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Abstract

In this paper, we rigorously investigate the reduced density matrix (RDM) associated to
the ideal Bose gas in harmonic traps. We present a method based on a sum-decomposition
of the RDM allowing to treat not only the isotropic trap, but also general anisotropic traps.
When focusing on the isotropic trap, the method is analogous to the loop-gas approach devel-
oped by W.J. Mullin in [38]. Turning to the case of anisotropic traps, we examine the RDM
for some anisotropic trap models corresponding to some quasi-1D and quasi-2D regimes. For
such models, we bring out an additional contribution in the local density of particles which
arises from the mesoscopic loops. The close connection with the occurrence of generalized-
BEC is discussed. Our loop-gas-like approach provides relevant information which can help
guide numerical investigations on highly anisotropic systems based on the Path Integral Monte
Carlo (PIMC) method.
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1 Introduction.

1.1 Bose-Einstein condensation (BEC) in dilute cold alkali atoms gases.

BEC was for the first time observed in 1995 in a series of experiments on dilute cold alkali
atoms gases, such as Rubidium 87Rb [2], Sodium 23Na [17] and Lithium 7Li [11]. Although the
first theoretical predictions go back to the 1920s [10, 19] and were made for the ideal Bose gas in
isotropic cubic boxes [19], these recent experiments were realized in a magnetic-optical trap.

Let us give the two-key principles of these experiments. The first step consists in pre-cooling
the atoms by the laser cooling method. The dilute atoms gas is confined in a vacuum chamber
and is cooled by two lasers facing each other in each direction at a frequency slightly lower than
the resonance frequency of the atoms so that the moving atoms are slowed by Doppler effect.
A temperature of the order of 10−4K can be reached. The second step consists in lowering the
temperature by the magnetic evaporative cooling method. An inhomogeneous magnetic field is
introduced to trap the atoms. After switching off the laser beams, the magnetic evaporation
allows to remove the high-energy atoms. The temperature is of the order of 10−6K with about
104 − 106 atoms in the magnetic trap. The temperature of the gas can be adjusted by moving
the energy cutoff of the evaporating process, and then it can be below the predicted critical
temperature TC ≈ 10−6K at the center of the trap. Note that this critical temperature is a good
approximation for a dilute gas, see e.g. [16, 42, 43]. To observe the BEC, by an absorbing image
technics, one can measure the spatial density profile of the atomic cloud. At high temperature (or
at low density), one can observe a widely spread spatial distribution. At low temperature (or at
high density), one can observe a spatial condensation through a peak of density.

Since 1995, a very large number of experiments have been realized to study more precisely
the features of BEC created by cold alkali atoms gases and, naturally there is a huge amount of
literature on this topic. We refer the readers to the modern references [16, 42, 43]. In relation
with the problem treated in this review, we point out that many experiments have been realized
for anisotropic traps in [22, 21, 25] and have revealed that the Bose gas may manifest singular and
unusual phenomena, see e.g. [29, 56].

1.2 Investigating the features of BEC and the reduced density matrix.

• A review of different approaches.

To figure out at first stage BEC phenomenon created by cold alkali atom gases, the most
widespread model in literature is a d-dimensional ideal Bose gas trapped in an isotropic harmonic
potential Vosc(x) := m

2 ω
2|x|2 (here, ω stands for the angular frequency of the harmonic oscilla-

tor). Such a system only has discrete energy levels whose the ground-state energy is E0 := d
2~ω.
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When investigating the thermodynamics of the d-dimensional trapped ideal Bose gas in the grand-
canonical situation, the usual method consists in approximating the sum over the energy levels
involved in the thermodynamic functions (such as the average number of particles, total energy,
etc.) by an integral in the semiclassical regime ~ωβ ≪ 1, β := (kBT )

−1. It amounts to approxi-
mating the density of states by its high-energy value, i.e., when E ≫ ~ω. We refer the reader to
the founding articles [23, 4], and also to the reference textbooks [16, 43, 42]. This procedure is
related to the thermodynamic limit concept, and because of the inhomogeneity arising from the
trap, the role of canonical parameter is given to an effective number of particles Nωd, see e.g. [16,
Sec. 10.4]. Actually, this procedure turns out to be necessary to make appear a critical average
number of particles Nc when the chemical potential tends to E0 (similarly to the standard critical
density ρc for homogeneous systems) for d ≥ 2. When this critical number of particles is attained,
the number of particles computed by the integral is then saturated. In the semiclassical regime
~ωβ ≪ 1, if the total number of particles in the trap N is greater than Nc, it is usually assumed
that the excess number of particles N0 = N − Nc has to fall in the ground state, in accordance
with the Einstein criterion of BEC. We mention that the necessity of such a semiclassical approx-
imation to compute the thermodynamic functions has been discussed in [30, 26, 24, 31].

A crucial ingredient to study precisely the features of BEC is the local density function defined
as the diagonal part of the reduced density matrix. Detailed information on the local density of
particles allows to ’draw’ a density profile. This is actually what is measured in the experiments
to demonstrate the occurrence of BEC, see e.g. [42]. When N > Nc, it is usually assumed that
the 3-dimensional local density of particles is divided into two parts: a term corresponding to the
condensate plus a term corresponding to the non-condensate (often referred to as thermal gas):

ρ(x) = ρ(BEC)(x) + ρ(therm)(x), (1.1)

where:

ρ(BEC)(x) = N0

∣∣∣Ψ(0)(x)
∣∣∣
2

. (1.2)

Here, N0 = N −Nc > 0 is the number of particles in the ground-state and Ψ(0) the ground-state
eigenvector. Since Nc = O((~ωβ)−3) and |Ψ(0)(x)|2 = O((~ωβ)

3
2 ) when ~ωβ ≪ 1, then it is found

that ρ(BEC)(x) = O((~ωβ)−
3
2 ) when ~ωβ ≪ 1. As for the non-condensate part, the expression

that is generally given reads as:

ρ(therm)(x) =

∫

R3

dp

(2π~)3
1

e
β
(

|p|2

2m +Vosc(x)
)

− 1

. (1.3)

(1.3) is obtained by considering the semiclassical limit ~ ↓ 0 (~ being seen as a parameter). This is
justified by the fact that the semiclassical regime ~ωβ ≪ 1 is assumed. Note that if one considers
the limit of zero angular frequency of the harmonic trap, the expression for ρ(therm)(x) is obtained
from (1.3) by setting Vosc(x) = 0. We stress the point that the two-terms decomposition in (1.1)
relies on the Einstein criterion of BEC, and a priori, it only holds for the isotropic harmonic traps.
Indeed, when considering highly anisotropic traps, we expect (1.1) to be modified because of the
possible occurrence of generalized-BEC (g-bec), see [8, 40] and also [6, 5] and references therein.

Since our article mainly deals with the reduced density matrix (RDM) associated to the ideal
Bose gas in harmonic traps, let us discuss some of the methods encountered in literature used to
examine the RDM. Some attempts have been made to study the RDM from its representation by
the sum involving directly the Hermite functions (see formula (2.28)), see [37] and [5] respectively
for the 2-dimensional and 3-dimensional ideal Bose gas trapped in the isotropic trap. In [37], it is
found that the non-condensate part of the 2-dimensional local density function at x = 0 diverges
as ln(1/ω) in the regime of weak angular frequencies. In [5], a decomposition of type (1.1) has
been recovered in the semiclassical regime, and the formula given for ρ(therm) corresponds to the
zero angular frequency regime. To make this approach rigorous, the main difficulty is to have
a good control on the behavior of the Hermite polynomials associated to high eigenvalues which
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oscillate rapidly in the regime of weak angular frequencies. At the same time, another approach
based on a path integral representation, originally introduced by R.P. Feynman in [20] for the
Bose gas in boxes with periodic boundary conditions, has been developed. This is the so-called
loop-gas approach (or cycles permutation), see [38, 39] for the ideal Bose gas in 3-dimensional
harmonic traps. Following the Feynman original idea, this approach consists in representing the
RDM as a sum of reduced density matrices associated to the loops of size l, which is given by the
Mehler kernel at a scaled inverse-temperature lβ. In [38, 39], W. Mullin revisited the 3-dimensional
isotropic trap and recovered the well-known results related to the localization of the condensate
and thermal gas. Moreover, he identified the sizes of the loops in the scale of ~ωβ: the condensate
comes from the large loops corresponding to l > (~ωβ)−1, and the non-condensate comes from the
small loops. This work is connected to the Path Integral Monte Carlo (PIMC) numerical method,
see e.g. [13, 32, 33, 27, 14]. Finally, we mention that there exists also a stochastic approach based
on the theory of random point fields. Considering a model of the mean-field interacting boson gas
trapped by a weak harmonic potential, Tamura et al. proved in [48] the existence of two phases
distinguished by the boson condensation and by a different behavior of the local particle density
in weak harmonic trap limit (WHT-limit) mimicking the regime of weak angular frequency. The
properties of the system are derived from the generating functional in the WHT-limit whose the
detailed study is the main subject of [48]. The same method has been used to investigate the
perfect Bose gas in exponential- and polynomial-anisotropic boxes in [49].

• Our approach: a loop-gas-like approach.

The purpose of this paper is to introduce a rigorous method allowing to derive in the semiclas-
sical regime ~ωβ ≪ 1, accurate information on the RDM associated to a d-dimensional ideal Bose
gas in harmonic traps. Our starting-point is the representation of the RDM by the sum involving
the Mehler’s kernel in which we introduce a dilatation of the angular frequency by a dimensionless
parameter κ. The regime of small values of κ mimics the regime of weak angular frequencies of the
trap. In the regimes in which BEC occurs, our method consists in a suitable sum-decomposition
of the RDM. The bounds of the sums are well-chosen monotone increasing functions of κ when κ
approaches zero. Performing the limit κ ↓ 0 (the so-called open-trap limit) allows to identify the
parts of the decomposition from which arise the condensate and non-condensate contributions.
Our approach is similar to the so-called loop-gas approach developed in [38] for the ideal Bose gas
in isotropic traps in that sense that, our sum-decomposition resembles to the loops-decomposition.
To introduce the method, we first focus on the isotropic harmonic trap. From our loop-gas-like
approach, we investigate the RDM in open-trap limit which mimics the regime of weak angular
frequencies of the trap. By a suitable rescaling of the spatial variables, the semiclassical regime
corresponding to small values of ~ (seen as a parameter) is also investigated. All the results stated
in the literature are recovered, and we provide accurate information on the localization of the
condensate/thermal gas via the local density function. Regarding the loop-gas approach in [38],
we give accurate information on the length scale of the loops from which arise the different con-
tributions involved in the RDM. We refer the reader to Remark 2.19.

