix, local density function and their rescaling.

The reduced density matriz concept was initially introduced by Penrose and Onsager in [41]
to formulate a BEC criterion and investigate its features. It turns out to be the crucial tool to
investigate the local properties of BEC. We start by recalling the definition of the reduced density
matrix as well as the local density of particles as they are defined in Physics literature.

Definition 2.3. Vd € {1,2,3}, V& > 0, V8 > 0 and Yv > 0, we define the reduced density matriz
as the integral kernel of the operator e (8, i i Hoox) in (2.14) which reads ¥(x,y) € R*® as:

® (g ®
poon (%,¥:B,0) = (1BE (B, i i Hoow)) (X,7) = ) _ Yoo () Voo () (2.28)

e o (B To) g

where T, . = oo (B, V) € (—oo,Eég?K) satisfies (2.24). The diagonal part of (2.28) (obtained by
setting y = x) is usually named the local density of particles at the point x € R%.



The sum in the r.h.s. of (2.28) comes from the spectral theorem. Since the eigenfunctions
in (2.6)-(2.4) are real-valued functions, then we drop the complex conjugation in the following.
Without involving directly the eigenfunctions of H ., one has also from (2.15) the representation:

V(x,y) €ER*, poow(x,yiBv) =Y =G (x,y;18). (2.29)
=1

Note that, because of (2.12), the above series is absolutely convergent uniformly in (x,y) € R4,
We point out that the reduced density matrix in (2.28) has the dimension of a density of particles
since by (2.6) the product of two wave functions has the dimension of the inverse of a volume.
Then, the local density of particles at x € R? is interpreted as the number of particles at x € R?
per unit volume. From (2.28), (2.6) and (2.4), the reduced density matrix can be rewritten as:

1 s s
V(Xv y) S RQda poo,li(xvy;ﬂv V) = h;_% Z Voo,ka (ﬂvﬁoo,n; S) qj(()o),l (X\/E) \pgo),l (y\/E) . (230>
seNd

In Sec. 2.3.3, we investigate the reduced density matrix in open-trap limit. Remind that the
open-trap limit mimics the large-opening regime of the harmonic trap. We will see that, for certain
regime of the rescaled density v (for which BEC phenomenon occurs), the reduced density matrix
in open-trap limit will be infinite indicating that the leading-term of the asymptotic expansion
in the large-opening regime of the trap diverges when performing the limit wy | 0. To get more
accurate information on the behavior of the reduced density matrix in wg, a suitable k-rescaling
that takes into account its local nature, is needed. In view of the rewriting in (2.30), we introduce:

Definition 2.4. Vd € {1,2,3}, V& >0, V3 > 0, Vv > 0 and V(x,y) € R??, we define the rescaled
reduced density matriz from (2.28) by setting:

Too,ka(xvy;ﬂvy) L= K%poo,n(xvy;ﬂvy> (231)
=) Voo (BT 3 )V (xv/R) U, (y V), (2.32)
seNd

where Voo (B, Tioo 13 8) 18 the rescaled average number of particles in the s-state in (2.27).
Also, we define the rescaled local density of particles at x € R? from (2.31) by setting y = x.

2.3 The harmonically trapped Bose gas in open-trap limat.

Here, we investigate the global and local properties of the Bose gas in the open-trap limit.

2.3.1 Statistical quantities in open-trap limit.
In view of Definition 2.1, we start by defining the open-trap rescaled average number of particles:

Definition 2.5. Consider a confined d-dimensional harmonically trapped Bose gas, d € {1,2,3}
in the G-C ensemble. Provided that the limit exists (possibly infinite), V3 > 0 and Vu € (—o0,0),
we define the open-trap rescaled average number of particles as:

Voo,O(ﬁaM) = Efgyoo,ﬁ(ﬁau)' (233)

Motivated by Definition 2.5 and analogously to the critical density of particles for perfect Bose
gas confined in boxes, we introduce the critical open-trap rescaled average number of particles as:

Definition 2.6. For any § > 0 and p < 0, assume that the limit in (2.33) exists and is finite.
Provided that the limit exists (possibly infinite), we define the critical open-trap rescaled average
number of particles as:

Vc(ﬂ) = hm Voo,O(ﬂvM) = sup Voo,O(ﬂa ,LL) (234>
pu10 n<0
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In view of Definition 2.2, we introduce similarly to Definition 2.5, the open-trap rescaled average
number of particles in the s-state as follows:

Definition 2.7. Consider a confined d-dimensional harmonically trapped Bose gas, d € {1,2, 3}
in the G-C ensemble. Provided that the limit exists (possibly infinite), V3 > 0, Yv > 0 and Vs € N9,
we define the open-trap rescaled average number of particles in the s-state as:

Voo,O(ﬂv vy S) = hﬁ} Voo,k (ﬂa v; S) = h?& Voo,k (ﬂvﬁoo,n; S) ) (235)

where T, . = oo (B, V) € (—oo,Eég?K) satisfies (2.24).

From Definitions 2.3 and 2.4, we finally introduce the open-trap (rescaled) reduced density
matriz and the open-trap local (rescaled) density function as:

Definition 2.8. Consider a confined d-dimensional harmonically trapped Bose gas, d € {1,2, 3}
in the G-C ensemble.

(i). Provided that the limit exists (possibly infinite), V5 > 0 and Vv > 0, we define the open-trap
reduced density matrix as:

V(X,y) S RQd; pm,o(xay;ﬁay) = Efolpoo,ﬁ(xay;ﬁay)' (236)

The open-trap local density of particles at x € R? is defined from (2.36) by setting y = x.
(ii). Provided that the limit exists (possibly infinite), V3 > 0 and Yv > 0 we define the open-trap
rescaled reduced density matriz as:

V(x,y) € R roo(X,y; 8,v) i= liirolroo,,.i(x,y; B,v). (2.37)
The open-trap rescaled local density of particles at x € R? is defined from (2.37) by setting y = X.

2.3.2 The global properties—Open-trap BEC.

Here, we focus on the thermodynamics of the Bose gas in the open-trap limit. When dealing
with global properties, the open-trap limit mimics either the regime of weak angular frequencies
wyp of the trap, or the semiclassical regime corresponding to small values of % (seen as a parameter).

We start by writing down an explicit expression for the open-trap rescaled average number of
particles and by investigating its critical value. To do that, introduce for any real 6 > 0:

< ¢n 0<l <1, if0< <1,
(€)= 25,  VEeC st ¢ 0<[E<1,E4£1, ifo=1, (2.38)
n=1" 0<|e <1, if 0> 1,

which is the analytic continuation of the polylogarithm initially defined on the open ball B(0, 1).
From Definitions 2.5-2.6, we establish:

Lemma 2.9. For any d € {1,2,3} and 8 > 0:
(i). The open-trap rescaled average number of particles exists and reads as:

1 o rd-1 ga (€7)
V<0, vaolBop) = ——— [ dr - , (2.39)
I(d) (o) Jo 77 =1 (g )
where T'(+) denotes the usual Euler Gamma function.
(ii). The critical open-trap rescaled average number of particles exists and satisfies:
00, ifd=1, (2.40a)
= 1
ve(B) o) >d <oo, ifd=23. (2.40b)
(hwo3)
(iii). For any 0 < v < v.(B), there exists a unique T, o = foo 0(B3, V) € (—00,0) satisfying:
V ="Vx,0 (/Baﬁoo,o(/ga V)) . (241)
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Remark 2.10. From Lemma 2.9 (ii), the equality v = v.(8) defines the critical temperature T..:

v \d
kBTC = hwo (—) 5 d:2,3.
ga(1)

Subsequently, we give a definition for the so-called open-trap BEC which is analogous to the
BEC concept (within the ’Einstein’s formulation’) for Bose gas confined in boxes, see e.g. [54]:

Definition 2.11. Open-trap BEC criterion. Consider a confined d-dimensional harmonically
trapped Bose gas, d € {1,2,3} in the G-C ensemble. For any 8 > 0, we say that the Bose gas
manifests an open-trap BEC for a fixed rescaled number of particles v > 0 if:

(i). The critical open-trap rescaled average number of particles is finite: v.(f) < oo, and moreover,
(ii). The open-trap rescaled average number of particles on the ground-state is strictly positive,
ie.,

Voo 0(B,v;0) >0, v >wv.(8).

The main preliminary result states that the confined harmonically trapped Bose gas manifests
an open-trap BEC in the sense of Definition 2.11 provided that d > 1:

Proposition 2.12. Consider a confined d-dimensional harmonically trapped Bose gas, d € {1,2, 3}
in the G-C ensemble. Then, for any B >0 and v > 0:

(i). If d = 1, the Bose gas manifests no open-trap BEC. Moreover, v 0(8,v;s) =0 Vs € N.

(ii). If d = 2,3, the Bose gas manifests an open-trap BEC. Furthermore, the open-trap rescaled
average number of particles on the ground-state satisfies:

0, when v < ve(B), (2.42a)

Voo,0(B,1;0) = { v — vo(B), when v > ve(f). (2.42b)

Here, v.(8) is defined by (2.34) and satisfies (2.40b). Moreover, veo o(3,v;s) = 0 Vs € (N*).
(iii). Too o = Tk (B, V) € (—00, Eég?,i) satisfying (2.24) admits the asymptotics in the limit k | 0:

EQ) 4T o+ o(1), when v < v.(B) ifd=1,2,3, (2.43a)

5 = EQ, +o(1), when v = v.(B) if d = 2,3, (2.43b)
0o,k d

Eég),i SR — +o0 (k) when v > v.(B) if d = 2,3. 2.43c

By ") ? (243

Here, Jio o = foo o(B, V) € (—00,0) satisfies the equation (2.41).
Remark 2.13. When v > v.(8) and v/v.(8) =n > 1, then (2.43c) can be rewritten as:

(hworB)?
ga(1) (n—1)

and identifies with the asymptotic expansion in the semiclassical regime hwoB < 1 by setting k = 1.

Bl = Shisonf — +o((hworB)?), when s 10

The results of Proposition 2.12 are based on the ’Einstein formulation’ of the condensation
in Definition 2.11. However, there exists another kind of condensation named generalized BEC
(9-BEC). The g-BEC concept was initially introduced in [54] for perfect Bose gas in 'Dirichlet
boxes’; for a review of definitions and classifications of g-BEC, see e.g. [6]. Based on the open-trap
limit concept and analogously to the van den Berg-Lewis-Pulé formulation of the g-BEC in [54]:

Definition 2.14. Open-trap g-BEC criterion. Consider a confined d-dimensional harmoni-
cally trapped Bose gas, d € {1,2,3} in the G-C ensemble. For any > 0, we say that the Bose
gas manifests an open-trap generalized BEC' for a fived rescaled number of particles v > 0 if:

lim li (B v:8) > 0. 9.44
fim lim z; Voo (B, v38) > (2.44)
seNd: O<Zj:1 ksj<e
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We emphasize that, unlike the van den Berg-Lewis-Pulé formulation in [54], our definition of
g-BEC ezcludes the ground-state from the sum in (2.44) (as mostly encountered in literature).
Our definition distinguishes the 'usual’ BEC (ground-state macroscopically occupied) from the
'non-usual’ (states in a punctured neighborhood of the ground-state macroscopically occupied).

The following proposition states that the confined d-dimensional harmonically trapped Bose
gas does not manifests an open-trap g-BEC in the sense of Definition 2.14:

Proposition 2.15. Consider a confined d-dimensional harmonically trapped Bose gas, d € {1,2,3}
in the G-C ensemble. Then for any 8 >0 and v > 0:

lim li ;s) = 0. .
i lim > Voo (B,v38) = 0 (2.45)
SENUZ:O<Z§ZZ1 Ks;<e

2.3.3 The local properties (Part 1)-Equivalence of condensation criteria.

Involved in the Penrose-Onsager general criterion of BEC in [41], see also [57], the reduced
density matrix allows to treat the Bose gases with interactions (whereas the Einstein criterion
was originally formulated for the free Bose gas). Note that there is a huge amount of Physics
literature dealing with this criterion for the Bose gas in boxes, see [6] and references therein. From
Definition 2.4 and analogously to the Penrose-Onsager criterion, we define the open-trap ODLRO
criterion as:

Definition 2.16. Open-trap ODLRO criterion. Consider a confined d-dimensional harmon-
ically trapped Bose gas, d € {1,2,3} in the G-C ensemble. For any > 0 and v > 0, assume that
the limit in (2.37) exists and is finite. We say that the Bose-gas manifests an open-trap ODLRO
for the fixed rescaled number of particles v if the open-trap rescaled reduced density matriz satisfies:

Too,0(B,V) 1= limT Too,0(X,y; B,v) > 0. (2.46)

Ix—y|too
For any 8 > 0, introduce the thermal de Broglie wavelength defined as:

o2
WY (2.47)

m

Here is our first main result focusing on the reduced density matrix in the open-trap limit.
As emphasized below (2.30), when dealing with the reduced density matrix, the open-trap limit
mimics the large-opening regime of the trap (i.e., the regime of weak angular frequencies wy).

Theorem 2.17. Consider a confined d-dimensional harmonically trapped Bose gas, d € {1,2,3}
in the G-C ensemble. Then for any 3 >0, v >0 and (x,y) € R??:
(A). The open-trap reduced density matriz exists and satisfies:

— 2
1 & iy — o eyl?

X Z 7 e M1 when v < v.(B) if d=1,2,3, (2.48a)
pO0,0(va;ﬂv V) = 8 =1 .

00, when v =v.(B) if d =2, (2.48b)

0, when v > v.(B) if d = 2, 3. (2.48¢)

(B). The open-trap rescaled reduced density matriz exists and satisfies:

d

Too,0(B,v) = (%) ¥ Veeo(B, 1 0)
— 9% (hwoﬂ)% 0, when v < ve(B) if d=1,2,3, (2.49)
TN T v wel8), whenv > v (B) if d=2,3.
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As a result, the Bose gas manifests an open-trap ODLRO if v > v.(f) when d = 2,3.
(C). In addition: the open-trap rescaled reduced density matriz satisfies:

oo 0 (%3 B,0) = lim v« (8,00 UL (x/m) WX (yV) i d=1,2,3, (2.50)

as for the open-trap reduced density matrixz without the ground-state:

— 2
elﬂﬂoo,o _%\X*LY\

1 oo
Y Z 1z e B , when v <v.(8) ifd > 1, (2.51a)
ﬁ 2
00

PR, (x) R (y)
li : . > fd=2,(2.51
lim E , when v > v.(B) if d = 2, (2.51b)

®
se(N*)d eB<Eoo,rc I“Loo,rc) -1 1 00 1 - Py l?
— g —e 5 , when v > v.(B) if d = 3. (2.51c¢)

Remark 2.18. (i). In the case of v < v.(B) if d = 1,2,3, then from (2.49) along with (2.51a),
the contribution in (2.48a) only comes from the reduced density matriz without the ground-state.
We turn to the case of v > v.(8), v/v. =n > 1 if d = 2,3. By decomposing the sum involved in
the reduced density matriz into two contributions (ground-state corresponding to the condensate
gas plus the rest of the sum corresponding to the thermal gas), then from (2.49)-(2.50):

0 0 a
Ho o TR UEN(y) _ 28 (1)

— P
#10 eﬁ(Eég?wuoo,n) 1 23 (hwoP)

and in the case of d =3, from (2.51c):

: UL OUR(y) | 1 1 s
lim > 5 (D) - )\—le—%e ’
se()3 @ \TeenTHoon ) B =1

Therefore, the long range order is due to the condensate on the ground-state, the finite part of the
reduced density matriz is due to the thermal gas. When v > v.(8) if d = 2, the open-trap reduced
density matriz diverges, even if the gas manifests no BEC when v = v.(8). This arises from the
divergence of the non-condensate part of the open-trap reduced density matriz, see (2.51b). In
Annex 5.1, we investigate its behavior when k | 0 and prove that:

3 W ()0 (y) 11( 1

B(BL o) _ 4 - X2 U\ wor B

), when k | 0.

se(N*)2 e

(ii). As a result of (B), there is equivalence between Definitions 2.11 and 2.16: the Bose gas
manifests an open-trap BEC' if and only if it manifests an open-trap ODLRO.

Remark 2.19. The sum-decomposition in the proof of Theorem 2.17 brings out that the condensate
part comes from the macroscopic-loops, i.e., I > |k™7| with 1 < o0 < % and k < 1, whereas the
non-condensate part comes from the short-loops, i.e., 1 <1 < |k~7]. Here |- | is the floor function.
Note that in our sum-decomposition, the & plays the role of hwofB in the loop-gas approach in [38].
It is found in [38] that the condensate-part comes from the large-loops, i.e., | > (hwB)~1. In fact,

from our analysis the critical exponent turns out to be o = %

2.3.4 The local properties (Part 2)-Localization of the condensate/thermal gas.

Here, we focus on the diagonal part of the (rescaled) reduced density matrix, interpreted as
the (rescaled) local density of particles, in open-trap limit. By introducing a scaling of the spatial
variable, initially introduced by van den Berg et al. in [54] to derive the so-called barometric
formula, we state some results concerning the spatial localization of the condensate/thermal gas
in open-trap limit. We can relate our statements with some well-known results in Physics literature
concerning the shape of the condensate/thermal gas in the space. This is discussed in Sec. 3.
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Theorem 2.20. Consider a confined d-dimensional harmonically trapped Bose gas, d € {1,2,3}
in the G-C ensemble. Let v.(B) be the critical density of particles in (2.34) satisfying (2.40). Then

vd € {1,2,3}, VB >0, Vv > 0, Vx € (R*)? and V0 < § < 1 the two following limits exist:

(O] (

: -9 -9 5 : -9 -4
poo,O X;ﬁ,ll) = léfolpoo,n (X"i y XK ;Bay)a réozo(x;ﬁay) = E%roo,n (XH y XK ;ﬁ’l/).

(A). With go in (2.38), Ag in (2.47) and fis, o = Jiso o(B; V) obeying (2.41), one has more precisely:

e Vd € {1,2,3} and Vv < v.(B):

. ga (o), f0<d<1,

1
Poc,o(X; B,v) = pvs X Ja (eﬁ(ﬁm,o—%mwg|x|2)) . ife=1.

Téi?o(x;ﬂ,y) =0, ifd>0.
o Vd € {2,3} and Vv > v.(B):

1 00, if 0< 0 < 1,
_ 4) (. - mw2 | o
Ifd_ 25 poo,O(X’ﬁ’V) - )\% x il (eﬁ 52 |x| ) , Zf 0=1.
0, if Ogég%andl/#yc(ﬂ),
1 g3 (1), if 2<8<1,
=3 pQoxpv)=37x1"% " i
g g3 (eﬁ 7 Xl > ,if 6=1.
r 1, if0<6 <3,
2
r&o(x; B,v) = 2%%@*%(@) x Qe T ip 5=,
g 0, ifl<s<l.

(2.52a)
(2.52b)

(2.53)

(2.54a)

(2.54D)

(2.55a)
(2.55b)

(2.55¢)

(2.56a)

(2.56b)
(2.56¢)

(B). In addition: the open-trap rescaled local density of particles in the condensate satisfies:

2
vo<s<1, rOi(x:8,v) = lim v, (3,7:0) \qu;?l (x0VE)| . ifd=1,23,
as for the open-trap local density of particles outside of the condensate:
2
g o)
lim =
- O
Y semnye o (EL) _y
pg%o(x;ﬂ,y), when v < v.(B) if 0< 6 <1 andd=1,2,3,
0, when v > v.(8) if0<d <1 andd =2,
1
)\—sg%(l), when v > ve(B) if 0 <5 < % and d =3,
B
1 w2
N4 (e_B 7 x2) , when v > ve(B) if 1 <6 <1 andd=3.
B

(2.57)

(2.58)
(2.58b)

(2.58¢)

(2.58d)

Remark 2.21. We restricted to x € (R*)¢ since the case of x = 0 is covered by Theorem 2.17.

15



Remark 2.22. The meaning of Theorem 2.20 is discussed in the following section. Let us mention
that, in the particular case of § = 1, in view of (2.54b)-(2.55¢) and by setting V (x) := mwd|x|*/2,
then when v > v.(8) if d = 2,3, the identity in (2.39) leads to the rewriting:
dp 1

d 2 :
2rh)® p(Bm+veo)

(2.59)

lim p=1) X; B, v :/
lim pec (x; 8, v) o T

(2.59) is often referred to as the semi-classical formula for the local density, see e.g. [43, Egs.
(10.25)-(10.27)]. In Sec. 3.1, we show that the open-trap limit of the reduced density matriz with
spatial arguments rescaled by k™1 identifies with the leading term of the asymptotic expansion of
the reduced density matriz in the semiclassical limit k| 0 (here, h has to be seen as a parameter).

2.3.5 Meaning of Theorems 2.17 and 2.20-Rebuilding the density profile.

Here, we make the connection between the results of Theorem 2.17-2.20 and those stated in
literature. We consider the situation corresponding to the occurrence of BEC phenomenon. When
v > v.(B), v/ve.(B) =n > 1if d = 2,3, then from (2.56) along with (2.57):

}W@dwﬁ%r 4 1, if0<o< i,
.4 : 22 (1) Do(hwoB) a5 Ixl?
E?OIHZ ﬁ(E(O) = ) T \d d (77 - 1) X e 2B , ifd= %7 R (260)
ST — 1 %8 (wof)? 0, ifl<o<l,
and concerning the non-condensate part, from (2.53), (2.54) and (2.58):
’Wdef%r 1 ga (1), if0<d<1andd#2,
lim == x mod |12 . (2.61)
" ©.-7 d —B=5"1x]| if § =
10 se(N)d eﬁ<Eoo),N #oo,,e) 1 /\B gi <e 2 > , ifd=1,

Note that Theorem 2.20 gives no indication on the behavior of the non-condensate part of the
reduced density matrix when d =2 if 0 < § < 1 (the case of § = 0 is discussed in Remark 2.18).
In the light of (2.60)-(2.61), the first term in the r.h.s. of (1.1) corresponds to (2.60) with § = 1,
and the second term in the r.h.s. of (1.1) corresponds to (2.61) with § = 1, see Remark 2.22.

From (2.60)-(2.61), one can infer a range of information on the localization of the condensate
and non-condensate gas (thermal gas). Clearly, the localization ranges of the thermal gas and
condensate are not the same. Indeed, one can see that the length scale of the localization of the
thermal gas is Lg := (mwir2B)~2 = O(k~') (corresponding to & = 1), whereas the length scale of
the condensate is Ly, := (h/mwok)z = O(k~2) (corresponding to § = 1/2). This means that the
condensate and the thermal gas do not coexist at the same scale of spatial distances, as it is stated
in [43, Eq. (10.28)]. The d-scaling can be interpreted as follows. When 6 = 1, (2.61) gives the
density profile of the thermal gas at large scale in the units of Lg and (2.60) shows that there is
a peak for = 0 corresponding to the condensate. When § = 1/2, (2.60) gives the density profile
of the condensate in the units of Ly and (2.61) shows that there is a plateau corresponding to the
thermal gas. This latter means that the thermal gas is viewed as a constant for § < 1, i.e., at scales
very much smaller than Lg. The intermediate cases 0 < § < 1/2 and 1/2 < § < 1 follow a similar
interpretation. By the scaling = — xx~% with 0 < § < 1, we investigate in fact the density profile
of the condensate and thermal gas at the length scale L(d) := Ly (Lg/Lh)%*1 =1Lg (Lh/Lg)%%.
Since Lp/Lg = hfwor < 1 (the semiclassical regime), we conclude that L(§) <« Ly, if § < 1/2
and Ly, < L(§) <« Lg if 1/2 < § < 1. This explains why the condensate part vanishes for
d > 1/2, and also why the non-condensate part remains constant for 6 < 1. In addition, since
L?/Lg = N\g/V2m = \/h2B/m does not depend on &, we have L(§) = A\g x (27)2°~1(Lyn/N\g)%.
The latter relation gives the x-dependence of L(§). Note that L(0) = (27)2°~1\s < L.

Turning to a more geometric interpretation, define Vd € {2,3}, V8 > 0 and Vv > v.(8) the
large scale (i.e., 6 = 1) average square radius in the j-th direction of the open-trap reduced local
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density function as:

/ dxac poOO (x B,v)

R4

[ axp xp0)
R4

Similarly, define under the same conditions the medium scale (i.e., § = 1/2) average square radius
in the j-th direction of the open-trap rescaled reduced local density function as:

<w?>g7)0 (B,v) = , j=1,...,d (2.62)

/ dxx r(6 (x B,v)

R4

/ dxrw 2)(x B,v)
R4

We mention that from (2.54b)-(2.55¢) and (2.56b) the quantities in (2.62)-(2.63) are well-defined.
By a direct calculation, we get Vd € {2,3}, V8 > 0 and Vv > v.(8) the following ratio:

<$f>$,)0 (B,v) = . j=1,...,d (2.63)

<x§>$)0(ﬁ,y): 2 gan(l) 2 ((d+1) j=1
<$?>(0)0 (B,v) hwoB Bga(l) hwoB BC(d) e,

d, (2.64)

Ther.h.s. of (2.64) is j-independent since the trap is isotropic, and corresponds to [43, Eq. (10.28)]
for d = 3. The meaning of (2.64) is as follows: the density profile of the thermal gas is much more
spread out than the density profile of the condensate (large vs medium scale).