The loop-gas-like approach that we develop extends to the case of anisotropic traps. Given a
model of anisotropic trap, our method allows an accurate study of the RDM in the regime of weak
angular frequencies (ensuring the semiclassical regime). For illustrative purposes, we treat two par-
ticular models of 3-dimensional anisotropic traps: an exponential-quasi-1D (~ω1β ≪ ~ω⊥β ≪ 1)
and an exponential-quasi-2D (~ω⊥β ≪ ~ω1β ≪ 1) model. We refer the reader to Sec. 3.3.1 and
3.3.2 respectively for a precise definition of these models. Remarks 3.2 and 3.7 provide guidance
on how to prepare experimentally such systems. Investigating the RDM for such models is rel-
evant because of the following. For the quasi-1D model that we consider, it has been shown in
[8] that the ideal Bose gas can manifest both BEC and generalized-BEC (g-BEC) in a suitable
regime corresponding to a second kind of transition. Therefore, we expect the RDM to exhibit a
non-usual behavior arising from the presence of g-BEC. As for the quasi-2D model that we con-
sider, it actually allows to mimic the properties of the 2-dimensional isotropic trap in a suitable
regime. Ergo, we expect the ’extra-dimension’ to regularize the logarithmic divergence occurring
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in the 2-dimensional isotropic trap. In particular, we show for both models that the local density
of particles has the form:

ρ(x) = ρ(BEC)(x) + ρ(add)(x) + ρ(therm)(x). (1.4)

The first and third contribution is the counterpart of the first and second term in (1.1). In the
regime of weak angular frequencies, the additional contribution ρ(add)(x) exhibits different behav-
iors according to the models: it is divergent for the exponential-quasi-1D model, whereas it is a
x-independent constant for the exponential-quasi-2D model. Our loop-gas-like approach allows to
bring out that the additional term comes from the loops of mesoscopic size, see Remarks 3.4 and
3.9 for further details. Due to this feature, the additional term for the exponential-quasi-1D and
exponential-quasi-2D model can be interpreted as a g-BEC contribution and local g-BEC contri-
bution respectively. Further investigations on these models will be made in a companion paper.

To conclude this introduction, we stress the point that our method is related to the Path
Integral Monte Carlo (PIMC) numerical computations, see e.g. [13, 32, 33, 27, 14]. Since it permits
to treat anisotropic harmonic traps, then it could be useful for future numerical investigations.
We believe that PIMC numerical simulations might serve to exhibit the additional term appearing
in (1.4), and also might make the connections with the presence of g-BEC in anisotropic traps.

2 The setup & The main results.

2.1 The single-particle Hamiltonian and related operators.

Consider a d-dimensional (d = 1, 2, 3) ideal quantum gas composed of a large number of
non-relativistic spin-0 identical particles with rest mass m > 0, and obeying the Bose-Einstein
statistics. The gas is confined in a box given by Λd

L := {x ∈ Rd : −L
2 < xl <

L
2 , l = 1, . . . , d}

with L > 0, and trapped in an external isotropic harmonic potential whose the angular frequency
is given by ωκ := ω0κ, with ω0 > 0 and κ > 0 being a dimensionless parameter. The interactions
between particles are neglected, and the system is at equilibrium with a thermal and particles
bath.

Introduce the one-particle Hamiltonian. On C∞
0 (Λd

L), define ∀κ > 0 the family of operators:

HL,κ :=
1

2m
(−i~∇x)

2 +
1

2
(ω0κ)

2|x|2. (2.1)

Here and hereafter,m > 0 and ω0 > 0 are kept fixed. By standard arguments, (2.1) extends ∀κ > 0
to a family of self-adjoint and bounded from below operators for any L ∈ (0,∞), denoted again
by HL,κ, with domain D(HL,κ) = W 1,2

0 (Λd
L) ∩W 2,2(Λd

L). This definition corresponds to choose

Dirichlet boundary conditions on the boundary ∂Λd
L. Since the inclusion W 1,2

0 (Λd
L) →֒ L2(Λd

L) is
compact, then HL,κ has a purely discrete spectrum with an accumulation point at infinity. In the

case of d = 1, we denote by {ǫ(s)L,κ}s∈N the set of eigenvalues counting multiplicities and in increasing
order. Due to the property of separation of variables, the eigenvalues of the multidimensional case

are related to those of the one-dimensional case by: E
(s)
L,κ :=

∑d
j=1 ǫ

(sj)
L,κ , s = {sj}dj=1 ∈ Nd. Here

and hereafter, N denotes the set of non-negative integers and N
∗ the set of strictly positive integers.

When Λd
L fills the whole space (i.e., when L ↑ ∞), define ∀κ > 0 on C∞

0 (Rd) the operator:

H∞,κ :=
1

2m
(−i~∇x)

2 +
1

2
(ω0κ)

2|x|2. (2.2)

From [45, Thm. X.28], ∀κ > 0 (2.2) is essentially self-adjoint and its self-adjoint extension, denoted
again by H∞,κ, is bounded from below. By [46, Thm. XIII.16], the spectrum of H∞,κ is purely
discrete with eigenvalues increasing to infinity. From the one-dimensional problem, the eigenvalues
and eigenfunctions of the multidimensional case can be written down explicitly. The eigenvalues
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of the one-dimensional problem are all non-degenerate and given by, see e.g. [9, Sec. 1.8]:

ǫ(s)∞,κ := ~ω0κ

(
s+

1

2

)
, s ∈ N. (2.3)

The corresponding eigenfunctions, which form an orthonormal basis in L2(R), read as:

∀x ∈ R, ψ(s)
∞,κ(x) :=

1√
2ss!

(mω0κ

π~

) 1
4

exp

(
−mω0κ

~

x2

2

)
Hs

(√
mω0κ

~
x

)
, s ∈ N, (2.4)

where Hs, s ∈ N are the Hermite polynomials defined onR by: Hs(x) := (−1)s exp(x2) ds

dxs exp(−x2).
The eigenvalues and eigenfunctions of the multidimensional case (i.e., d = 2, 3) are respectively
related to those of the one-dimensional case by:

E(s)
∞,κ :=

d∑

j=1

ǫ(sj)∞,κ = ~ω0κ

d∑

j=1

(
sj +

1

2

)
, s = {sj}dj=1 ∈ N

d, (2.5)

Ψ(s)
∞,κ(x) :=

d∏

j=1

ψ(sj)
∞,κ(xj), x = {xj}dj=1 ∈ R

d. (2.6)

From (2.3)-(2.5) and by the use of the min-max principle, one has for any L ∈ (0,∞):

∀κ > 0, inf σ(HL,κ) ≥ inf σ(H∞,κ) = E(0)
∞,κ = dǫ(0)∞,κ > 0. (2.7)

For the need of the following section, let us introduce the one-parameter semigroup generated by
H∞,κ in (2.2), and byH∞,0 := 1

2m (−i~∇)2 whose the self-adjointness domain isW 2,2(Rd). For any
κ ≥ 0, the one-parameter semigroup is defined by {G∞,κ(t) := e−tH∞,κ : L2(Rd) → L2(Rd)}t≥0.
It is strongly continuous and it is a self-adjoint and positive operator by the spectral theorem and
the functional calculus. For any κ ≥ 0, {G∞,κ(t)}t>0 is an integral operator whose the integral

kernel, denoted by G
(d)
∞,κ(· , · ; t), is jointly continuous in (x,y, t) ∈ Rd × Rd × (0,∞), see e.g. [7,

Sec. A]. If κ = 0, it corresponds to the so-called heat kernel which reads for d = 1 as:

∀(x, y) ∈ R
2, ∀t > 0, G

(d=1)
∞,0 (x, y; t) :=

√
m

2π~2
e−

m

~2
(x−y)2

2t

√
t

. (2.8)

If κ > 0, the one-dimensional kernel is given by the so-called Mehler’s formula, see [34, pp. 176]:

∀(x, y) ∈ R
2, ∀t > 0, G(d=1)

∞,κ (x, y; t) =
√

mω0κ

2π~ sinh(~ω0κt)
e−

mω0κ

4~ [(x+y)2 tanh( ~ω0κt

2 )+(x−y)2 coth(~ω0κt

2 )]. (2.9)

Note that the multidimensional kernel (i.e., d = 2, 3) is directly obtained from (2.8) or (2.9) by:

∀κ ≥ 0, G(d)
∞,κ(x,y; t) :=

d∏

j=1

G(d=1)
∞,κ (xj , yj; t), x := {xj}dj=1, y := {yj}dj=1. (2.10)

From (2.8)-(2.9)-(2.10), one gets ∀(x,y, t) ∈ Rd × Rd × (0,∞) the following inequalities:

∀κ ≥ 0, G(d)
∞,κ(x,y; t) ≤ G

(d)
∞,0(x,y; t) ≤ m

d
2 (2π~2t)−

d
2 , (2.11)

∀κ > 0, G(d)
∞,κ(x,y; t) ≤

(mω0κ

π~

) d
2 e−E(0)

∞,κt

(1− e−2~ω0κt)
d
2

, E(0)
∞,κ =

d

2
~ω0κ. (2.12)
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From the foregoing, for any κ > 0 the semigroup {G∞,κ(t)}t>0 is a trace-class operator on L2(Rd):

TrL2(Rd) {G∞,κ(t)} =

(
2 sinh

(
~ω0κt

2

))−d

= e−E(0)
∞,κt

(
1− e−~ω0κt

)−d
. (2.13)

Subsequently, we need to introduce a particular function of the semigroup generated by H∞,κ,

κ > 0. Define ∀d ∈ {1, 2, 3}, ∀κ > 0, ∀β > 0 and ∀µ < E
(0)
∞,κ the operator on L2(Rd):

fBE(β, µ;H∞,κ) :=
(
eβ(H∞,κ−µ) − 1

)−1

, (2.14)

where fBE(β, µ; · ) stands for the Bose-Einstein distribution function. (2.14) is defined via the Dun-
ford functional calculus as bounded operator on L2(Rd), see e.g. [18, Sec. VII.9]. By expanding
x 7→ (1− x)−1, |x| < 1 in power series, one has under the conditions of (2.14) the representation:

fBE(β, µ;H∞,κ) =
∞∑

l=1

elβµG∞,κ(lβ), (2.15)

and the series is absolutely convergent in the trace-class operators sense on L2(Rd) because of
(2.13). From (2.9)-(2.10) with (2.12), the operator (2.14) has a jointly continuous integral kernel
on R2d.

2.2 Preparing the open-trap limit–Some bulk statistical quantities.

We start by introducing some bulk quantities associated to the confined and harmonically
trapped Bose gas in the grand-canonical (G-C) situation. By bulk quantities, we mean independent
of the boundary effects arising from the confining box Λd

L. In accordance with the usual rules of
quantum statistical mechanics, the quantities are first defined at finite-volume. Subsequently, we
investigate the large-volume behavior to write down an expression for the usual thermodynamic
limit. The first quantities of interest are the G-C potential and average number of particles.

The grand-canonical potential and average number of particles.

In the G-C ensemble, let (β, z, |Λd
L|) be the fixed external parameters, where β := (kBT )

−1 > 0

is the ’inverse temperature’ (kB is the Boltzmann constant), z := eβµ ∈ (0, eβE
(0)
L,κ) is the fugacity

(µ stands for the chemical potential) and |Λd
L| denotes the Lebesgue-measure of the box Λd

L. We

recall that E
(0)
L,κ := inf σ(HL,κ) > 0. For the definitions below, we refer the reader to [47, 28].

The G-C partition function is defined ∀d ∈ {1, 2, 3}, ∀L > 0, ∀κ > 0, ∀β > 0, ∀z ∈ (0, eβE
(0)
L,κ) by:

ΞL,κ(β, z) :=
∏

s∈Nd

(
1− ze−βE

(s)
L,κ

)−1

. (2.16)

From (2.16), the finite-volume G-C potential and finite-volume G-C average number of particles

are respectively defined ∀d ∈ {1, 2, 3}, ∀L > 0, ∀κ > 0, ∀β > 0 and ∀z ∈ (0, eβE
(0)
L,κ) by:

ΩL,κ(β, z) := − 1

β
ln (ΞL,κ(β, z)) =

1

β

∑

s∈Nd

ln
(
1− ze−βE

(s)
L,κ

)
, (2.17)

NL,κ(β, z) := −βz ∂ΩL,κ

∂z
(β, z) =

∑

s∈Nd

ze−βE
(s)
L,κ

1− ze−βE
(s)
L,κ

. (2.18)

The series in (2.17)-(2.18) are absolutely convergent since the semigroup {e−βHL,κ}β>0 is trace-

class on L2(Λd
L), see (A.2). Moreover, ΩL,κ(β, · ) is real analytic on (0, eβE

(0)
L,κ), see Sec. A.1.
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Next, we turn to the large-volume behavior of the two G-C quantities in (2.17)-(2.18). Below,
we summarize all the needed results. We refer the reader to Sec. A.1 for the proofs. When ΛL fills
the whole space, the thermodynamic limit of the G-C potential and average number of particles

generically exist. Denoting ∀d ∈ {1, 2, 3}, ∀κ > 0, ∀β > 0 and ∀z ∈ (0, eβE
(0)
∞,κ), the bulk G-C

potential by Ω∞,κ(β, z) := limL↑∞ ΩL,κ(β, z), then one has the pointwise convergence:

N∞,κ(β, z) := −βz ∂Ω∞,κ

∂z
(β, z) = lim

L↑∞
−βz ∂ΩL,κ

∂z
(β, z), (2.19)

and the convergence is uniform on compact sets w.r.t. (κ, β, z). Moreover, one has the asymptotic
expansions:

ΩL,κ(β, z) = Ω∞,κ(β, z) +O
(
e−cL2

)
, NL,κ(β, z) = N∞,κ(β, z) +O

(
e−cL2

)
,

for some L-independent constant c = c(β, z) > 0. The thermodynamic limit of the grand-canonical
potential and average number of particles can be expressed ∀d ∈ {1, 2, 3}, ∀κ > 0, ∀β > 0 and

∀z ∈ (0, eβE
(0)
∞,κ) by a sum involving the eigenvalues {E(s)

∞,κ}s∈Nd as in (2.17)-(2.18):

Ω∞,κ(β, z) =
1

β

∑

s∈Nd

ln
(
1− ze−βE(s)

∞,κ

)
, (2.20)

N∞,κ(β, z) =
∑

s∈Nd

ze−βE(s)
∞,κ

1− ze−βE
(s)
∞,κ

. (2.21)

By involving the semigroup {G∞,κ(t)}t≥0, (2.21) can be rewritten under the same conditions as:

N∞,κ(β, z) =

∞∑

l=1

zlTrL2(Rd){G∞,κ(lβ)} = TrL2(Rd){fBE(β, z;H∞,κ)}, (2.22)

where fBE(β, z;H∞,κ) is the operator defined by (2.14), see also (2.15).

The rescaled average number of particles.

So far, we have dealt with the basic bulk statistical quantities related to the Bose gas in the
G-C situation. As reviewed in Sec. 1, the experiments demonstrate the BEC in the semiclassical
regime ~ω0β ≪ 1, i.e., kBT ≫ ~ω0. In the experiments, ω0 usually is a given parameter and
the temperature is adapted so that the above condition is fulfilled. To investigate the global
properties of the gas (such as the average number of particles, total energy,...) from (2.20) in the
semiclassical regime, the method usually encountered in literature consists in approximating the
sum over the s-index by an integral. This boils down to identify the bulk quantity of interest by
the leading term of its asymptotic expansion in the semiclassical regime while disregarding the
remainder term. Preferring to deal with limits instead of equivalents, we introduce a rescaling of
the quantities in (2.20)-(2.21) by the dimensionless parameter κd, so that when performing the
limit κ ↓ 0, the resulting limit coincides with the leading term of the asymptotic expansion in the
semiclassical regime. Note that, the d-power on κ naturally appears in view of the formula used for
the first-order approximation of the density of states. We give the name of ’open-trap limit’ to the
limit κ ↓ 0 since it mimics the large-opening regime of the trap (i.e., the regime of weak angular
frequencies ω0). This explains the introduction of the dimensionless κ-parameter in (2.1)-(2.2),
and through this procedure, we do not need to set restrictions on the range of β. We emphasize
that, when investigating the global properties of the Bose gas, the open-trap limit allows to mimics
either the regime of weak angular frequencies ω0, or the ’true’ semiclassical regime corresponding
to small values of ~ (here, ~ is seen as a parameter). In all cases, the results stated in literature
under the condition ~ω0β ≪ 1 are recovered. This is discussed in Sec. 3.1. Finally, we mention
that an analogous procedure is introduced in [48], the so-called ’weak harmonic trap limit’. This
limit has a slightly different meaning since it plays the role of thermodynamic limit.

In view of the foregoing, we introduce a κ-rescaling of the bulk average number of particles:
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Definition 2.1. ∀d ∈ {1, 2, 3}, ∀κ > 0, ∀β > 0 and ∀z ∈ (0, eβE
(0)
∞,κ), we define the (bulk) rescaled

average number of particles from (2.19) by setting:

ν∞,κ(β, z) := κdN∞,κ(β, z). (2.23)

Note that (2.23) has to be seen as the thermodynamic limit of the finite-volume rescaled aver-
age number of particles defined as νL,κ(β, z) := κdNL,κ(β, z), with NL,κ(β, z) in (2.18).

Next, we switch to canonical-like conditions and we assume that the rescaled average number
of particles denoted by ν > 0, becomes, in addition with the ’inverse’ temperature β > 0, an
external parameter. Note that, because of the confining harmonic potential, the density of particles
vanishes in thermodynamic limit. Thus, the (rescaled) average number of particles turns out to
be the ’right’ canonical parameter. Seeing the quantity in (2.23) as a function of the µ-variable

instead of z, then ∀β > 0, ∀ν > 0 and ∀κ > 0, let µ∞,κ = µ∞,κ(β, ν) ∈ (−∞, E
(0)
∞,κ) satisfying:

ν = ν∞,κ

(
β, µ∞,κ

)
, (2.24)

and such a µ∞,κ is unique. The inversion of the relation between the bulk rescaled average number
of particles and the chemical potential is ensured by the fact that ∀β > 0, ∀ν > 0 and ∀κ > 0,
µ 7→ ν∞,κ(β, µ) is a strictly increasing function on R, and actually it defines a C∞-diffeomorphism

of R into (0,∞). Getting back to the finite-volume quantities, if µL,κ = µL,κ(β, ν) ∈ (−∞, E
(0)
L,κ)

denotes the unique solution of ν = νL,κ(β, ν), then one can prove, see pp. 38:

lim
L↑∞

µL,κ = µ∞,κ. (2.25)

Motivated by the following rewriting of (2.23) obtained from (2.21):

∀κ > 0, ∀β > 0, ∀µ ∈
(
−∞, E(0)

∞,κ

)
, ν∞,κ(β, µ) =

∑

s∈Nd

κd

e
β
(
E

(s)
∞,κ−µ

)

− 1

, (2.26)

we end this section by introducing the (bulk) rescaled average number of particles in the s-state:

Definition 2.2. ∀d ∈ {1, 2, 3}, ∀κ > 0, ∀β > 0, ∀ν > 0 and ∀s ∈ N
d, we define the (bulk) rescaled

average number of particles in the s-state as:

ν∞,κ(β, ν; s) = ν∞,κ(β, µ∞,κ; s) :=
κd

eβ(E
(s)
∞,κ−µ∞,κ) − 1

, (2.27)

where µ∞,κ = µ∞,κ(β, ν) ∈ (−∞, E
(0)
∞,κ) satisfies (2.24).