As a final remark, the local density of particles in the condensate is of the order of k™% for
d = 3, see (2.60). Ergo, it is infinite in open-trap limit, whereas the local density of particles in
the thermal gas is finite in open-trap limit, see (2.61). Hence, one can talk about a spatial Bose-
Einstein condensation since a very large number of particles is localized in a small region of the
space compared with the region where the thermal gas is spread. Note that the first experimental
demonstrations of the condensate is based on this latter feature since it is enough to ’take pictures’
of the gas to bring out the spatial density of the particles distribution, see e.g. [2, 17].

3 Concluding remarks & Extension to anisotropic traps.

3.1 Open-trap limit vs semiclassical regime.
The thermodynamics: open-trap limit vs semiclassical regime.

The usual method to investigate the thermodynamic functions of the Bose gas from (2.20)
consists in approximating to the first-order the sum over the s-index by an integral. Turning to
the average number of particles, one has from (2.21) along with (2.13) and (2.39), by setting x = 1:

Neo1 (B 1) = /OOO dr %fm By T) + Zelﬂﬂ <(2 sinh (FM;BZ))_d - (hwoﬁl)_d> :

and the remainder behaves like O((hwoB)'~%)) when (hwoB) | 0. Its behavior is investigated
further into details in [26, 30, 31] in which the relevance of the semiclassical regime is discussed.
In view of the leading term in the above expansion, then the density of states in the semiclassical
regime is approximated to the first-order by its high-energy asymptotic. Such a result is recovered
in our open-trap formulation mimicking the regime of weak angular frequencies wy of the trap. For
completeness’ sake, we mention that the leading term can also be derived in the ’true’ semiclassical
regime corresponding to small values of /i (seen as a parameter). Indeed, consider the operator:

7 ., (h“)Q m W2 lx |2
Hy . = o, A+ — 2 olx|°, K >0. (3.1)
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Under the unitary transformation on L?(R?) defined as:
Ve >0, UK :=r2p(xx), xeR) pe L2RY,
then Hu, . in (2.2) is unitary equivalent to Hy, . in (3.1), i.e.,
U(K)Hoo xU™ (k) = f[oo,,.i. (3.2)

Denoting by {Goeo . (t)}¢>0 the strongly-continuous semigroup generated by Hy ., (3.2) leads to:

TI’Lz(Rd) {ém,ﬁ(ﬁ)} = TYLZ(Rd) {Gm,ﬁ(ﬁ)}, 8>0,x>0.

In view of (2.22), then we obtain the same result than (2.39) when performing the limit « | 0.

Reduced density matrix: Open-trap limit and semiclassical limit.

The investigations essentially lean on the representation (2.29) of the reduced density matrix
by the kernel of the Bose-Einstein function of the operator H , in (2.14), see (2.29). From such
a representation, investigating the behavior in open-trap limit of the (rescaled) reduced density
matrix requires some sharp estimates on the kernel of the semigroup generated by H , for small
values of k. Since this kernel is explicitly known (see (2.9)-(2.10)), then our approach turns out
to be more robust than the one based on the representation in (2.28) involving the eigenfunctions
of Hy . Indeed, the control of the sum in (2.28) for small values of x is made difficult by the
behavior of the Hermite polynomials which oscillate especially as the s-index gets larger.

In Theorem 2.17, we investigate the reduced density matrix in open-trap limit. This allows us
to derive the first-order approximation in the zero angular frequency limit. The semiclassical limit
corresponding to small values of & (seen as a parameter) is investigated in Theorem 2.20 when
using the scale § = 1. From the definition in (2.14), (3.2) leads in the kernels sense on R2? to:

VI{ > 05 (fBE(ﬂvﬁoo,n; Hooﬁﬁ))(xa y) = ’i_d(fBE(ﬂvﬁoo,n; HOOJ‘Q))(XK’_17 y’i_l)'
Then, it follows from the definition in (2.28) together with (2.59):

dp 1
(2mhr)d B(BZ 4 v(x) _q

2m

when x | 0. (3.3)

(fBE(Ba ﬁoo,n; g"o’”))(x’ y) ~ /Rd

3.2 Homogeneous versus inhomogeneous systems.

We stress the point that our results obtained in open-trap limit for the harmonically trapped
Bose gas differ from the ones stated in [35, 53] for the perfect Bose gas confined in ’'Dirichlet
boxes’ (commonly referred to as "homogeneous systems’), and from the ones in [50, 52, 44] stated
for the free Bose gas in a weak harmonic trap model. The main difference concerns the critical
density. From a rescaling of the average number of particles (see Definition 2.1), we find that the
open-trap critical rescaled average number of particles for the harmonically trapped Bose gas is
finite if d = 2,3 and proportional to g4(1), see Lemma 2.9 (ii). This result contrasts with the
case of homogeneous systems in which the bulk critical density of particles (by bulk, we mean in
thermodynamic limit) is finite if d = 3 and proportional to gs (1), and also with the case of the

weak harmonic trap model in which it is finite if d = 2,3 and proportional to fol du ga (e—ﬂ”—;).
However, we mention that our expressions for the non-condensate part of the open-trap reduced
density matrix for the harmonically trapped Bose gas in Theorem 2.17 (C) are exactly the same
than the ones for the non-condensate part of the bulk reduced density matrix for homogeneous
systems in any dimension, and thus it diverges if d = 2 and converges if d = 3. Even at the
scales 0 < § < 1, the non-condensate part of the open-trap scaled local density in Theorem 2.20
(B) is still equal to the non-condensate part of the bulk local density for homogeneous systems.
This means that the non-condensate bosons do not feel the trap for those scales, and behave like
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free particles in the whole space R?. But at the scale § = 1 and when v > v.(8) if d = 2,3, the
open-trap scaled local density has a gaussian decay whereas the bulk scaled local density (with the
scaling u := xL~!, u € [~1,1]%) for homogeneous systems is constant on (—1,1)¢ and vanishes on
the boundaries, see e.g. [55]. Concerning the condensate part of the open-trap rescaled density
function for the harmonically trapped Bose gas, it is constant at the scales 0 < § < 1/2 and has a
gaussian decay at the scale 6 = 1/2 when v > v.(5) if d = 2,3, see Theorem 2.20 (A), whereas the
condensate part of the bulk scaled density function for homogenous systems oscillates on [—1,1]%.

3.3 Insight into BEC in some anisotropic harmonic traps.

Here, we extend some of the results established for the isotropic harmonic trap to some models
of three-dimensional anisotropic harmonic traps. In particular, we focus on two kind of anisotropic
trap models: a quasi-1D and quasi-2D trap model. They are analogous to the anisotropic (van
den Berg) boxes models for the homogeneous Bose gas investigated in [53, 51, 54, 55].

The infinite-volume Hamiltonian in L?(R?®) which determines the dynamics of a single spin-0
particle trapped in a general three-dimensional anisotropic harmonic trap is given by:

3
1
Hy = = (—iVx) 24 3 Zl wjk;) x-, (3.4)
]:

where w; > 0, j = 1,2,3 are kept fixed in the following, and £ = (K1, k2, K3), k; > 0. Below,
we focus on some specific anisotropic traps. In particular, we consider the situation in which
wo = w3 = w, and wy # w, . Further, for any k > 0, we consider k1 = k1(k) and ko = k3 = k1 (K)
which satisfy x1(k) # k.1 (k) Vk > 0 along with k1(k), k1 (k) | 0 when x | 0. Since the k;’s are
functions of &, then in the following, for such models, we set Ho , = Hoo . From (2.5) and (2.6),
the eigenvalues and eigenfunctions are respectively given for any x > 0 by:

3
1 1
ES), = hwir (Sl + 5) +hwikL ) <Sﬂ' + 5) os={s}ja eN,

j=2

\I/Sv),n(x = (Sl (71 Hd’((éjm zj), x= {zj}?:l €R?.

Next, Vi > 0 denote |g| := (k1raks)'/? = (k1k2)5 and wy = (Wiwows)3 = (wiw?)3. Then, one
has |k|*/? = \/kik, and |&|> = k1x% . To take into account the anisotropy of the harmonic trap,

the rescaling by #3 in Definitions 2.1-2.2 (resp. %2 in Definition 2.4) when d = 3 has to be replace
with |&|? (resp. |£|>/?). Therefore, similarly to (2.28)-(2.29) and (2.31), the reduced density matrix
and the rescaled reduced density matrix read V& > 0, V3 > 0, Vv > 0 and V(x,y) € RS as:

Poour (%, 3 B, V) Zel% “GO, (w1, yi518)GR), (xu,y1518), (35)
. _ 3/2 .

rm,ﬁ(x,y,ﬁ,v = |]*2 poo,x (%, ¥ B, 1), (3.6)

where x| := (v2,73), Y1 := (y2,¥3) and Ti, ,, := o (B, V) < E((,g,),.i satisfies similarly to (2.24):
V= Veow(B, 1) = |ﬁ|3wm,ﬁ(ﬁaﬂ)- (3.7)
When dealing with the above bulk quantities in open-trap limit, Definitions 2.5-2.8 still hold for
the type of anisotropic harmonic traps we consider here (the k;’s are functions of k). We stress
the point that the results of Lemma 2.9 still hold true. In the rest of this section, our purpose

consists in stating the counterpart of Propositions 2.12-2.15 and Theorem 2.17 in the case of a
quasi-1D and quasi-2D trap model (we do not consider the counterpart of Theorem 2.20).
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3.3.1 A Quasi-1D trap model.

A quasi-1D trap model was first introduced in [8] adapting the exponentially anisotropic (van
den Berg) boxes model for the homogeneous Bose gas studied in [50]. It has been reviewed in [40].
It is a three-dimensional anisotropic trap model defined (in accordance with our formalism) as:

K1 :nexp(f%), Ke > 0, (3.8)
k1 = k(= ke = K3).

From (3.8), for small values of x, the characteristic length \/A(mwik1)~! along the z-direction
is very large compared to the one along the x;-directions, j = 2,3 (hence the name of quasi-1D
trap). For this kind of quasi 1-D trap model, Beau at al. pointed out in [8] (see also [40]) that
the Bose gas can manifests both BEC and generalized-BEC in a suitable regime corresponding to
a second kind of transition. Since such a model produces some very different results compared to
the isotropic harmonic trap, this justifies its relevance. Let us go further into details.

The counterpart of Propositions 2.12-2.15 is contained in:

Proposition 3.1. Consider a quasi-1D harmonically trapped Bose gas (the anisotropy is defined
by (3.8)), in the G-C ensemble. Then, for any 5> 0, v > 0 and K. > 0:

(i). The Bose gas manifests an open-trap BEC' in the sense of Definition 2.11. Furthermore, the
open-trap rescaled average number of particles on the ground-state satisfies:

0, when v < v (B), (3.9a)

Voo,0(B,7;0) = { v — vp(B), when v > v (8), (3.9b)

where vy, (B) stands for a second critical open-trap rescaled average number of particles defined as:

2

Vm(ﬁ) = Vm(ﬁa’ic) = VC(ﬁ) + ﬁﬂccug > Vc(ﬁ), (3-10)

where wy = (wlwi)% and we = w, ke. We recall that v.(8) = g3(1)(hBwo) ™2 is the critical open-
trap rescaled average number of particles in (2.34) obeying (2.40Db).

(ii). The Bose gas manifests an open-trap generalized-BEC in the sense of Definition 2.14. More-
over, the open-trap rescaled average number of particles nearby the ground-state satisfies:

0, when v < v.(f), (3.11a)
lgiﬁjll’g% Z Voos(B,v58) = < v —1.(B), when v.(B) < v < vp(B), (3.11b)
sE(N*)2: 320, kjs;<e vm(B) — ve(B), when v > vp,(B). (3.11c)

Moreover, vso o(B,v;8) =0 Vs € (N*)3.
(iil). Too,kx = Mook (B, V) € (—00, Eég?n) satisfying (3.7) admits the asymptotics in the limit x | 0:

Eég,),,i + Too,0 +0(1), when v < v.(B), (3.12a)
w1Bw—vc(B)) w1 (v—ve(B))
I = Eég?,{ - ﬂ_lefﬁ el +o (e7 e ) , when v.(B) <v <wvn(B),(3.12b)

E(O) _ Kjllii

=B —vm(B))

Here, E((,g,),.i = Lhwik +hwiky, and fiy, o = Tl o (B, V) € (—00,0) satisfies (2.41).