The reduced density matrix, local density function and their rescaling.

The reduced density matrix concept was initially introduced by Penrose and Onsager in [41]
to formulate a BEC criterion and investigate its features. It turns out to be the crucial tool to
investigate the local properties of BEC. We start by recalling the definition of the reduced density
matrix as well as the local density of particles as they are defined in Physics literature.

Definition 2.3. ∀d ∈ {1, 2, 3}, ∀κ > 0, ∀β > 0 and ∀ν > 0, we define the reduced density matrix
as the integral kernel of the operator fBE(β, µ∞,κ;H∞,κ) in (2.14) which reads ∀(x,y) ∈ R2d as:

ρ∞,κ (x,y;β, ν) :=
(
fBE

(
β, µ∞,κ;H∞,κ

))
(x,y) =

∑

s∈Nd

Ψ
(s)
∞,κ(x)Ψ

(s)
∞,κ(y)

e
β
(
E

(s)
∞,κ−µ∞,κ

)

− 1

, (2.28)

where µ∞,κ = µ∞,κ(β, ν) ∈ (−∞, E
(0)
∞,κ) satisfies (2.24). The diagonal part of (2.28) (obtained by

setting y = x) is usually named the local density of particles at the point x ∈ Rd.
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The sum in the r.h.s. of (2.28) comes from the spectral theorem. Since the eigenfunctions
in (2.6)-(2.4) are real-valued functions, then we drop the complex conjugation in the following.
Without involving directly the eigenfunctions of H∞,κ, one has also from (2.15) the representation:

∀(x,y) ∈ R
2d, ρ∞,κ(x,y;β, ν) =

∞∑

l=1

elβµ∞,κG(d)
∞,κ(x,y; lβ). (2.29)

Note that, because of (2.12), the above series is absolutely convergent uniformly in (x,y) ∈ R2d.
We point out that the reduced density matrix in (2.28) has the dimension of a density of particles
since by (2.6) the product of two wave functions has the dimension of the inverse of a volume.
Then, the local density of particles at x ∈ Rd is interpreted as the number of particles at x ∈ Rd

per unit volume. From (2.28), (2.6) and (2.4), the reduced density matrix can be rewritten as:

∀(x,y) ∈ R
2d, ρ∞,κ(x,y;β, ν) =

1

κ
d
2

∑

s∈Nd

ν∞,κ

(
β, µ∞,κ; s

)
Ψ

(s)
∞,1

(
x
√
κ
)
Ψ

(s)
∞,1

(
y
√
κ
)
. (2.30)

In Sec. 2.3.3, we investigate the reduced density matrix in open-trap limit. Remind that the
open-trap limit mimics the large-opening regime of the harmonic trap. We will see that, for certain
regime of the rescaled density ν (for which BEC phenomenon occurs), the reduced density matrix
in open-trap limit will be infinite indicating that the leading-term of the asymptotic expansion
in the large-opening regime of the trap diverges when performing the limit ω0 ↓ 0. To get more
accurate information on the behavior of the reduced density matrix in ω0, a suitable κ-rescaling
that takes into account its local nature, is needed. In view of the rewriting in (2.30), we introduce:

Definition 2.4. ∀d ∈ {1, 2, 3}, ∀κ > 0, ∀β > 0, ∀ν > 0 and ∀(x,y) ∈ R
2d, we define the rescaled

reduced density matrix from (2.28) by setting:

r∞,κ(x,y;β, ν) : = κ
d
2 ρ∞,κ(x,y;β, ν) (2.31)

=
∑

s∈Nd

ν∞,κ(β, µ∞,κ; s)Ψ
(s)
∞,1(x

√
κ)Ψ

(s)
∞,1(y

√
κ), (2.32)

where ν∞,κ(β, µ∞,κ; s) is the rescaled average number of particles in the s-state in (2.27).

Also, we define the rescaled local density of particles at x ∈ Rd from (2.31) by setting y = x.

2.3 The harmonically trapped Bose gas in open-trap limit.

Here, we investigate the global and local properties of the Bose gas in the open-trap limit.

2.3.1 Statistical quantities in open-trap limit.

In view of Definition 2.1, we start by defining the open-trap rescaled average number of particles :

Definition 2.5. Consider a confined d-dimensional harmonically trapped Bose gas, d ∈ {1, 2, 3}
in the G-C ensemble. Provided that the limit exists (possibly infinite), ∀β > 0 and ∀µ ∈ (−∞, 0),
we define the open-trap rescaled average number of particles as:

ν∞,0(β, µ) := lim
κ↓0

ν∞,κ(β, µ). (2.33)

Motivated by Definition 2.5 and analogously to the critical density of particles for perfect Bose
gas confined in boxes, we introduce the critical open-trap rescaled average number of particles as:

Definition 2.6. For any β > 0 and µ < 0, assume that the limit in (2.33) exists and is finite.
Provided that the limit exists (possibly infinite), we define the critical open-trap rescaled average
number of particles as:

νc(β) := lim
µ↑0

ν∞,0(β, µ) = sup
µ<0

ν∞,0(β, µ). (2.34)
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In view of Definition 2.2, we introduce similarly to Definition 2.5, the open-trap rescaled average
number of particles in the s-state as follows:

Definition 2.7. Consider a confined d-dimensional harmonically trapped Bose gas, d ∈ {1, 2, 3}
in the G-C ensemble. Provided that the limit exists (possibly infinite), ∀β > 0, ∀ν > 0 and ∀s ∈ Nd,
we define the open-trap rescaled average number of particles in the s-state as:

ν∞,0(β, ν; s) := lim
κ↓0

ν∞,κ (β, ν; s) = lim
κ↓0

ν∞,κ

(
β, µ∞,κ; s

)
, (2.35)

where µ∞,κ = µ∞,κ(β, ν) ∈ (−∞, E
(0)
∞,κ) satisfies (2.24).

From Definitions 2.3 and 2.4, we finally introduce the open-trap (rescaled) reduced density
matrix and the open-trap local (rescaled) density function as:

Definition 2.8. Consider a confined d-dimensional harmonically trapped Bose gas, d ∈ {1, 2, 3}
in the G-C ensemble.
(i). Provided that the limit exists (possibly infinite), ∀β > 0 and ∀ν > 0, we define the open-trap
reduced density matrix as:

∀(x,y) ∈ R
2d, ρ∞,0(x,y;β, ν) := lim

κ↓0
ρ∞,κ(x,y;β, ν). (2.36)

The open-trap local density of particles at x ∈ Rd is defined from (2.36) by setting y = x.
(ii). Provided that the limit exists (possibly infinite), ∀β > 0 and ∀ν > 0 we define the open-trap
rescaled reduced density matrix as:

∀(x,y) ∈ R
2d, r∞,0(x,y;β, ν) := lim

κ↓0
r∞,κ(x,y;β, ν). (2.37)

The open-trap rescaled local density of particles at x ∈ Rd is defined from (2.37) by setting y = x.

2.3.2 The global properties–Open-trap BEC.

Here, we focus on the thermodynamics of the Bose gas in the open-trap limit. When dealing
with global properties, the open-trap limit mimics either the regime of weak angular frequencies
ω0 of the trap, or the semiclassical regime corresponding to small values of ~ (seen as a parameter).

We start by writing down an explicit expression for the open-trap rescaled average number of
particles and by investigating its critical value. To do that, introduce for any real θ > 0:

gθ(ξ) :=

∞∑

n=1

ξn

nθ
, ∀ξ ∈ C s.t.






0 ≤ |ξ| < 1, if 0 < θ < 1,
0 ≤ |ξ| ≤ 1, ξ 6= 1, if θ = 1,
0 ≤ |ξ| ≤ 1, if θ > 1,

(2.38)

which is the analytic continuation of the polylogarithm initially defined on the open ball B(0, 1).
From Definitions 2.5-2.6, we establish:

Lemma 2.9. For any d ∈ {1, 2, 3} and β > 0:
(i). The open-trap rescaled average number of particles exists and reads as:

∀µ < 0, ν∞,0(β, µ) =
1

Γ(d) (~ω0)
d

∫ ∞

0

dτ
τd−1

eβ(τ−µ) − 1
=

gd
(
eβµ
)

(~ω0β)
d
, (2.39)

where Γ(· ) denotes the usual Euler Gamma function.
(ii). The critical open-trap rescaled average number of particles exists and satisfies:

νc(β) =






∞, if d = 1, (2.40a)

gd(1)

(~ω0β)
d
<∞, if d = 2, 3. (2.40b)

(iii). For any 0 < ν < νc(β), there exists a unique µ∞,0 = µ∞,0(β, ν) ∈ (−∞, 0) satisfying:

ν = ν∞,0

(
β, µ∞,0(β, ν)

)
. (2.41)
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Remark 2.10. From Lemma 2.9 (ii), the equality ν = νc(β) defines the critical temperature Tc:

kBTc := ~ω0

(
ν

gd(1)

) 1
d

, d = 2, 3.

Subsequently, we give a definition for the so-called open-trap BEC which is analogous to the
BEC concept (within the ’Einstein’s formulation’) for Bose gas confined in boxes, see e.g. [54]:

Definition 2.11. Open-trap BEC criterion. Consider a confined d-dimensional harmonically
trapped Bose gas, d ∈ {1, 2, 3} in the G-C ensemble. For any β > 0, we say that the Bose gas
manifests an open-trap BEC for a fixed rescaled number of particles ν > 0 if:
(i). The critical open-trap rescaled average number of particles is finite: νc(β) <∞, and moreover,
(ii). The open-trap rescaled average number of particles on the ground-state is strictly positive,
i.e.,

ν∞,0(β, ν;0) > 0, ν > νc(β).

The main preliminary result states that the confined harmonically trapped Bose gas manifests
an open-trap BEC in the sense of Definition 2.11 provided that d > 1:

Proposition 2.12. Consider a confined d-dimensional harmonically trapped Bose gas, d ∈ {1, 2, 3}
in the G-C ensemble. Then, for any β > 0 and ν > 0:
(i). If d = 1, the Bose gas manifests no open-trap BEC. Moreover, ν∞,0(β, ν; s) = 0 ∀s ∈ N.
(ii). If d = 2, 3, the Bose gas manifests an open-trap BEC. Furthermore, the open-trap rescaled
average number of particles on the ground-state satisfies:

ν∞,0(β, ν;0) =

{
0, when ν < νc(β), (2.42a)

ν − νc(β), when ν ≥ νc(β). (2.42b)

Here, νc(β) is defined by (2.34) and satisfies (2.40b). Moreover, ν∞,0(β, ν; s) = 0 ∀s ∈ (N∗)d.

(iii). µ∞,κ = µ∞,κ(β, ν) ∈ (−∞, E
(0)
∞,κ) satisfying (2.24) admits the asymptotics in the limit κ ↓ 0:

µ∞,κ =





E(0)
∞,κ + µ∞,0 + o(1), when ν < νc(β) if d = 1, 2, 3, (2.43a)

E(0)
∞,κ + o(1), when ν = νc(β) if d = 2, 3, (2.43b)

E(0)
∞,κ − κd

β(ν − νc(β))
+ o

(
κd
)
, when ν > νc(β) if d = 2, 3. (2.43c)

Here, µ∞,0 = µ∞,0(β, ν) ∈ (−∞, 0) satisfies the equation (2.41).

Remark 2.13. When ν > νc(β) and ν/νc(β) = η > 1, then (2.43c) can be rewritten as:

βµ∞,κ =
d

2
~ω0κβ − (~ω0κβ)

d

gd(1) (η − 1)
+ o

(
(~ω0κβ)

d
)
, when κ ↓ 0,

and identifies with the asymptotic expansion in the semiclassical regime ~ω0β ≪ 1 by setting κ = 1.

The results of Proposition 2.12 are based on the ’Einstein formulation’ of the condensation
in Definition 2.11. However, there exists another kind of condensation named generalized BEC
(g-BEC). The g-BEC concept was initially introduced in [54] for perfect Bose gas in ’Dirichlet
boxes’; for a review of definitions and classifications of g-BEC, see e.g. [6]. Based on the open-trap
limit concept and analogously to the van den Berg-Lewis-Pulé formulation of the g-BEC in [54]:

Definition 2.14. Open-trap g-BEC criterion. Consider a confined d-dimensional harmoni-
cally trapped Bose gas, d ∈ {1, 2, 3} in the G-C ensemble. For any β > 0, we say that the Bose
gas manifests an open-trap generalized BEC for a fixed rescaled number of particles ν > 0 if:

lim
ε↓0

lim
κ↓0

∑

s∈Nd : 0<
∑

d
j=1 κsj≤ε

ν∞,κ(β, ν; s) > 0. (2.44)
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We emphasize that, unlike the van den Berg-Lewis-Pulé formulation in [54], our definition of
g-BEC excludes the ground-state from the sum in (2.44) (as mostly encountered in literature).
Our definition distinguishes the ’usual’ BEC (ground-state macroscopically occupied) from the
’non-usual’ (states in a punctured neighborhood of the ground-state macroscopically occupied).

The following proposition states that the confined d-dimensional harmonically trapped Bose
gas does not manifests an open-trap g-BEC in the sense of Definition 2.14:

Proposition 2.15. Consider a confined d-dimensional harmonically trapped Bose gas, d ∈ {1, 2, 3}
in the G-C ensemble. Then for any β > 0 and ν > 0:

lim
ε↓0

lim
κ↓0

∑

s∈Nd : 0<
∑

d
j=1 κsj≤ε

ν∞,κ(β, ν; s) = 0. (2.45)

2.3.3 The local properties (Part 1)–Equivalence of condensation criteria.

Involved in the Penrose-Onsager general criterion of BEC in [41], see also [57], the reduced
density matrix allows to treat the Bose gases with interactions (whereas the Einstein criterion
was originally formulated for the free Bose gas). Note that there is a huge amount of Physics
literature dealing with this criterion for the Bose gas in boxes, see [6] and references therein. From
Definition 2.4 and analogously to the Penrose-Onsager criterion, we define the open-trap ODLRO
criterion as:

Definition 2.16. Open-trap ODLRO criterion. Consider a confined d-dimensional harmon-
ically trapped Bose gas, d ∈ {1, 2, 3} in the G-C ensemble. For any β > 0 and ν > 0, assume that
the limit in (2.37) exists and is finite. We say that the Bose-gas manifests an open-trap ODLRO
for the fixed rescaled number of particles ν if the open-trap rescaled reduced density matrix satisfies:

r∞,0(β, ν) := lim
|x−y|↑∞

r∞,0(x,y;β, ν) > 0. (2.46)

For any β > 0, introduce the thermal de Broglie wavelength defined as:

λβ :=

√
2π~2β

m
> 0. (2.47)

Here is our first main result focusing on the reduced density matrix in the open-trap limit.
As emphasized below (2.30), when dealing with the reduced density matrix, the open-trap limit
mimics the large-opening regime of the trap (i.e., the regime of weak angular frequencies ω0).

Theorem 2.17. Consider a confined d-dimensional harmonically trapped Bose gas, d ∈ {1, 2, 3}
in the G-C ensemble. Then for any β > 0, ν > 0 and (x,y) ∈ R2d:
(A). The open-trap reduced density matrix exists and satisfies:

ρ∞,0(x,y;β, ν) =





1

λdβ

∞∑

l=1

elβµ∞,0

l
d
2

e
− π

λ2
β

|x−y|2

l

, when ν < νc(β) if d = 1, 2, 3, (2.48a)

∞, when ν = νc(β) if d = 2, (2.48b)

∞, when ν > νc(β) if d = 2, 3. (2.48c)

(B). The open-trap rescaled reduced density matrix exists and satisfies:

r∞,0(β, ν) =
(mω0

π~

) d
2

ν∞,0(β, ν;0)

= 2
d
2
(~ω0β)

d
2

λdβ
×
{

0, when ν < νc(β) if d = 1, 2, 3,
(ν − νc(β)) , when ν ≥ νc(β) if d = 2, 3.

(2.49)
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As a result, the Bose gas manifests an open-trap ODLRO if ν > νc(β) when d = 2, 3.
(C). In addition: the open-trap rescaled reduced density matrix satisfies:

r∞,0(x,y;β, ν) = lim
κ↓0

ν∞,κ (β, ν;0)Ψ
(0)
∞,1

(
x
√
κ
)
Ψ

(0)
∞,1

(
y
√
κ
)
, if d = 1, 2, 3, (2.50)

as for the open-trap reduced density matrix without the ground-state:

lim
κ↓0

∑

s∈(N∗)d

Ψ
(s)
∞,κ(x)Ψ

(s)
∞,κ(y)

e
β
(
E

(s)
∞,κ−µ∞,κ

)

− 1

=





1

λdβ

∞∑

l=1

elβµ∞,0

l
d
2

e
− π

λ2
β

|x−y|2

l

, when ν < νc(β) if d ≥ 1, (2.51a)

∞, when ν ≥ νc(β) if d = 2, (2.51b)

1

λ3β

∞∑

l=1

1

l
3
2

e
− π

λ2
β

|x−y|2

l

, when ν > νc(β) if d = 3. (2.51c)

Remark 2.18. (i). In the case of ν < νc(β) if d = 1, 2, 3, then from (2.49) along with (2.51a),
the contribution in (2.48a) only comes from the reduced density matrix without the ground-state.
We turn to the case of ν > νc(β), ν/νc = η > 1 if d = 2, 3. By decomposing the sum involved in
the reduced density matrix into two contributions (ground-state corresponding to the condensate
gas plus the rest of the sum corresponding to the thermal gas), then from (2.49)-(2.50):

lim
κ↓0

κ
d
2
Ψ

(0)
∞,κ(x)Ψ

(0)
∞,κ(y)

e
β
(
E

(0)
∞,κ−µ∞,κ

)

− 1

=
2

d
2

λdβ

gd(1)

(~ω0β)
d
2

(η − 1) ,

and in the case of d = 3, from (2.51c):

lim
κ↓0

∑

s∈(N∗)3

Ψ
(s)
∞,κ(x)Ψ

(s)
∞,κ(y)

e
β
(
E

(s)
∞,κ−µ∞,κ

)

− 1

=
1

λ3β

∞∑

l=1

1

l
3
2

e
− π

λ2
β

|x−y|2

l

.

Therefore, the long range order is due to the condensate on the ground-state, the finite part of the
reduced density matrix is due to the thermal gas. When ν ≥ νc(β) if d = 2, the open-trap reduced
density matrix diverges, even if the gas manifests no BEC when ν = νc(β). This arises from the
divergence of the non-condensate part of the open-trap reduced density matrix, see (2.51b). In
Annex 5.1, we investigate its behavior when κ ↓ 0 and prove that:

∑

s∈(N∗)2

Ψ
(s)
∞,κ(x)Ψ

(s)
∞,κ(y)

e
β
(
E

(s)
∞,κ−µ∞,κ

)

− 1

∼ 1

λ2β
ln

(
1

~ω0κβ

)
, when κ ↓ 0.

(ii). As a result of (B), there is equivalence between Definitions 2.11 and 2.16: the Bose gas
manifests an open-trap BEC if and only if it manifests an open-trap ODLRO.

Remark 2.19. The sum-decomposition in the proof of Theorem 2.17 brings out that the condensate
part comes from the macroscopic-loops, i.e., l > ⌊κ−σ⌋ with 1 < σ < 3

2 and κ < 1, whereas the
non-condensate part comes from the short-loops, i.e., 1 ≤ l ≤ ⌊κ−σ⌋. Here ⌊· ⌋ is the floor function.
Note that in our sum-decomposition, the κ plays the role of ~ω0β in the loop-gas approach in [38].
It is found in [38] that the condensate-part comes from the large-loops, i.e., l > (~ωβ)−1. In fact,
from our analysis the critical exponent turns out to be σ = 3

2 .