+ o0 (k1K7), when v > vy, (B). (3.12¢)

The proof of Proposition 3.1 can be found in [8]. Contrary to the case of the isotropic harmonic
trap, the Bose gas manifests an open-trap g-BEC in the sense of (2.44) when v > v.(8). Moreover,
the Bose gas manifests an open-trap BEC in the sense of Definition 2.11 only when v > v,,,(8) >
V.(B). Therefore, the open-trap g-BEC and open-trap BEC coexist when v > v,,,(8). We mention
that an article investigating the measurement of such a chemical potential (3.12b) has been recently
published [36].
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Remark 3.2. Let us discuss the physical relevance of such an exponential-quasi-1D model. Prepar-
ing experimentally the system in a quasi-1D regime requires that the conditions hwi < hw, along
with hw) B < 1 are fulfilled. On the contrary, the condition w18 < 1 < hw, B implies that the
Bose gas behaves like a one-dimensional system, see e.g. [56]. However, we need another condition
oNn We := W] ke since it has to be sufficiently large so that the difference v, — v, is at least of the
same order than v.. Thus, by (3.10), w. has to be of the order of wg := (RB)~!

Subsequently, we turn to the properties of the (rescaled) reduced density matrix in open-trap
limit. As a counterpart of Theorem 2.17, we establish:

Corollary 3.3. Consider a quasi-1D harmonically trapped Bose gas (the anisotropy is defined by
(3.8)), in the G-C ensemble. Then for any B >0, v >0, . > 0 and (x,y) € RS:
(A). The open-trap reduced density matriz exists and satisfies:

Ly ®. (1)
, when v < v.(B), 3.13a

poo,O(Xay;BaV): )\% =1
00, when v > ve(f). (3.13b)

(B). The open-trap rescaled reduced density matriz exists and satisfies:

_(mwo\ 2 Veoo(B,v50)  rmwg 3 0, when v < vm(f),
roc0(B,v) = ( Th ) s o ( 7h ) x Y= vmiP) V;n(ﬁ), when v > vy (B). (3.14)
T2

Here, vy, (8) > ve(B) is the second critical open-trap rescaled number of particles defined by (3.10).
As a result of (3.14), the Bose gas manifests an open-trap ODLRO if v > v, (5).
(C). In addition: the open-trap rescaled reduced density matriz satisfies:

oo 0% Y3 5, ) = 1t v i (8,730) W)y (x/w) W (/) (3.15)

as for the open-trap reduced density matriz without the ground-state:

— 2
1 > elﬂﬂoo,o _)\%\xflﬂ

. V)R (y) _ e e 7 . when v < v.(B), (3.16a)
wlo e 8(BQu-nen) Pi=
seN")® € 0, when v > ve(B). (3.16b)

The proof of Corollary 3.3 is sketched in Sec. 5.2 and leans on the same methods than the
ones used to prove Theorem 2.17. Unlike the isotropic case, the Bose gas manifests an open-trap
ODLRO if and only if v > v,,(8), and even if the Bose gas manifests an open-trap g-BEC when
ve(B) < v < vp(B), see Proposition 3.1 (ii). We emphasize that, in the regime v > v.(8), the
g-BEC has an impact on the reduced density matrix since its non-condensate part diverges.

Remark 3.4. The ’proof’ of Corollary 3.3 in Sec. 5.2 allows to bring out that the divergence in
the regime v > v.(B) of the non-condensate part of the reduced density matriz in (3.16b) arises
from the mesoscopic-loops contribution. With w. := w) k., we prove that when K | 0:

M,

Z (elﬂﬁw’NGg};%nl (-Tlayl; lﬁ) GSXD)I{L (XLaYLy lﬁ) - e (#x NiE(O) )\I](O) ( )\I/(()g?,{(y))
l:Nm,a"i‘l

1 —1
1 mw exp ﬂs()Q(n ) ,  whenl< ’(’):ngfl’"(ﬁ)
1K1 (hw, k) 2

~——== X
A wh 2
g ovT exp <L>, when v > vy (),

2 2
2wik
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L
where Ny o := |k™7], 0 >0 and My, = M,, ,, := |e+% | with k <1 (here |- | is the floor function).
The ’proof’ of Corollary 3.3 brings also out that the sum over the short-loops, i.e., loops in the
range 1 <1 < |k™9] gives rises to the usual thermal gas contribution given in (2.51c), whereas
2

the sum over the macroscopic-loops, i.e., | > Le%J tdentically vanishes. Note that in our sum-
decomposition, k plays the role of hwof in the loop-gas approach in [38]. Due to the latter feature,
the three-terms decomposition of the local density function as stated in (1.4) is then justified. The
first term corresponds to the usual BEC (macroscopic-loops contribution) and the third term to the
thermal gas (short- loops contribution). Moreover from (3.17), the additional term corresponds to

LF:
the mesoscopic-loops contribution with loops of length in the range |k™7| <1< |ex? |.

3.3.2 A Quasi-2D trap model.

In Theorem 2.17 (C), we stated that the non-condensate part of the open-trap reduced density
matrix diverges when v > v.(8) if d = 2. In Annex 5.1, we precise this result and prove that:

‘I’gi{rﬁ(x)‘pgi)ﬁ(Y) oL In (;) when x } 0
s — 2 ,
s€(N*)2 eﬂ(E&’)’“_““”“) -1 A5 fusorsf

uniformly in (x,y) € R*. We mention that a similar behavior has already been pointed out
in [37]. In this paragraph, we introduce a three-dimensional anisotropic harmonic trap model
mimicking the two-dimensional properties (for certain values of v > v.(/)) while 'regularizing’ the
two-dimensional logarithmic divergence mentioned below. This trap model is defined as follows:

K1 =K
{ ki =rexp (=) (= k2 = k3), K> 0. (3.18)

From (3.18), for small values of x, the characteristic length /A(mw;k;)~! along the z;-direction,
j = 2,3 is very large compared to the one along the z;-direction (hence the name of quasi-2D
trap). This anisotropic model is inspired by a model introduced in [50] for homogeneous systems.
Contrary to the quasi-1D model in Sec. 3.3.1, this quasi-2D model does not exhibit a second kind
of transition. In fact, the counterpart of Propositions 2.12-2.15 is similar to the isotropic case:

Proposition 3.5. Consider a quasi-2D harmonically trapped Bose gas (the anisotropy is defined
by (3.18)), in the G-C ensemble. Then, for any >0, v > 0 and kg > 0:

(i). The Bose gas manifests an open-trap BEC' in the sense of Definition 2.11. Furthermore, the
open-trap rescaled average number of particles on the ground-state satisfies:

0, when v < ve(B), (3.19a)

Voo,0(B,v;0) = { v —va(B), when v > ve(f), (3.19Db)

where v.(B) is the critical open-trap rescaled average number of particles in (2.34) obeying (2.40b).
(ii). The Bose gas manifests no open-trap generalized-BEC' in the sense of Definition 2.14:

lim li ;s) =0. .

it 15?01 Z Voo, (B,758) =0 (3.20)
se(N*)3: E;:1 rjsj<e

Moreover, Vs o(3,v;8) =0 Vs € (N*)3.

(iil). Too,x = Foox(B,v) € (=00, E((,g,),.i) satisfying (3.7) admits the asymptotics in the limit x | 0:

EQ), +Tis o +0(1), when v < ve(B), (3.21a)
ﬁoo kT Ii1:‘<&2
' EO L 1o (kik2), when v > v.(8). 3.21b
TR ) I ) (:210)
Here, E((,g,),.i = Lhwik +hwiky, and Ty, o = Tise o(B,v) € (—00,0) satisfies the equation (2.41).
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Subsequently, we turn to the properties of the (rescaled) reduced density matrix in open-trap
limit. As a counterpart of Theorem 2.17, we establish:

Corollary 3.6. Consider a quasi-2D harmonically trapped Bose gas (the anisotropy is defined by
(3.18) ), in the G-C ensemble. Then for any 3 >0, v >0, k. > 0 and (x,y) € R®:
(A). The open-trap reduced density matriz exists and satisfies:

1 oo elﬂﬁoo 0 —=x \xfly\Z h (ﬂ) ( )
— —e€ , when v < v.(B), 3.22a

poo,O(Xay;BaV) = )‘?ﬂ =1 l%
00, when v > ve(f). (3.22b)

(B). The open-trap rescaled reduced density matriz exists and satisfies:

3 ) 3 0 when v < ve(f5)
(MW 2 Veo,o(B,v;0) (mwo)z - e\
reo0(B,v) = ( Th ) 5 -~ \ 7h x L;(ﬂ), when v > v.(B3). (3.23)
T2
As a result of (3.23), the Bose gas manifests an open-trap ODLRO if v > v.(5).
(C). In addition: the open-trap rescaled reduced density matric satisfies:
roo,O(Xa Yy 6; V) = E?& Voo,k (6) v; 0) lllgg?l (X\/E) \I]g))?l (y\/E) ’ (324)
as for the open-trap reduced density matriz without the ground-state:
1 & elBliceo — = lx—y|?
3 Z ¢ —e 5 when v < v.(f), (3.25a)
(s) (s) A 13
lim Z \Iloo,n(x>\lloo,n(y) _ B =1
o 4t B(ELTun) 4 mwe 2 1 X1 -t
se(N-)® e =t i3 —e B , when v > v.(8), (3.25b)
wh /\B /\B — 12

1
where wo = (wiw?)3 and w, := w1 ke.

The proof of Corollary 3.6 is sketched in Sec. 5.2. The results of Corollary 3.6 are similar
to Theorem 2.17 but with the difference that the non-condensate part of the open-trap reduced
density matrix has an additional term in the regime v > v.(f), see (3.25b) (compared to (2.51c)).
Let us comment this result. In fact, we prove that when v > v.(3):

@ © e x Ix—yl|?
oo n (X) Voo k() [y 1 < 1 > 1 1 -t
7 : ~ N2 hl 5 + —= —€
BQu o) _q VTGRS lel 3

se(N*)3 eﬂ(

wN|

While mimicking the properties of the two-dimensional isotropic case, our quasi-2D trap model
provides a non-condensate part of the open-trap reduced density matrix that is finite. The loga-
rithmic divergence is then 'regularized’ by the third dimension (multiplication by /k1 = /k). We
point out that the additional contribution arises from the 'mesoscopic loops’ that we can interpret
as a local g-BEC, see (5.13)-(5.16) in Sec. 5.2. Note that this additional term still occurs in the
open-trap local density (i.e., when x =y).

Remark 3.7. Let us discuss the physical relevance of such an exponential-quasi-2D model. Prepar-
ing experimentally the system in a quasi-2D regime requires that the conditions hw, < hwi and
hw1 B < 1 are fulfilled. On the contrary, the condition hw, < 1 < hwi B implies that the Bose
gas behaves like a two-dimensional system, see e.g. [56], and under the condition w) < wy along
with w1 = 1, the Bose gas is in another quasi-2D regime, see [27]. As in Remark 3.2, we need a
condition on w. := w1k, so that the first term of the local density (diagonal part of (3.25b)) is of
the same order than the local density )\Eggg(l). Thus, w. has to be of the order of wg = (hB)~!.

23



Remark 3.8. We mention that the result in (3.25b) is similar to the one derived for the perfect
Bose gas when considering the analogous exponential-quasi-2D boxes in which one takes Ly = L
and L, = Le“" | where a > 0 is the exponential rate of the model. We refer to [50, 55], and also
to [8]. If one compares the results from [8] along with Corollary 3.6 versus the results stated for the
isotropic case in Theorem 2.17, one can interpret the additional term in the local density matriz as
a g-BEC having the density of particles equals to pm,(X) — pe(x) = 2a)\52. Here, « = \/mw,/(mh)
is analogous to the exponential rate appearing in the exponential-quasi-2D bozes, and pp,(x) is
analogous to the second critical density of particles (p.(x) is the usual critical density).

Remark 3.9. In the proof of Corollary 3.6, see Sec. 5.2, the reduced density matrix is decomposed
into three sums corresponding to different sizes of loops: the short-loops giving rise to the second
term of the r.h.s. of (3.25b), the mesoscopic-loops to the first term, plus the macroscopic-loops
giving rise to (3.24). From (5.16), mesoscopic-loops of different scales contribute to the first term of
the r.h.s. of (3.25b). For instance, the sum over the loops in the range |k~ <1 < |k~ 72k 7"
with oy > 0, oo > 0 and k < 1 gives rise to half of the contribution; the sum in the range
|k™%2k7 "] <1< |k 92k ?| gives rise to the other half. Note that in our sum-decomposition, the
plays the role of fuwgf3 in the loop-gas approach in [38]. Therefore, if one uses numerical simulations
with PIMC method (see e.g. [33]) for investigations on the ideal Bose gas in exponential-quasi-2D
harmonic traps, then one should observe a non-negligible mesoscopic-loop-length distribution.