2.3.4 The local properties (Part 2)–Localization of the condensate/thermal gas.

Here, we focus on the diagonal part of the (rescaled) reduced density matrix, interpreted as
the (rescaled) local density of particles, in open-trap limit. By introducing a scaling of the spatial
variable, initially introduced by van den Berg et al. in [54] to derive the so-called barometric
formula, we state some results concerning the spatial localization of the condensate/thermal gas
in open-trap limit. We can relate our statements with some well-known results in Physics literature
concerning the shape of the condensate/thermal gas in the space. This is discussed in Sec. 3.
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Theorem 2.20. Consider a confined d-dimensional harmonically trapped Bose gas, d ∈ {1, 2, 3}
in the G-C ensemble. Let νc(β) be the critical density of particles in (2.34) satisfying (2.40). Then
∀d ∈ {1, 2, 3}, ∀β > 0, ∀ν > 0, ∀x ∈ (R∗)d and ∀0 ≤ δ ≤ 1 the two following limits exist:

ρ
(δ)
∞,0(x;β, ν) := lim

κ↓0
ρ∞,κ

(
xκ−δ,xκ−δ;β, ν

)
, r

(δ)
∞,0(x;β, ν) := lim

κ↓0
r∞,κ

(
xκ−δ,xκ−δ;β, ν

)
.

(A). With gθ in (2.38), λβ in (2.47) and µ∞,0 = µ∞,0(β, ν) obeying (2.41), one has more precisely:

• ∀d ∈ {1, 2, 3} and ∀ν < νc(β):

ρ
(δ)
∞,0(x;β, ν) =

1

λdβ
×






g d
2

(
eβµ∞,0

)
, if 0 ≤ δ < 1, (2.52a)

g d
2

(
eβ(µ∞,0− 1

2mω2
0 |x|2)

)
, if δ = 1. (2.52b)

r
(δ)
∞,0(x;β, ν) = 0, if δ ≥ 0. (2.53)

• ∀d ∈ {2, 3} and ∀ν ≥ νc(β):

If d = 2, ρ
(δ)
∞,0(x;β, ν) =

1

λ2β
×






∞, if 0 ≤ δ < 1, (2.54a)

g1

(
e−β

mω2
0

2 |x|2
)
, if δ = 1. (2.54b)

If d = 3, ρ
(δ)
∞,0(x;β, ν) =

1

λ3β
×





∞, if 0 ≤ δ ≤ 1
2 and ν 6= νc(β), (2.55a)

g 3
2
(1), if 1

2 < δ < 1, (2.55b)

g 3
2

(
e−β

mω2
0

2 |x|2
)
, if δ = 1. (2.55c)

r
(δ)
∞,0(x;β, ν) = 2

d
2
(~ω0β)

d
2

λdβ
(ν − νc(β)) ×






1, if 0 ≤ δ < 1
2 , (2.56a)

e−
mω0

~
|x|2, if δ = 1

2 , (2.56b)

0, if 1
2 < δ ≤ 1. (2.56c)

(B). In addition: the open-trap rescaled local density of particles in the condensate satisfies:

∀0 ≤ δ ≤ 1, r
(δ)
∞,0(x;β, ν) = lim

κ↓0
ν∞,κ(β, ν;0)

∣∣∣Ψ(0)
∞,1

(
xκ−δ√κ

)∣∣∣
2

, if d = 1, 2, 3, (2.57)

as for the open-trap local density of particles outside of the condensate:

lim
κ↓0

∑

s∈(N∗)d

∣∣∣Ψ(s)
∞,κ

(
xκ−δ

)∣∣∣
2

e
β
(
E

(s)
∞,κ−µ∞,κ

)

− 1

=






ρ
(δ)
∞,0(x;β, ν), when ν < νc(β) if 0 ≤ δ ≤ 1 and d = 1, 2, 3, (2.58a)

∞, when ν ≥ νc(β) if 0 ≤ δ ≤ 1 and d = 2, (2.58b)

1

λ3β
g 3

2
(1), when ν > νc(β) if 0 ≤ δ ≤ 1

2 and d = 3, (2.58c)

1

λ3β
g 3

2

(
e−β

mω2
0

2 |x|2
)
, when ν ≥ νc(β) if 1

2 < δ ≤ 1 and d = 3. (2.58d)

Remark 2.21. We restricted to x ∈ (R∗)d since the case of x = 0 is covered by Theorem 2.17.
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Remark 2.22. The meaning of Theorem 2.20 is discussed in the following section. Let us mention
that, in the particular case of δ = 1, in view of (2.54b)-(2.55c) and by setting V (x) := mω2

0 |x|2/2,
then when ν ≥ νc(β) if d = 2, 3, the identity in (2.39) leads to the rewriting:

lim
κ↓0

ρ(δ=1)
∞,κ (x;β, ν) =

∫

Rd

dp

(2π~)d
1

e
β
(

|p|2

2m +V (x)
)

− 1

. (2.59)

(2.59) is often referred to as the semi-classical formula for the local density, see e.g. [43, Eqs.
(10.25)-(10.27)]. In Sec. 3.1, we show that the open-trap limit of the reduced density matrix with
spatial arguments rescaled by κ−1 identifies with the leading term of the asymptotic expansion of
the reduced density matrix in the semiclassical limit ~ ↓ 0 (here, ~ has to be seen as a parameter).

2.3.5 Meaning of Theorems 2.17 and 2.20–Rebuilding the density profile.

Here, we make the connection between the results of Theorem 2.17-2.20 and those stated in
literature. We consider the situation corresponding to the occurrence of BEC phenomenon. When
ν > νc(β), ν/νc(β) = η > 1 if d = 2, 3, then from (2.56) along with (2.57):

lim
κ↓0

κ
d
2

∣∣∣Ψ(0)
∞,κ(xκ−δ)

∣∣∣
2

e
β
(
E

(0)
∞,κ−µ∞,κ

)

− 1

=
2

d
2

λdβ

gd(1)

(~ω0β)
d
2

(η − 1)×






1, if 0 ≤ δ < 1
2 ,

e
−2(~ω0β)

π

λ2
β

|x|2
, if δ = 1

2 ,
0, if 1

2 < δ ≤ 1,

, (2.60)

and concerning the non-condensate part, from (2.53), (2.54) and (2.58):

lim
κ↓0

∑

s∈(N∗)d

∣∣∣Ψ(s)
∞,κ(xκ−δ)

∣∣∣
2

e
β
(
E

(s)
∞,κ−µ∞,κ

)

− 1

=
1

λdβ
×





g d
2
(1) , if 0 ≤ δ < 1 and d 6= 2,

g d
2

(
e−β

mω2
0

2 |x|2
)
, if δ = 1,

. (2.61)

Note that Theorem 2.20 gives no indication on the behavior of the non-condensate part of the
reduced density matrix when d = 2 if 0 < δ < 1 (the case of δ = 0 is discussed in Remark 2.18).
In the light of (2.60)-(2.61), the first term in the r.h.s. of (1.1) corresponds to (2.60) with δ = 1

2 ,
and the second term in the r.h.s. of (1.1) corresponds to (2.61) with δ = 1, see Remark 2.22.

From (2.60)-(2.61), one can infer a range of information on the localization of the condensate
and non-condensate gas (thermal gas). Clearly, the localization ranges of the thermal gas and
condensate are not the same. Indeed, one can see that the length scale of the localization of the
thermal gas is Lβ := (mω2

0κ
2β)−

1
2 = O(κ−1) (corresponding to δ = 1), whereas the length scale of

the condensate is L~ := (~/mω0κ)
1
2 = O(κ−

1
2 ) (corresponding to δ = 1/2). This means that the

condensate and the thermal gas do not coexist at the same scale of spatial distances, as it is stated
in [43, Eq. (10.28)]. The δ-scaling can be interpreted as follows. When δ = 1, (2.61) gives the
density profile of the thermal gas at large scale in the units of Lβ and (2.60) shows that there is
a peak for x = 0 corresponding to the condensate. When δ = 1/2, (2.60) gives the density profile
of the condensate in the units of L~ and (2.61) shows that there is a plateau corresponding to the
thermal gas. This latter means that the thermal gas is viewed as a constant for δ < 1, i.e., at scales
very much smaller than Lβ. The intermediate cases 0 ≤ δ < 1/2 and 1/2 < δ < 1 follow a similar
interpretation. By the scaling x 7→ xκ−δ with 0 ≤ δ ≤ 1, we investigate in fact the density profile
of the condensate and thermal gas at the length scale L(δ) := L~ (Lβ/L~)

2δ−1
= Lβ (L~/Lβ)

2−2δ
.

Since L~/Lβ = ~βω0κ ≪ 1 (the semiclassical regime), we conclude that L(δ) ≪ L~ if δ < 1/2
and L~ ≪ L(δ) ≪ Lβ if 1/2 < δ < 1. This explains why the condensate part vanishes for
δ > 1/2, and also why the non-condensate part remains constant for δ < 1. In addition, since
L2
~
/Lβ = λβ/

√
2π =

√
~2β/m does not depend on κ, we have L(δ) = λβ × (2π)2δ−1(L~/λβ)

2δ.
The latter relation gives the κ-dependence of L(δ). Note that L(0) = (2π)2δ−1λβ ≪ L~.

Turning to a more geometric interpretation, define ∀d ∈ {2, 3}, ∀β > 0 and ∀ν > νc(β) the
large scale (i.e., δ = 1) average square radius in the j-th direction of the open-trap reduced local
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density function as:

〈
x2j
〉(T )

∞,0
(β, ν) :=

∫

Rd

dxx2j ρ
(δ=1)
∞,0 (x;β, ν)

∫

Rd

dx ρ
(δ=1)
∞,0 (x;β, ν)

, j = 1, . . . , d. (2.62)

Similarly, define under the same conditions the medium scale (i.e., δ = 1/2) average square radius
in the j-th direction of the open-trap rescaled reduced local density function as:

〈
x2j
〉(0)
∞,0

(β, ν) :=

∫

Rd

dxx2j r
(δ= 1

2 )
∞,0 (x;β, ν)

∫

Rd

dx r
(δ= 1

2 )
∞,0 (x;β, ν)

, j = 1, . . . , d. (2.63)

We mention that from (2.54b)-(2.55c) and (2.56b) the quantities in (2.62)-(2.63) are well-defined.
By a direct calculation, we get ∀d ∈ {2, 3}, ∀β > 0 and ∀ν > νc(β) the following ratio:

〈
x2j
〉(T )

∞,0
(β, ν)

〈
x2j
〉(0)
∞,0

(β, ν)
=

2

~ω0β

gd+1(1)

βgd(1)
=

2

~ω0β

ζ(d + 1)

βζ(d)
, j = 1, . . . , d, (2.64)

The r.h.s. of (2.64) is j-independent since the trap is isotropic, and corresponds to [43, Eq. (10.28)]
for d = 3. The meaning of (2.64) is as follows: the density profile of the thermal gas is much more
spread out than the density profile of the condensate (large vs medium scale).