4 Proofs of the main results.

In all the proofs that we give in this section, we set A = m = wg = 1 for the sake of simplicity.

4.1 Proof of Theorem 2.17.

Part (A). Let 8,v > 0 be fixed. We start with the case of v < v.(8) if d = 1,2, 3. Consider the

representation in (2.29). From (2.43a), there exists a kg > 0 s.t. VO < k& < Ko, Tlog 0 < @ < 0.
This, together with the rough upper bound in the second inequality of (2.11), lead to:

d

V0 < k < Ko, ewﬁwa(d) L(x,y:18) < el G(d o(x,y:18) < elf (27rlﬂ) 2

uniformly in (x,y) € R??. From the above inequality, (2.48a) follows by standard arguments. We
continue with the case of v = 1.(8) if d = 2. The strategy is to find a lower bound of the sum
in (2.29) whose the limit & | 0 diverges. Let us note that uoo . > 0 for k > 0 small enough, see
(2.43b). Then, from (2.9)-(2.10), one has VI € N*, V(x,y) € R+ and for x> 0 sufficiently small:

el GLI=2) I R sy i () vl 41
(e, y316) 2 QWSIHh(KZﬂ)e ¢ ’ (4.1)
where we used the upper bounds in (A.8)-(A.9). Then, under the conditions of (4.1), one has:
1 2
Poow(X,¥; 8,v) > —ﬁe — 5ty o= i (5) =yl (tanh (%)) , (4.2)

and the above lower bound diverges in the limit x | 0. To get (4.2), we used an integral comparison
to minorize the sum, and then we performed explicitly the integral. Let us turn to the case of
v>uv.(B)if d =2,3. If d = 2, it is enough to use a similar reasoning than the one leading to
(4.2). If d = 3, from (2.9)-(2.10), one has VI € N*, V(x,y) € RS and for x > 0 sufficiently small:

lﬁ,u.OO N(;1(61 3) (X y,l,ﬁ) T 2sz(elﬁ(,uao ” Eég?n)ef%|x+y|26_i(ﬁ+%)|x_y‘2,

where we used the upper bounds in (A.7)-(A.9). Since 7i, , < Eég?,i, under the same conditions:

—_

Lo BEQ. T
oyl (e 2yt 3 € T

8 EQ ~ T

pooyli(xvy;ﬂ”/) Z ? (43)

[M

™
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where we used again an integral comparison, and then we performed explicitly the integral. From
the asymptotic in (2.43c), the lower bound in (4.3) diverges in the limit « | 0.

Part (B). Let 8,v > 0 be fixed. We start with the case of v < v.(8) if d = 1,2,3. From (2.31)
together with (2.29), then (2.48a) leads to limy o 7oo x(X,y; 3,7) = 0 uniformly on R?4. Let us
turn to the case of v > v () if d = 2,3. The key-idea consists in decomposing V0 < x < 1 the
quantity defined by (2.31) (knowing (2 29)) into two contributions:

Ny, o o)
Foon(X,¥i B,v) = 12 Y G (x,y;18) + 12 Y G (x,y318),  (44)
1=1 I=N, o+1

where Ny, , := |k~ 7] with 0 < ¢ < d for the moment (a limitation will appear when v = v.(53)).
Here, |- | denotes the floor function. Below, we prove that the contribution in (2.49) when v >
v.(B) only arises from the second quantity in the r.h.s. of (4.4). Let us investigate the first term
in the r.h.s. of (4.4). From (2.12) followed by the lower bound in (A.10), one has V(x,y) € R?¢:

olB(Fo n—EL,)

lﬁl"oo K (d 2) < E ﬂ(ﬁw,n_Eég?N) 4
G (% y310) < — 2n15 : (4.5)
1+ < S > (4.6a)
3 —t .6a
el G (x, y3 1) < Spelf (o™ P) ”Z (MZ) 1
V2IBk - 2lBk - (218kK)2

In (4.6a) and (4.6b) we used that Vz > 0 (14+2)% < (1+1)% and (1+1)2 < (1+%)3 respectively.

Since Ty, — Egg?,i < 0, one has for k < 1 sufficiently small the following upper bounds:

Ne.o l,@(E(O) _ ) QKgfmfo(lfm), if m € {0, %}7
o e Poo,r —ﬂ(E(o) — ) 1 € .
- <e so,n Moo,k ) HZ In ( ), ifm=1, (4.7)
KO’

=1 3KE, if m e {3,2}.

d_
HZ

By the squeeze theorem, when v > v.(8) if d = 2, 3 one has uniformly in (x,y) € R2®:

Ni,o
Vo<o<d, limk? Z PP W (x,y;18) = 0. (4.8)
K0 = ’

Subsequently, let us turn to the second term in the r.h.s. of (4.4). Since i, , — Egg?n < 0, then
one has Vd € {2,3}, V0 < o < d, ¥(x,y) € R?¢ and for x < 1 sufficiently small:

s d ~NioB(EL)  ~Hoor)

4 AT (d) ) K —=lx+yl? —%lx—y[?coth(§x1~7)C oo oo
K2 E ePhoen G (%, y510) > —e 1 e 1 (3 P ECR— :
I=Ny,o+1 e N |

(4.9)
Here, we used the upper bounds in (A.7)-(A.8) together with a formula to express the remainder
of the geometric series. Now, we distinguish the case of v > v.(8) from the case of v = v.(f).
When v > v.(8), we get from the asymptotic in (2.43c) the existence of a Kz > 0 s.t.

V0 < k< Ks, 368> 28 (v — vo(B)) (Egg?,{ - ﬁom) > kd > 0. (4.10)

By the upper bound in (4.10), one has Y0 < ¢ < d, ¥(x,y) € R?*? and V0 < x < min{1, Kg}:

. ) - (d Voo, ﬂvy;()) ety % o X |2coth(ﬁn1*") _ 3gd-o
K2 Z Pl G (x,y;10) > ———F——Fe 4 XV emal*7¥ 2 e 2—ve®) ,
I=N, o+1 T
(4.11)
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Next, let us find an upper bound for the Lh.s. of (4.11). If d = 2, from the upper bound in (4.5)
then V0 < o < 2, V(x,y) € R* and for £ < min{1, Kz} sufficiently small:

RO G (ki 18) < “—Z EL ) 1 LT (BN (B~ Tiocn))
I=Ny o+1 [— B
Voo, (8,13 0) K K2 (K77 —1)
< = 'V 4 T _— 4.12
= . t 950 <2(V A (4.12)

where I'g(-) denotes the incomplete Gamma function (below v stands for the Euler constant):

—t

oo e e
Yz >0, Fo(x)::/m dtT:—v Z

k=1

zk

(4.13)

If d = 3, from the upper bound in (4.6a), Vo € (0,3), ¥(x,y) € RS and for k < 1 small enough:

oo

kT G (x,y;18)
=N, o +1
< Voo «(B,1;0) K2 _ 1 K
< + 2y ( NM(ESX))K WK))+%—, 4.14
7T% /37'(2 0 ﬁ K ’ (Qﬂ)ZTF% Nka,o' ( )

where we used some integral comparisons. Since the r.h.s. of (4.11) and (4.12)-(4.14) converge
V0 < o < d and uniformly in (x,y) € R?? to the same value when « | 0, then lim, o 70 « (X, ¥; 3, V)
exists by the squeeze theorem and equals (2.49). We emphasize that the result strongly relies on
the asymptotic form of the chemical potential in (2.43c). When v = v.(8), we use a similar
method but the upper bounds in (4.12) and (4.14) have to be replaced with some independent of
the difference Egg?,i — oo - Indeed, the asymptotic in (2.43b) does not allow us to conclude from
the bounds in (4.12) and (4.14) because of the presence of the In in (4.13). In the case of d = 2,
from (4.9) and (4.5), then one has V0 < o < 2, V(x,y) € R* and for x < 1 sufficiently small:

Voo,n(ﬁa v;0) eff|x+y| £lx—y|? Coth(% )efgkal"’
™
> - _ ;0) 1 1
< BT GU=2) (. y: 18) < LoorBi30) (1 L . (415
< 3 ITeat iy < e (1 g

To derive the upper bound, we minorized the [ in the denominator of the second term in the
r.hs. of (4.5) before extending the sum up to ! = 1. In order to apply the squeeze theorem
(remind that limy o Voo« (B, vc(5);0) = 0, see (2.42b)), the limiting condition d > o > 1 is re-
quired. From (4.6) and by using similar arguments, if d = 3 the same limitation is required as well.

Part (C). Let 8,v > 0 be fixed. We start with (2.50). From (2.6)-(2.4) with (2.35)-(2.42):

—5(IxI*+ly1?) .
hfol Voo, (B, V3 O)Wg?l(x\/g)\llég?l(y\/g) = h?ol Voo, (B3, 0) ° d = oo, ;0) :

K K T

d
T2

From (2.49), the r.h.s. is nothing but r o(x,y; 3, ) which is independent of x,y € R?9.
We continue with (2.51). Let us mention that the reduced density matrix can be rewritten as:

0 0
v, (x) 0 (y) v, ()R (y)
( — s) _— )
eﬁ<E£?,ruoo,,;) _1 ﬁ(Eio,mfuoo,,c) _1

V(x,y) €R*,  poon(xyiB,v) = (4.16)

se(N*)d e

When v < v.(f8) if d = 1,2,3, the first quantity in the r.h.s. of (4.16) vanishes in the limit x ] 0.
Then (2.51a) follows from (2.48a). We turn to the cases of v > v.(8) if d =2, v > v.(B) if d = 3.
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Similarly to (4.4), we decompose V0 < k < 1 the reduced density matrix into two contributions:

Nn,a oo
poo,l{(an;ﬂaV) = Z elﬁﬁwat(i),n(xvy;lﬂ> + Z elﬁﬁwwG(()i),n(xvy;lﬂ% (417>
=1 I=N, o+1

where N, , = |£77] with 0 < ¢ < d for the moment. When v > v.(8) if d = 2, the strategy
consists in finding a lower bound for the Lh.s. of (2.51) involving the first term in the r.h.s. of
(4.17). Y(x,y) € R* V0 < 0 < 2 and for k < 1 sufficiently small, one has from (2.28)-(2.29):

Ny
3 G i) = 33 )0 (), ()
=1 =1 seN2

i1 — o PNeo (BQ, ~Tie. )

" 2 2 \sz);g \II((;)/{
o~ 5 (X +IyI?) 4 Z ﬁ(E(S)( )_ )(Y) , (4.18)
o0, K :u‘oo K _ 1

= 0

™ eﬁ<Eoo,N :“'oo,n) -1 se(N*)2 e
where we separated the case s = 0 from the sum over s before extending to co the sum over [ in
the second term of (4.18). Under the same conditions, and since 7, ,, > 0 for £ < 1 small enough:

(s) (s) N —BNwo (B ~Too
PorCOVrlY) 5 37 e e G2, 11) — L (0 T (o s15)
B® _o ’ 0 _—
“ SELTen) T o S (ELHun) _ 4
1 2 2 kK7 —1 " 2 2
x+ —3(r+3)Ix— 1—o,—5(Ix[*+
1 Gl 1“(%)”“ Tl o

and the above lower bound diverges when x | 0 VO < o < 1 and V(x,y) € R*. In the Lh.s. of
the second inequality, we majorized the second term by the lower and upper bound in (A.11) and
(A.10) respectively, then we minorized the sum by an integral (as we did in (4.2) from (4.1)) and
used (A.9). Next, we treat the case of v > v.(8) if d = 3. The strategy consists in showing that
the Lh.s. of (2.51) equals the limit & | 0 of the first term in the r.h.s. of (4.17) for some suitable
0. ¥(x,y) € R, V0 < 0 < 3 and V0 < k < min{1, Kg} (see (4.10)), one has:

- - v, (x) e,
S e G x,y3 1) — o) Veenly)

0 —
I=N, o+1 eﬁ(E“*““w) -1
o= 5(IxP+1yP?) .
> K2 2 i (e,fz[coth(gn )-1]Ix—y/? fﬁNM(E< )T ,w) _ 1) (4 20)
eﬁ<Eég?m7ﬁoc,m) _ 1 T2
o _1veos(Biri0)e ~ 5 () e fr 7’ | 243 K39
K X — — ],
=73 ,i% 3 1—eprio X7 v —ve(B))

and the above lower bound vanishes when £ | 0 V1 < 0 < 3 and V(x,y) € RS. To get the r.h.s.
of the second inequality from the Lh.s., we used the lower bound in (A.11). Here, the exponential
decay in k'~ arises from the dlfference coth(ﬁ 1=y — 1. Under the same conditions than (4.20):