As a final remark, the local density of particles in the condensate is of the order of κ−
3
2 for

d = 3, see (2.60). Ergo, it is infinite in open-trap limit, whereas the local density of particles in
the thermal gas is finite in open-trap limit, see (2.61). Hence, one can talk about a spatial Bose-
Einstein condensation since a very large number of particles is localized in a small region of the
space compared with the region where the thermal gas is spread. Note that the first experimental
demonstrations of the condensate is based on this latter feature since it is enough to ’take pictures’
of the gas to bring out the spatial density of the particles distribution, see e.g. [2, 17].

3 Concluding remarks & Extension to anisotropic traps.

3.1 Open-trap limit vs semiclassical regime.

The thermodynamics: open-trap limit vs semiclassical regime.

The usual method to investigate the thermodynamic functions of the Bose gas from (2.20)
consists in approximating to the first-order the sum over the s-index by an integral. Turning to
the average number of particles, one has from (2.21) along with (2.13) and (2.39), by setting κ = 1:

N∞,1(β, µ) =

∫ ∞

0

dτ
τd−1

Γ(d) (~ω0)
d
fBE(β, µ; τ) +

∞∑

l=1

elβµ

((
2 sinh

(
~ω0β

2
l

))−d

− (~ω0βl)
−d

)
,

and the remainder behaves like O((~ω0β)
1−d)) when (~ω0β) ↓ 0. Its behavior is investigated

further into details in [26, 30, 31] in which the relevance of the semiclassical regime is discussed.
In view of the leading term in the above expansion, then the density of states in the semiclassical
regime is approximated to the first-order by its high-energy asymptotic. Such a result is recovered
in our open-trap formulation mimicking the regime of weak angular frequencies ω0 of the trap. For
completeness’ sake, we mention that the leading term can also be derived in the ’true’ semiclassical
regime corresponding to small values of ~ (seen as a parameter). Indeed, consider the operator:

H̃∞,κ := − (~κ)2

2m
∆+

m

2
ω2
0 |x|2, κ > 0. (3.1)
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Under the unitary transformation on L2(Rd) defined as:

∀κ > 0, (U(κ)ϕ)(x) := κ−
d
2ϕ
(
xκ−1

)
, x ∈ R

d, ϕ ∈ L2(Rd),

then H∞,κ in (2.2) is unitary equivalent to H̃∞,κ in (3.1), i.e.,

U(κ)H∞,κU∗(κ) = H̃∞,κ. (3.2)

Denoting by {G̃∞,κ(t)}t≥0 the strongly-continuous semigroup generated by H̃∞,κ, (3.2) leads to:

TrL2(Rd)

{
G̃∞,κ(β)

}
= TrL2(Rd) {G∞,κ(β)} , β > 0, κ > 0.

In view of (2.22), then we obtain the same result than (2.39) when performing the limit κ ↓ 0.

Reduced density matrix: Open-trap limit and semiclassical limit.

The investigations essentially lean on the representation (2.29) of the reduced density matrix
by the kernel of the Bose-Einstein function of the operator H∞,κ in (2.14), see (2.29). From such
a representation, investigating the behavior in open-trap limit of the (rescaled) reduced density
matrix requires some sharp estimates on the kernel of the semigroup generated by H∞,κ for small
values of κ. Since this kernel is explicitly known (see (2.9)-(2.10)), then our approach turns out
to be more robust than the one based on the representation in (2.28) involving the eigenfunctions
of H∞,κ. Indeed, the control of the sum in (2.28) for small values of κ is made difficult by the
behavior of the Hermite polynomials which oscillate especially as the s-index gets larger.

In Theorem 2.17, we investigate the reduced density matrix in open-trap limit. This allows us
to derive the first-order approximation in the zero angular frequency limit. The semiclassical limit
corresponding to small values of ~ (seen as a parameter) is investigated in Theorem 2.20 when
using the scale δ = 1. From the definition in (2.14), (3.2) leads in the kernels sense on R2d to:

∀κ > 0, (fBE(β, µ∞,κ; H̃∞,κ))(x,y) = κ−d(fBE(β, µ∞,κ;H∞,κ))(xκ
−1,yκ−1).

Then, it follows from the definition in (2.28) together with (2.59):

(fBE(β, µ∞,κ; H̃∞,κ))(x,y) ∼
∫

Rd

dp

(2π~κ)d
1

eβ(
|p|2

2m +V (x)) − 1
when κ ↓ 0. (3.3)

3.2 Homogeneous versus inhomogeneous systems.

We stress the point that our results obtained in open-trap limit for the harmonically trapped
Bose gas differ from the ones stated in [35, 53] for the perfect Bose gas confined in ’Dirichlet
boxes’ (commonly referred to as ’homogeneous systems’), and from the ones in [50, 52, 44] stated
for the free Bose gas in a weak harmonic trap model. The main difference concerns the critical
density. From a rescaling of the average number of particles (see Definition 2.1), we find that the
open-trap critical rescaled average number of particles for the harmonically trapped Bose gas is
finite if d = 2, 3 and proportional to gd(1), see Lemma 2.9 (ii). This result contrasts with the
case of homogeneous systems in which the bulk critical density of particles (by bulk, we mean in
thermodynamic limit) is finite if d = 3 and proportional to g d

2
(1), and also with the case of the

weak harmonic trap model in which it is finite if d = 2, 3 and proportional to
∫ 1

0
du g d

2
(e−β u2

2 ).

However, we mention that our expressions for the non-condensate part of the open-trap reduced
density matrix for the harmonically trapped Bose gas in Theorem 2.17 (C) are exactly the same
than the ones for the non-condensate part of the bulk reduced density matrix for homogeneous
systems in any dimension, and thus it diverges if d = 2 and converges if d = 3. Even at the
scales 0 < δ < 1, the non-condensate part of the open-trap scaled local density in Theorem 2.20
(B) is still equal to the non-condensate part of the bulk local density for homogeneous systems.
This means that the non-condensate bosons do not feel the trap for those scales, and behave like
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free particles in the whole space Rd. But at the scale δ = 1 and when ν ≥ νc(β) if d = 2, 3, the
open-trap scaled local density has a gaussian decay whereas the bulk scaled local density (with the
scaling u := xL−1, u ∈ [−1, 1]d) for homogeneous systems is constant on (−1, 1)d and vanishes on
the boundaries, see e.g. [55]. Concerning the condensate part of the open-trap rescaled density
function for the harmonically trapped Bose gas, it is constant at the scales 0 ≤ δ < 1/2 and has a
gaussian decay at the scale δ = 1/2 when ν ≥ νc(β) if d = 2, 3, see Theorem 2.20 (A), whereas the
condensate part of the bulk scaled density function for homogenous systems oscillates on [−1, 1]d.

3.3 Insight into BEC in some anisotropic harmonic traps.

Here, we extend some of the results established for the isotropic harmonic trap to some models
of three-dimensional anisotropic harmonic traps. In particular, we focus on two kind of anisotropic
trap models: a quasi-1D and quasi-2D trap model. They are analogous to the anisotropic (van
den Berg) boxes models for the homogeneous Bose gas investigated in [53, 51, 54, 55].

The infinite-volume Hamiltonian in L2(R3) which determines the dynamics of a single spin-0
particle trapped in a general three-dimensional anisotropic harmonic trap is given by:

H∞,κ :=
1

2
(−i∇x)

2
+

1

2

3∑

j=1

(ωjκj)
2
x2j , (3.4)

where ωj > 0, j = 1, 2, 3 are kept fixed in the following, and κ = (κ1, κ2, κ3), κj > 0. Below,
we focus on some specific anisotropic traps. In particular, we consider the situation in which
ω2 = ω3 = ω⊥ and ω1 6= ω⊥. Further, for any κ > 0, we consider κ1 = κ1(κ) and κ2 = κ3 = κ⊥(κ)
which satisfy κ1(κ) 6= κ⊥(κ) ∀κ > 0 along with κ1(κ), κ⊥(κ) ↓ 0 when κ ↓ 0. Since the κj ’s are
functions of κ, then in the following, for such models, we set H∞,κ = H∞,κ. From (2.5) and (2.6),
the eigenvalues and eigenfunctions are respectively given for any κ > 0 by:

E(s)
∞,κ = ~ω1κ1

(
s1 +

1

2

)
+ ~ω⊥κ⊥

3∑

j=2

(
sj +

1

2

)
, s = {sj}3j=1 ∈ N

3,

Ψ(s)
∞,κ(x) = ψ(s1)

κ1
(x1)

3∏

j=2

ψ(sj)
∞,κ⊥

(xj), x = {xj}3j=1 ∈ R
3.