S ol (=) w0 (x) Q. (y) ot G
Z e OcWCTVOO,M (Xa Yy lﬂ) - E(O) — < ﬁ(E(O) — )
=N, o+1 eﬁ( oc,m*#oc,n) -1 e ook THoo k) 1 T

3 [e'e]
o 2 1 1 © _5
x (e (1—tanh(56 7)) ety* _ 1) 4 (_+7) e B(EQw—Fio ) (4.21)
( ) l—%—i—l klB  (218K)?

e

3

where we used (4.6a). Afterwards, by using the upper bound in (A.11) and the argument which
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lead to the estimate in (4.14), then under the conditions of (4.20), the r.h.s. of (4.21) is less than:

VOO"Q(/BaV;()) 67%(|x|2+|)"2) e*ﬁlﬁ17“

K
71'% 21 +eBr°

Ix +y[2ede ™ ey
3 -0 _1 1 o—1
Jr\/ESFO<H (k ))+ AT g
B2 2(v—rv.(B)) (28)272 1 — K°

Here, the exponential decay in '~ arises from the difference 1 — tanh(2x'~7) — 1. Since (4.22)
vanishes when x | 0 Vo € (1,3) and V(x,y) € R, we conclude from (4.20) by the squeeze theorem:

e

K

3 > _ . \pgg)n \I/(()g),{
Vi<o <z, lim E PP UI=3)(x v 18) — ()W oo.n(¥) = 0. (4.23)
2" ki0 : 8(BL T )
I=Ng,o+1 e ) —1

In view of (4.16), (4.17) and the foregoing, to prove (2.51c) it remains to show that:

Ny .o o)
3 ~ 18T _ 1 ey
V<o <2, V¥(xy) eRS, 1lim ) PPerGd=d(x y;18) = e . (4.24
5 V(% Y) liny §:1 = (%, y;18) ;:1 @nip)? (4.24)
On the one hand, V(x,y) € RS, V0 < 0 < 3 and V0 < k < min{1, K3} (see (4.10)), one has:
Neo Neo by yI?
e (d= 3) e e (s T
e Heo NG X, y;l3) >e 4 e 1 e c<5> , 4.25
> (. 3:16) 2 > G

where we used the upper bounds in (A.10) and the ones in (A.8)-(A.9). On the other hand, from
(4.6b) together with (4.7), one has under the same conditions than (4.25):

Nk .o Nk, _lx= y|? w3
e P g€ 2t ( 30, 3 1-2 ( ))
Pl GLE=2) (x,y:10) < K277+ 2 In .
; ¥ilh) ; (27l3)2 w3 \/ﬁ \/_
From (4.25) along with the above upper bound, (4.24) follows from the squeeze theorem. O

4.2 Proof of Theorem 2.20.
Part (A). Let 8,v > 0 be fixed.
e Case of v < v.(B) if d =1,2,3 - Proof of (2.52)-(2.53).
At first, let us note that from (2.43a) and (2.9)-(2.10), one has VI € N* and Vx € R%:

1BFioo,0 1 if1>62>0
lim /7. G(&) 0 w018y = &0 ’ = 4.2
o e GL0, Gt e 08) = S { e iy (4.20
Here, we used the following:
d
K 2 1 K 0 if1—-2§ > -1
l * olim | ————— ] = ——, lims!®t h(—l ) = ; ’
Ve N, é?&(%‘sinh(ﬁlﬁ)) (2xlB)e’ o a3 p %, if1—-26=-1.

Subsequently, from (2.43a) again, there exists a ko > 0 s.t. VO < & < Ko, flog 5 < @ < 0. By
using the rough upper bound in (2.11), then one has V0 < § < 1 and uniformly on R¢:

VO <k < kg, @G (xk70, xk01B) < (2m1B) 2 eATE
By standard arguments, it follows:
Ii 1Bl NG(d) =0 «k7918) = lim e/fFoo,x () =0 w791
’518[ 1e (xm JXK T ﬁ) ;é?&e Sk (xm JXKT Y ﬁ),

what proves (2.52) because of (4.26). From (2.31), (2.53) results directly from (2.52).

28



e Case of v > v.(B) if d = 2,3 - Proof of (2.54)-(2.55).

Let us start with (2.54a)-(2.55a). We look for a lower bound of the sum in (2.29) whose the limit
k } 0 diverges. If d = 2, from (2.9)-(2.10), then VI € N*, Vx € R? and for x > 0 small enough:

— — 1 kI3 1228 11 1,2-28),2
BT o ((4=2) 3. _ wb x5 s L L —nip - 3n2 208
¢ S (en0 x5 18) > 16 27 sinh(rlB) = on it
In the Lh.s. of the second inequality, we used (A.9) and 7, , > 0 for £ > 0 small enough, see
(2.43b)-(2.43c). To get the r.h.s., we used the expansion in power series of the sinh which yields:

-1
KIB kIS B < (klB)2m » s
sinh(kl8) 2> ('Zéf’,fi"{;l - <§0m> > (cosh(klB))"" = e ™7 (4.27)

Then, one gets for x > 0 sufficiently small and Vx € R2:

7ﬁ I€+1I<,2 ZJ‘X‘) 1 yoos )
00,k y X ) = =T aa ’
e (xS 01,0 2 o [T o (8 (k4 geix?) )

where I’y is the incomplete Gamma function in (4.13). In the limit « | 0, the above lower bound
diverges V0 < § < 1if x =0, V0 < § < 1 otherwise. If d = 3, from (2.9)-(2.10) and by mimicking
the arguments leading to (4.3), then VI € N*, ¥x € R? and for x > 0 small enough:

3
1 7H1725|x|2 K2

(2m)% 8 EQy — T

By (2.43c), the above lower bound diverges in the limit x ] 0 V0 < < 1ifx=0,V0 <4 < %
otherwise. Next, let us prove (2.54b) and (2.55b)-(2.55¢). To do so, we first give a lower bound
for the quantity poo .(x+~%, xx7%; 3,v) when 6§ = 1 if d = 2 and when % <d<1lifd=3.

If d=2 and § = 1, for any x € (R*)? and for k > 0 small enough:

—B(BD, )

Poo,k (X’fﬂsv xk~°%; B, V) >

1 & e BB T )+ ¢ (e—B[(Eiﬁ?m—ﬂx,m)%\xP])
-1 1. B
Poo,k (XH XK Bv Z—ﬂg 7 — 53 ,
(4.28)
where we used (4.27). If d=3 and 1 > 6 > %, Vx € (R*)3 and for £ > 0 small enough:
3 (e*ﬁ[(EéS?frﬁw,m)ﬁ|x|2n2*2“])
—0 -6 2

poo,/{ (XK’ 7XK’ 7/3; V) Z (429)

(27B)%

In the limit « | 0, the lower bounds in (4.28) and (4.29) converge to (2.54b) and (2.55b)-(2.55¢)
respectively following the values of §. Secondly, we give an upper bound for peo «(xk =%, x£7%; 3, v/)
when 6 = 1 if d = 2 and when % < § < 1if d= 3 whose the limit x | 0 reduced to the announced
results. Under these conditions, introduce V0 < £ < 1 and Vx € (R*)¢ the decomposition:

Poo.k (xnf‘s,xn*‘s;ﬂ, l/) = Z elPhoc + Z e!PFoo GS;QK (xmfa,xnf‘s;lﬂ) ,  (4.30)
o1

where Ny, , := [+~ 7] with 0 < ¢ < d for the moment. Let us give an upper bound for the second
term in the r.h.s. of (4.30). From (4.5)-(4.6a) and by mimicking the arguments leading to (4.12)
and (4.14), one has Vd € {2,3}, ¥x € (R*)%, V0 < o < d and for k < 1 sufficiently small:

oo

2 k2~ 26—o
S TG (xn0,xn%18) < @ 2T
=N o +1
1 Lo BB, T .) ,irl d—2 1
x : + 5T (NuoB (B9, —Fer) ) + S . (@31
e 7 VN [
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where we used that VI > N, , + 1, tanh(%l) > tanh(gml_") followed by the upper bound in
(A.9). From (2.43c), the upper bound in (4.31) vanishes in the limit x | 0 V2 =26 < 0 < d if
d = 2,3 and Vx € (R*)%. Let us give an upper bound for the first term in the r.h.s. of (4.30).
From (4.5), (4.6b) and (4.7), Vd € {2, 3}, ¥x € (R*)4, V0 < 0 < d and for £ < 1 small enough:

.2—20

< —e 1+8rl —
(27lB) 2

l:Nn,a'i‘l (27Tl/8)

+2€B(i)—;—um) (m%_0+3(3;2) - %4_3(61722)\/_1 (%)) (4.32)

From the asymptotic in (2.43c), the last term in the r.h.s. of (4.32) vanishes in the limit « | 0
V0 <o < % if d = 2,3. By an integral comparison, one can prove that the second term vanishes
in the limit x | 0 V2 — 26 < 0 < d if d = 2,3 and Vx € (R*)?. Finally by standard arguments, one
has V0 < o < 1ifd=2,¥0 <o < d if d =3 and ¥x € (R*)%

2—26

o —IB(EQ, T .) 2-25 o0 o—1B(BL),
——— e 14+8r1=0
2

— LB
g 2y (27lB)

By adding the r.h.s. of (4.31) and (4.32), we got an upper bound for the Lh.s. of (4.30) converging
when 6§ = 1 to (2.54b)-(2.55¢) V0 < 0 < 4 if d = 2,3, when 2 < § < 1 to (2.55b) V1 < o < 3 if
d = 3. In view of (4.28)-(4.29), (2.54b) and (2.55b)-(2.55¢) follow from the squeeze theorem.

o) 14012
—351B|x|
2

a4 e

2

o Case of v > v (f) if d = 2,3 - Proof of (2.56).

Similarly to (4.4), the starting-point is a decomposition of the quantity defined by (2.29) V0 <
d <1,Vd € {2,3} and VO < k < 1 into two contributions:

Toor (xr(a,xn*&;ﬁ, =Kt Z elPPioen 4 Z oo (d),ﬁ (xnf‘s,xn*‘s;lﬁ) , (4.33)

I=Ni,o+1

where Ny, , := |77 with 0 < 0 < d for the moment (a limitation will appear if § = 3 when
v > v.(B) or when v = v.(8)). From (4.5)-(4.7), one has ¥0 < § < 1, Vd € {2,3} and Vx € R%:

Ni,o
4 _
Vo<o<d, 5§ Phoo.n G =0 xk%1B8) = 0.
o nlfc}m l_le ok (XH XK 6)

Let us investigate the second term in the r.h.s. of (4.33). We distinguish the case of v > v.(8)
from the case of v = v (). When v > v.(8), by using the same arguments leading to (4.11) and
(4.12)-(4.14), one has V0 < § < 1, Vd € {2,3}, Vx € (R*)%, V0 < 0 < d and V0 < k < min{1, Kz}

Voo, ﬂ l/,O) 1-28,2 3xd—0 d 181 d 5 5
) _ —_3sf77 d _ _
———e " IxI"e " 20 v < k2 g e!PFoo.n ),R (xn , XK ;lﬂ)
e =Ny ,o+1

<e

—k1=29|x|2 tanh (£ 1) r.hs. of (4.12), ifd=2,
we=1) X .
r.hs. of (4.14), ifd=3.

In the limit « | 0, the above Lh.s. and r.h.s. tend to (2.56a) V0 < 0 < d if 0 < § < 1, to (2.56Db)
Vi<o<difd=1 andto0V0 <o <dif 4+ <§<1. Whenv > v (8), (2.56) follows from the
squeeze theorem. The case of v = v.(f8) can be treated by the same arguments than the ones used

30



at the end of the proof of Theorem 2.17, see (4.15). The limiting condition d > o > 1 is required.

Part (B). Let 8,v > 0 be fixed. In view of (2.53)-(2.56), (2.57) follows by direct calculations
from (2.42) along with (2.6)-(2.4). Let us turn to (ii). By setting x =y in (4.16) after dilating
the spatial variables by £, then from (2.6)-(2.4) the first term of the r.h.s. can be rewritten as:

‘ (0) ( 75)‘2 2, 1-26
oo,k \TK —z°K
Va € R*, T = Vr £ , (4.34)
eB<EOO,rc_Hoo,n) -1 eﬂ(EOO,N_,“Loo,N) —1 ﬁ
e*|x|2“1725

‘\p“’) (xn—? ’2
©, (xx-9)
= Voo,k\ Py ,0 —_—. 4.35
eﬁ(Egg?Niﬁoc,m) _ 1 v ' (ﬂ v ) (Hﬂ-)% ( )

vd € {2,3}, Vx € (R*)%,

From (2.43a), the r.h.s. of (4.34) vanishes in the limit x | 0 YO < § < 1. This leads to (2.58a).
From (2.42), the r.h.s. of (4.35) vanishes in the limit x | 0 V4 < § < 1 and Vd € {2,3}. This
proves (2.58d). Let us turn to the case of 0 < ¢ < % if d = 2,3. To do that, it is enough to mimic
the arguments used in the proof of Theorem 2.17. By setting x =y in (4.16)-(4.17) after dilating
the spatial variable by x~9, then since 1 — 26 > 0 V0 < § < %, the conclusions obtained from

(4.18)-(4.19) and from (4.20)-(4.22) still hold true ¥x € (R*)? and Vx € (R*)3 respectively. O

4.3 Proof of Lemma 2.9 and Propositions 2.12-2.15.
Proof of Lemma 2.9. Let d € {1,2,3}, 8> 0 and p < 0 kept fixed. From (2.26), one has:

. ke & i 1
i Y e ), ) e (099

51,...,8qENd e

where the integrals over 7;, j = 1,...,d are obtained by taking the limit x | 0 of the Darboux-
Riemann sum in the 1.h.s of (4.36). Therefore, lim, o Voo « (3, pt) exists, and by simple calculations:

7_d—l

1 oo
Voo,0(B, 1) = m/o dr B 1 (4.37)

Afterwards, by expanding (eﬁ (e=m) _ 1)t in power series and by using the Fubini theorem:

0o 1 0o 0o elﬁ,u gd (eﬁu)
Voo,0(B, 1) = em“—/ dr 7371107 = = .
2 v ), 2 mi =

The proof of (i) is done. (ii) follows from the definition (2.34) together with (2.39). Finally, (iii)
results from the fact that p+— veo o(8, 1) is continuous and strictly increasing on (—o0, 0). O

Proof of Proposition 2.12. Let 5, > 0 kept fixed. We start with the case of d = 1. From
Definition 2.11 along with (2.40a), then the Bose gas does not manifest an open-trap BEC. Besides,
Poo.0 = Foo,o(B, V) satisfies v = B~ g1 (ePF0) from (2.39). Ergo, Proo s = Foo (B, V) has to obey
the asymptotic in (2.43a) since similarly to the calculus performed in the proof of Lemma 2.9:

Bloo,0

, _ . K g1 (=)

lim v, , ;8) = lim = = .
wo;; o (P 9) ml0 £ (B (rs—Tioe 0o(1) _ 1 B

Moreover, the definition in (2.27) and the asymptotic in (2.43a) lead to veo o(8,v;8) =0 Vs € N.
Let us turn to the cases of d = 2,3. When v < v.(8) and v = v(8), the iy, ,, = Tio (B, V) has
to obey the asymptotic in (2.43a) and (2.43b) respectively by the same arguments than the ones
used to treat the case d = 1. Hence, (2.27) and (2.43a)-(2.43b) together lead to vee o(f5,v;s) =0
Vs € N%. When v > v.(), one has to investigate the open-trap rescaled average number of
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particles on the ground-state to conclude the existence of an open-trap BEC, see Definition 2.11.
For such v’s, assume that the 7, ., = Ji, (3, 7) has the following asymptotic in the limit « | 0:

Poor = Egg?,{ — Ok +0 (k%) (4.38)
for some constant C' > 0. Set fioo s 1= Too i — Eé‘.??,g. We decompose v, into two contributions:

Vi >0, V=V (BTl r) = Voors (BiTinsi0) + D Voo (BTl xiS) - (4.39)
s€(N*)d
By mimicking the arguments leading to (4.36)-(4.37), the second term of the r.h.s. of (4.39) obeys:

d d—1

i " L R g4(1)
lim Y — _ / ar T =5 gy (a40)
~10 seNd ; Z?:1 ;>0 eﬂ(ﬁ j=1 Sj*#oo,n) -1 F(d) 0 eﬁ —1 ﬂ

This means that the first term in the r.h.s. in (4.39) satisfies, see the definition in (2.35):
Voo, (B,1;0) := 1iir01 Voo s (ﬁ,ﬁm,ﬁ;O) =v—v.(B) > 0. (4.41)

Finally, from (4.38) one has for s = 0:

Hd

_ 1
Voo, (ﬁ,uwﬁ; 0) = T T ﬂ_C +o0(1) when & | 0. (4.42)

Gathering (4.42), (4.41) and (4.38) together, the asymptotic in (2.43c) follows. We emphasize that
the asymptotic form in (4.38) is determined by the limits « | 0 in (4.40)-(4.41). Finally, (2.42b)
follows from the foregoing. Therefore, the Bose gas manifests an open-trap BEC for d =2,3. O

Proof of Proposition 2.15. Let 8 > 0 and v > 0 be fixed. From the results of Proposition 2.12,
the Lh.s. of (2.45) is identically zero if d =1, and if d = 2,3 when v < v.(3). When v > () if
d = 2,3, the method consists in decomposing the sum in the r.h.s. of (4.39) into two contributions:

Vo <e <1, Z Voo,ﬁ(ﬂ)ﬁoo,n; S) + Z Voo,ka(ﬂaﬁoo,n; S)v (44?’)

seNd : O<Z?:1 ks;<e sENd: Zle KSsj>e

and then in investigating successively the limits « | 0 and € | 0. By a direct calculation, one gets:

210 k10
seNd: 31| ks;>e

. _ .1 e ri-1 g4(1)
lim lim Z Voo,r (B3 Tloo 138) = 181?01 W/E dr 1 52 = v.(B).
Since the limit & | 0 of the first sum in (4.43) exists, then (2.45) follows by Proposition 2.12. O

5 Annexes.

5.1 Annex 1 - An additional result for the two-dimensional case.

We stated in (2.51b) that the open-trap limit of the non-condensate part of the reduced density

matrix diverges when v > v.(3) if d = 2. We can prove that the divergence is logarithmic in x~1:

Proposition 5.1. Let d = 2. For any 8> 0 and v > v.(83), one has uniformly in (x,y) € R*:

v ()l 1 L
KCOVEnly) | 1 ( ) when 1 | 0. (5.1)
e PEDe ) 1 A \Twon
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Proof. For the sake of simplicity, we set A = m = wg = 1 in the following. On the one hand, for
k < 1 small enough, one has the following lower bound:

) (0) (0)
m — \Iloo,/{ X \I/oo,ka Yy
Vooy) €RE 3 e G (x, 3 1) ﬁ(E(O)( 2k )( )
=1 e oo THoo k) — ]

K B 2
K A (0) _ 1— e—z[COth(Enl)—lhx—y‘ e_QHlB
R a5 (Ix1P+1y1?) B(EQ, ~Te) ) _
2 —e 2 E ) { ( [ o=2nip t oz (0 (5.2)

and from the arguments leading to (4.20), the r.h.s. of (5.2) is greater than:

5 () S 8B T) (KBl P2 L —
n° 2 e (e e =) (14 55 Hnlﬂ !

=1
—2klp

l

1 - o _— e
= (IxI*+ly1?) E (BQ, ~Tino n
+ 27rﬁe : :

Here, we used the upper and lower bounds in (A.10) to majorize the first term inside the braces
in the r.h.s. of (5.2). By using some integral comparison, the above quantity is bigger than:

Voo (B,7;0) 5 3K o 5 /oo o KBt
= 7 — - — K dt
o x —yl 4ﬂwlx yI* (e + : ol

1 2 ( o=Bn 1 L —s(xPiy?) [T g6
4527T|X v (e +/1 dtt2)+2ﬂ'ﬁe : dt ot (5.3)

(5.3) is made independent of Eég,)n — Hoo,i Dy using that e BEL, ~Hoo) < 1 in the second /third
term, and e/#Fe.x > 1 in the fourth term. On the other hand, for £ < 1 one has the upper bound:

0 0
v, (x) 0, (y)
ﬂ(Eoo nHoe,k) — 1

V(x,y) €RY Y e Pen QT (x, y;18) —
=1

. oo _ 4[1 tanh( nl)]\x-{-y\Q —2klp
S; o 5 (P +lyI? Z BT n) <e Ly-® . (5.4)

1— ef2nlﬂ 1— 672l<alﬁ

From the arguments leading to (4.21) along with the above method, the r.h.s. of (5.4) is less than:

B3 (D) (BT et et (14 L
™ 214 erhl 2kl

< VOO#(BaV;O) |X+y|26%|x+y|2 + k |X+y|26%‘x+y‘2/ dtefﬁﬁt—i-
27 47 0
L 1 1 [ e 2
— [ dte P e P — [ dt 5.5
+ 7r/0 ¢ 9B 27rﬁ + 273 (5:5)
The equivalent in (5.1) arises from the last term of the r.h.s. of (5.5) and (5.3) via (4.13). O

5.2 Annex 2 - Sketch of the proof of Corollaries 3.3 and 3.6.

In this section, we set i = m = wy = 1 for the sake of simplicity.

Sketch of the proof of Corollary 3.3.
Part (A). The proof of (3.13a) is similar to the proof of (2.48a). We turn to (3.13b). In view
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f (3.5), then from (2.9), one has VI € N*, V(x,y) € R® and for x > 0 sufficiently small

zBﬁOMGu) (21,y1;18)G OOM(XL,YL,W)Z —g\/ﬁ—lfue—%(mﬁyl) e i@1—y)?(m1+3)
o B(BR T )
when v.(8) < v < v (8), (5.6)

_%\x¢+yﬂ2eii|xl7yL|2(KL+%) X W’

X e
e_lB(Eég?N_ﬁww), when v > v, (5),
where we used that (1 —e™21!8)3 < \/2k118 if v.(B) < v < v (B) (< 1 otherwise). From (3.5),
it remains to use an integral comparison as in (4.3) and the asymptotics in Proposition 3.1 (iii)
Part (B). When v < v.(8), the result is obvious. When v > v.(f3), the key-idea consists, as in
the proof of (2.49), in decomposing V0 < x < 1 the sum involved in (3.5) into two contributions:

Nei,o 00
Fon(Gyi ) =162 4 D4+ D bl G (2, y1518)GD, (k1L y1318),  (B.7)
I=1 =N, +1
where N, , := |k~ 7| with ¢ > 0. For the following, one has the upper bounds
Y(x,y) €R®, TG (1,90 18)GR), (x1,y 13 16)
1 1 1
_ ﬁje o) (1 Vo 21mlﬁ + (2lﬁlllﬁ)3> : (5.8a)
h (1 T o st 8H1m(lﬂ)2) ’ (580)

where we used that Va > 0 ﬁ <1+ f) and \/7 < (14 5 ) respectively. From (5.8a):

Vo >0, lim 6% Y e n GO, (1,51318)GR) . (x1,y1:18) =0,
=1

where we mimicked the arguments leading to (4.8). Let us turn to the second sum in the r.h.s. of
(5.7). By mimicking the arguments leading to (4.11), one has on R® for x < 1 sufficiently small:

- Voo x (8,73 0)
3 —
N G, (s )G, (x1,y1518) > RS e b
I=N, o+1 T2
x e~ Yo Gy coth(Fra N ) o= ey P coth (§ 1 Niso ) o= N BB ~Thoey) | (5.9)

From (5.8) along with the arguments leading to (4.14), one has on RS for x < 1 small enough

ﬁ|% Z elﬁﬁw’NG ($1,y1 lﬁ) ooﬁL(XiayLalﬁ) ( 3 )
l:Nn a‘+1 ™2
\/_'ﬁ e BEQwToc) g, [® e PR T .k) NGUT 1
dt by dt + - dt —.
NG Vi 2m2 3 t (27p)2 IN.. t2

Here, we used the upper bound in (5.8a). Under the same conditions, the above r.h.s. is less than

L S (e (B0 ) ¢ e

VOOK,
S5.130)
T2 V2 /Eég),{—ﬁ 213 B '
(5.10)
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In view of Proposition 3.1 (iii), the lower bound in (5.9) and the upper bound in (5.10) converge
Vo > 0 and uniformly in (x,y) € R® to the same value when s | 0. The squeeze theorem leads to
(3.14) when v > v.(f). Turning to the case of v = v.(), one has to use the decomposition:

o0

M.,
ron(yi ) =162 { D4 Y b TenGl, (21, y1 8GR, (x1,y1318),  (5.11)
I=1 =M. o+1

h"/2
where My, o = My 5.5, = Lﬁ_“eﬁj, with ¢ > 0 for the moment. Firstly, the open-trap limit of
the first sum in the r.h.s. of (5.11) vanishes V0 < o < 3. Subsequently, one has the inequality:

VOOJ‘&(/B; v, 0) ef%(leryl)ze*%b‘LerL|2€*%(I1*yl)2 coth(gnll\/fﬁ,g)ef%|xL7yL‘2 coth(gnLI\/fﬁ,g)
3

3
o

% Z elﬂﬁw’NGg};%nl (-Tlayl;lﬁ)G(()i),nL (XlayL;lﬁ)
=M, o+1

VOOK(ﬂvy;O) 1 1 1 1 IilK,J_/OO 1
S—3 |1t + + Y dt —. (5.12
> ™ ( \/267‘(‘% 1/,‘€1M,€,a 27‘(‘%ﬁ KLMn,g> (27Tﬁ)% Mo t% ( )

The r.h.s. of (5.12) converges to 72 (v(8) — v) = 0 Vo > 1. Therefore, (3.14) when v = v.(3)
follows from the foregoing provided that 1 < o < 3 in (5.11).

Part (C). The proof of (3.16a) is similar to the proof of (2.51a). We turn to the proof of
(3.16b). The strategy consists in decomposing V0 < k < 1 the non condensate part of the reduced
density matrix into 3 contributions:

% e_BMn,a[KlJFQ"iL] < |,€

3
2

Uy IR B =
se(N*)3 eﬁ<ES’)'”7ﬁ°°'”) —1 - ; +l:1;vﬁ - Jrl:;zm

i _g©
X (elﬁuw’ﬁngnl (xla Y1; lﬁ) GSXQD),IQL (Xla Yi; lﬁ) - eZB(MM’N Eog’h)\llgg?n(x)\llgg?n(y)) )

NZ
where N, , := |~ 7] with o > 0 and M, := |e? |. From Proposition 3.1 and by using accurate
estimates as we did in the proof of Part (B), one can prove that for any v > v.(5):

b

11?01 (elﬂﬁoo,” G(()é),fil (:L'la Y1; lﬁ) ng),ni (Xla Yi; lﬁ) - elﬂ(ﬁx’N_Egg?n)\I]gg?n(x)qlt()(o)?ﬁ (y))

l=a,

0, when a, = 1+ M,, b, = oo,

_ i 1 _lx—y?

Z ——e~ 2, whena, =1, b, = Ny, ’

=1 (271B)?
M,
Z (ewﬁ“”“Gg),m (z1,91518) GSXQD),&L (xL,y1518) — ew(ﬁ“*’“_J_Lj‘(’g?")\Ifgg?,i (X)\I]gg?“ (Y))

I=N, ,+1

when x | 0.

~

Fc

v—vc(B)
Kl eﬂ 2:2 | when Vc(ﬁ) <v< Vm(ﬁ)a
S when v > vy, (8),

\/ 2723 8

Sketch of the proof of Corollary 3.6.
Part (A). The proof of (3.22a) is similar to the proof of (2.48a). The proof of (3.22b) follows
from the lower bound in (5.6) in the case of v > v, () along with the asymptotic in (3.21b).
Part (B). When v < v.(8) the proof is obvious. When v > v (), it is enough to use the
decomposition in (5.7). The lower bound in (5.9) and the upper bound in (5.10) still hold true,
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and from the asymptotic in (3.21b), then (3.23) follows by the squeeze theorem. When v = v.(f3),

one has to use the decomposition as in (5.11) but with M o = My ... = Ln_"e\/gj, o>1.

Part (C). The proof of (3.25a) is similar to the proof of (2.51a). We turn to the proof of
(3.25b). The strategy consists in decomposing V0 < x < 1 the reduced density matrix into 3
contributions:

»101 I\/NGQX [e’s)

ponyiB) =4 >+ D+ Y peTeeGl (L IB)GRL (k1Y 18),
=1 1= 1+Nm o1 = 1+1\;[»<,02,X
(5.13)

where N, », = |k~ 7] with o7 > 0 and MK7027X = ano'Zva’{c = |KT92eXV %J with 02 >0, x >0
for the moment. By mimicking the arguments leading to (4.23), Vo > 0 and for y = 2 on R®:

. = U () U (y)
1}{1?3 Z elﬁﬂx’NGg),ﬁl (zlaylalﬂ)Gg SRl (XJ-vyJ-;lﬂ) - ﬂ(Ey(o) i 1) =0. (514)
l:1+MN,(72,2 € s oo —11

To derive (5.14), the upper bound in (5.8b) turns out to be more convenient. Next, by a similar
method than the one leading to (4.24), one has Voy, Voo > 0 and V0 < y < 2 on RS:

Nevoy

%) 1 o2
lim Pl n G (21,y1;18)GR), (%1, yL;1B8) = Z e (5.15)

Sy — (211B)2

I, o0,x My 05,2
. i VEc
lim Z + Z elﬂuochg),m(xlvalﬂ)Ggo):u(xJJYJ_;lﬂ) = {X+ (27)()} 3 "

r40 I=14Npoy 14N oy 22
(5.16)
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A Appendices.

A.1 Appendix 1 - The large volume behavior.

In this section, we prove the thermodynamic limit of the grand-canonical potential and average
number of particles associated to the harmonically trapped Bose gas in the G-C situation.

We start by introducing the one-parameter semigroup generated by Hy, . in (2.1). It is defined
VL > 0 and Vk > 0 by {Gp () := e i o [2(A4) — L2(A9)}4>0. It is strongly continuous,
and it is a self-adjoint and positive operator by the spectral theorem and the functional calculus.
By standard arguments, {Gr, .(t)}:>0 is an integral operator whose the integral kernel, denoted

by G(Ldlu( ,+;t), is jointly continuous in (x,y,t) € Ad X Ad x (0,00) and vanishes if x € A

y € OA%. Moreover, the mapping L G(L'{L (x,y;t) is positive and monotone increasing, see [12,
Coro. 6.3.13]. This leads to the following pointwise inequality which holds Vx > 0 and VL > 0:

V(x,y,t) € AL x A% x (0, 00), G<d><xy,><igpc“<xy,> GO (x,y;t). (A1)
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Here, G((,Z),,.i(- ,-;t) is defined by (2.9)-(2.10). It results from (A.1) that VL > 0 and Vk > 0, the
semigroup {G, . (t)}:>0 is a trace-class operator on L?(A¢), and moreover, see e.g. [7, Lem. A.4]:

_E© ety —d
T‘I‘LZ(A%) {GL7,€(t)} S T‘I‘LZ(]Rd) {Gw7n(t)} =€ E“*"t (1 — € t) . (AQ)

From the foregoing and under the conditions of (2.17), the G-C potential can be rewritten as:
1
QrLk(B,2) = BTYLQ(A%) {In(1—2GL.(B)},

and the operator inside the trace is defined via the Dunford functional calculus. Clearly, Qr (8, )
is a C*°-function on (0, eﬁEéo,)ﬂ) (remind that Eéo?_i :=info(Hp,)). In fact, we can prove more:
Lemma A.1. Vd € {1,2,3}, VL € (0,00), V& > 0 and VB > 0, Qr .(8,-) has an analytic
continuation to the domain D := C\ [eﬁE(LO’)N, 00). In the following, we denote it by Q. (3,-).

The proof of Lemma A.1 is standard, the main arguments can be found in [3]. See also [15].

Denote by B(r) an open ball in C centered at the origin and having the radius » > 0. When

restricting to the domain B (eB Egg?N) C D, one gets a very convenient representation of the analytic
continuation of Q, (8, -) involving the semigroup {Gr, .(8)}s>0. In particular:

Lemma A.2. Vd € {1,2,3}, VL € (0,00), V& > 0, V8 > 0 and Vz € B(eﬁE;g?*%):

QO E:%TQ%W{GLAMH (A.3)

QIH

The proof of Lemma A.2 follows the strategy used to prove [3, Prop. 2 (i)], see also [15, pp. 4]
for further details. In view of (A.3), introduce Vd € {1,2,3},Vk > 0,V3 > 0 and Vz € B(eﬂE£?~):

OulB2) = =5 3 gy (G 1))

QIH

Next, let us turn to the thermodynamic limit of the G-C potential. Here is the main result:
Proposition A.3. Vd € {1,2,3}, V0 < k1 < k2 < 00, V0 < 81 < B2 < oo and for any compact
subset K C B(eﬂlEf’g?ﬂl ): ) A

Jim Q,0(5,2) = Dacin(3,2),
uniformly in (k, B, z) € [k1, k2] X [B1, P2] X K.

Because of the Weierstrass theorem, one has as a corollary of Proposition A.3:

Corollary A.4. Vd € {1,2,3}, V& > 0 and V§ > 0, z — Qm,ﬁ(ﬁ,z) s analytic on B(eﬁEgg?ﬂ).
Moreover Y0 < k1 < kg < 00, Y0 < 1 < B2 < 00 and for any compact subset K C B(eﬁlEgg?ﬁl):
O Qoo

VYm € N*, hm 0"V
zm

Too oz™m

uniformly in (k, B, 2) € [K1, k2] ¥ [B1, 2] x K.
Remark A.5. From Proposition A.3 along with Corollary A.4, one has in particular Yk > 0,

(ﬂv )* (ﬂaz)a

VB >0 and Vz € (0, eﬂEgg?N) the following pointwise convergences:

Quci(B,2) 1= Jim Qun(B,9) = =5 3 %Trmd) {Goon(16)}

QI*—‘

~ 390@ K
Neo (B, 2) = =Pz

(ﬂv )* hm ﬂZ

= (B, 2).
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The proof of Proposition A.3 leans on the below estimate which is the main subject of [7]:

Lemma A.6. Vd € {1,2,3} there exists a constant Cq > 0 and V0 < ko < 1 there exists a L, > 0
s.t. YL € [Ly,,0), VK € [ko,0) and Vit > 0:

TI‘LZ(A%) {GLJQ(U} - TrLQ(]Rd) {Goo,n(t>}‘
1 —d w L2, 5
< Cy (14 V&) (14 £)4(1 4 1)3@+2) (2 sinh (gt)) e~ i tanh(5t) (A 4)

Proof of Proposition A.3. VL € (0,00) and VY(k, 3, 2) € [k1, k2] X [B1, f2] x K, introduce:

VM eN*, 2 ,.m(8,2): 52 ‘mw){cm(m)} Trpaas) {GLK(ZB)}‘

Let £ = £, s.t. VL > L, the estimate in (A.4) holds. Then VL € [£,o0) and Vz € K, one has:

1 3(d+3) w L2 ., 5 M 0 \! 1
QL,H,M(/B)Z) < Od (1 + \/E) (1 + H)d%e_ﬁTtdnh(iﬂ) <Z (lzle_ﬂEgc?m) 13d+§ ,
— e*l‘é l:1

for another constant Cq > 0. Since V(k, 5) € [k1, k2] X [B1, f2] one has sup, |z|e*5Eég?~ <1,
then from the above estimate there exists another constant Cy = Cq(k1, K2, 81, B2, K) > 0 s.t.

K 2 K
lim  sup sup sup lim 2 . m(8,2) < Cy lim e~ i tanh(F8) _ d
Lteo KE[K1,k2] BE[B1,B2] 2EK Mtoo Ltoo

We end this section by proving:

Proof of (2.25). Let us show that:

Moo K — Mggn < Msogpn — :u’oo K with Mmf = hn%lnf Hr, N and Msup = lim sup ML JR* (A5)
LToo
We prove the first inequality in (A.5). Suppose the contrary, i.e. ugjfn < Jioo - Then there exists

mf

n > 0 and a divergent sequence { Ly }n>1 8.t. limppoo fIg,, o = Ty , and Ty, < Ty o —n V0 > 1.
Now by using that the map u — N, (3, 1) is increasing on (—oo, Eég?,g), then:

V:VLnﬁﬁ(ﬂvﬁLn,n) SyLnyl‘é(ﬂvﬁoo,nin) Vnz L.

Afterwards, since {vr, (8, )} n>1 converges uniformly on compacts w.r.t. p to veo x(5,) as a
result of Corollary A.4, then by using that u — ve (8, i) is strictly increasing on (—oo, E(()g,),.i):

V= VOOJ‘&(ﬂaugéfn) < VOO,K(ﬂvﬁoo,ka - 77) < Vooﬁﬁ(ﬂvﬁoo,ka) =r.

This contradiction yields zi , < u‘“f The last inequality in (A.5) can be proved similarly. O

A.2 Appendix 2 - Some useful identities/inequalities.

Here, we collect some miscellaneous inequalities/identities involving the hyperbolic functions
we use in this paper. Most of them can be found in [1, Sec. 4.5]. For any real = > 0:

| < cosh(z) < ¢, (A.6)
2 < sinh(z) < % (A7)

0 < tanh(z) < 1 (A.8)
égcoth() tan}ll()<1;$’ 250 (A.9)



For any reals x > 0 and p,q > 0:

x
14+
x<e®—1<zxe", (A.11)

2 p
2Pe—9% < (_p) e~ 3T (A.12)
eq

<l—-e?<uz, (A.10)
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