Next, ∀κ > 0 denote |κ| := (κ1κ2κ3)
1/3 = (κ1κ

2
⊥)

1
3 and ω0 = (ω1ω2ω3)

1
3 = (ω1ω

2
⊥)

1
3 . Then, one

has |κ|3/2 =
√
κ1κ⊥ and |κ|3 = κ1κ

2
⊥. To take into account the anisotropy of the harmonic trap,

the rescaling by κ3 in Definitions 2.1-2.2 (resp. κ
3
2 in Definition 2.4) when d = 3 has to be replace

with |κ|3 (resp. |κ|3/2). Therefore, similarly to (2.28)-(2.29) and (2.31), the reduced density matrix
and the rescaled reduced density matrix read ∀κ > 0, ∀β > 0, ∀ν > 0 and ∀(x,y) ∈ R6 as:

ρ∞,κ(x,y;β, ν) =

∞∑

l=1

elβµ∞,κG(1)
∞,κ1

(x1, y1; lβ)G
(2)
∞,κ⊥

(x⊥,y⊥; lβ), (3.5)

r∞,κ(x,y;β, ν) = |κ|3/2ρ∞,κ(x,y;β, ν), (3.6)

where x⊥ := (x2, x3), y⊥ := (y2, y3) and µ∞,κ := µ∞,κ(β, ν) < E
(0)
∞,κ satisfies similarly to (2.24):

ν = ν∞,κ(β, µ) = |κ|3N∞,κ(β, µ). (3.7)

When dealing with the above bulk quantities in open-trap limit, Definitions 2.5-2.8 still hold for
the type of anisotropic harmonic traps we consider here (the κj ’s are functions of κ). We stress
the point that the results of Lemma 2.9 still hold true. In the rest of this section, our purpose
consists in stating the counterpart of Propositions 2.12-2.15 and Theorem 2.17 in the case of a
quasi-1D and quasi-2D trap model (we do not consider the counterpart of Theorem 2.20).
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3.3.1 A Quasi-1D trap model.

A quasi-1D trap model was first introduced in [8] adapting the exponentially anisotropic (van
den Berg) boxes model for the homogeneous Bose gas studied in [50]. It has been reviewed in [40].
It is a three-dimensional anisotropic trap model defined (in accordance with our formalism) as:

{
κ1 = κ exp

(
−κ2

c

κ2

)
, κc > 0,

κ⊥ = κ (= κ2 = κ3).
(3.8)

From (3.8), for small values of κ, the characteristic length
√
~(mω1κ1)−1 along the x1-direction

is very large compared to the one along the xj -directions, j = 2, 3 (hence the name of quasi-1D
trap). For this kind of quasi 1-D trap model, Beau at al. pointed out in [8] (see also [40]) that
the Bose gas can manifests both BEC and generalized-BEC in a suitable regime corresponding to
a second kind of transition. Since such a model produces some very different results compared to
the isotropic harmonic trap, this justifies its relevance. Let us go further into details.

The counterpart of Propositions 2.12-2.15 is contained in:

Proposition 3.1. Consider a quasi-1D harmonically trapped Bose gas (the anisotropy is defined
by (3.8)), in the G-C ensemble. Then, for any β > 0, ν > 0 and κc > 0:
(i). The Bose gas manifests an open-trap BEC in the sense of Definition 2.11. Furthermore, the
open-trap rescaled average number of particles on the ground-state satisfies:

ν∞,0(β, ν;0) =

{
0, when ν < νm(β), (3.9a)

ν − νm(β), when ν ≥ νm(β), (3.9b)

where νm(β) stands for a second critical open-trap rescaled average number of particles defined as:

νm(β) = νm(β, κc) := νc(β) +
ω2
c

~βω3
0

> νc(β), (3.10)

where ω0 = (ω1ω
2
⊥)

1
3 and ωc := ω⊥κc. We recall that νc(β) = g3(1)(~βω0)

−3 is the critical open-
trap rescaled average number of particles in (2.34) obeying (2.40b).
(ii). The Bose gas manifests an open-trap generalized-BEC in the sense of Definition 2.14. More-
over, the open-trap rescaled average number of particles nearby the ground-state satisfies:

lim
ε↓0

lim
κ↓0

∑

s∈(N∗)3 :
∑3

j=1 κjsj≤ε

ν∞,κ(β, ν; s) =





0, when ν < νc(β), (3.11a)

ν − νc(β), when νc(β) < ν < νm(β), (3.11b)

νm(β)− νc(β), when ν ≥ νm(β). (3.11c)

Moreover, ν∞,0(β, ν; s) = 0 ∀s ∈ (N∗)3.

(iii). µ∞,κ = µ∞,κ(β, ν) ∈ (−∞, E
(0)
∞,κ) satisfying (3.7) admits the asymptotics in the limit κ ↓ 0:

µ∞,κ =





E(0)
∞,κ + µ∞,0 + o(1), when ν < νc(β), (3.12a)

E(0)
∞,κ − β−1e−

~ω1β(ν−νc(β))

κ2 + o
(
e−

~βω1(ν−νc(β))

κ2

)
, when νc(β) < ν ≤ νm(β), (3.12b)

E(0)
∞,κ − κ1κ

2
⊥

β (ν − νm(β))
+ o

(
κ1κ

2
⊥
)
, when ν > νm(β). (3.12c)

Here, E
(0)
∞,κ = 1

2~ω1κ1 + ~ω⊥κ⊥, and µ∞,0 = µ∞,0(β, ν) ∈ (−∞, 0) satisfies (2.41).

The proof of Proposition 3.1 can be found in [8]. Contrary to the case of the isotropic harmonic
trap, the Bose gas manifests an open-trap g-BEC in the sense of (2.44) when ν > νc(β). Moreover,
the Bose gas manifests an open-trap BEC in the sense of Definition 2.11 only when ν > νm(β) >
νc(β). Therefore, the open-trap g-BEC and open-trap BEC coexist when ν > νm(β). We mention
that an article investigating the measurement of such a chemical potential (3.12b) has been recently
published [36].
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Remark 3.2. Let us discuss the physical relevance of such an exponential-quasi-1D model. Prepar-
ing experimentally the system in a quasi-1D regime requires that the conditions ~ω1 ≪ ~ω⊥ along
with ~ω⊥β ≪ 1 are fulfilled. On the contrary, the condition ~ω1β ≪ 1 ≪ ~ω⊥β implies that the
Bose gas behaves like a one-dimensional system, see e.g. [56]. However, we need another condition
on ωc := ω⊥κc since it has to be sufficiently large so that the difference νm − νc is at least of the
same order than νc. Thus, by (3.10), ωc has to be of the order of ωβ := (~β)−1.

Subsequently, we turn to the properties of the (rescaled) reduced density matrix in open-trap
limit. As a counterpart of Theorem 2.17, we establish:

Corollary 3.3. Consider a quasi-1D harmonically trapped Bose gas (the anisotropy is defined by
(3.8)), in the G-C ensemble. Then for any β > 0, ν > 0, κc > 0 and (x,y) ∈ R6:
(A). The open-trap reduced density matrix exists and satisfies:

ρ∞,0(x,y;β, ν) =






1

λ3β

∞∑

l=1

elβµ∞,0

l
3
2

e
− π

λ2
β

|x−y|2

l

, when ν < νc(β), (3.13a)

∞, when ν > νc(β). (3.13b)

(B). The open-trap rescaled reduced density matrix exists and satisfies:

r∞,0(β, ν) =
(mω0

π~

) 3
2 ν∞,0(β, ν;0)

π
3
2

=
(mω0

π~

) 3
2 ×





0, when ν < νm(β),
ν − νm(β)

π
3
2

, when ν ≥ νm(β).
(3.14)

Here, νm(β) > νc(β) is the second critical open-trap rescaled number of particles defined by (3.10).
As a result of (3.14), the Bose gas manifests an open-trap ODLRO if ν > νm(β).
(C). In addition: the open-trap rescaled reduced density matrix satisfies:

r∞,0(x,y;β, ν) = lim
κ↓0

ν∞,κ (β, ν;0)Ψ
(0)
∞,1

(
x
√
κ
)
Ψ

(0)
∞,1

(
y
√
κ
)
, (3.15)

as for the open-trap reduced density matrix without the ground-state:

lim
κ↓0

∑

s∈(N∗)3

Ψ
(s)
∞,κ(x)Ψ

(s)
∞,κ(y)

e
β
(
E

(s)
∞,κ−µ∞,κ

)

− 1

=






1

λ3β

∞∑

l=1

elβµ∞,0

l
3
2

e
− π

λ2
β

|x−y|2

l

, when ν < νc(β), (3.16a)

∞, when ν > νc(β). (3.16b)

The proof of Corollary 3.3 is sketched in Sec. 5.2 and leans on the same methods than the
ones used to prove Theorem 2.17. Unlike the isotropic case, the Bose gas manifests an open-trap
ODLRO if and only if ν > νm(β), and even if the Bose gas manifests an open-trap g-BEC when
νc(β) < ν < νm(β), see Proposition 3.1 (ii). We emphasize that, in the regime ν > νc(β), the
g-BEC has an impact on the reduced density matrix since its non-condensate part diverges.

Remark 3.4. The ’proof’ of Corollary 3.3 in Sec. 5.2 allows to bring out that the divergence in
the regime ν > νc(β) of the non-condensate part of the reduced density matrix in (3.16b) arises
from the mesoscopic-loops contribution. With ωc := ω⊥κc, we prove that when κ ↓ 0:

Mκ∑

l=Nκ,σ+1

(
elβµ∞,κG(1)

∞,κ1
(x1, y1; lβ)G

(2)
∞,κ⊥

(x⊥,y⊥; lβ)− elβ(µ∞,κ−E(0)
∞,κ)Ψ(0)

∞,κ(x)Ψ
(0)
∞,κ(y)

)

∼ 1

λβ

mω⊥κ⊥√
π~

×





exp

(
g3(1)

(~ω⊥κβ)
2

(η − 1)

2

)
, when 1 < ν

νc(β)
= η ≤ νm(β)

νc(β)
,

exp

(
ω2
c

2ω2
⊥κ

2

)
, when ν > νm(β),

, (3.17)

21



where Nκ,σ := ⌊κ−σ⌋, σ > 0 and Mκ =Mκ,κc
:= ⌊e

κ2
c

κ2 ⌋ with κ < 1 (here ⌊· ⌋ is the floor function).
The ’proof’ of Corollary 3.3 brings also out that the sum over the short-loops, i.e., loops in the
range 1 ≤ l ≤ ⌊κ−σ⌋ gives rises to the usual thermal gas contribution given in (2.51c), whereas

the sum over the macroscopic-loops, i.e., l > ⌊e
κ2
c

κ2 ⌋ identically vanishes. Note that in our sum-
decomposition, κ plays the role of ~ω0β in the loop-gas approach in [38]. Due to the latter feature,
the three-terms decomposition of the local density function as stated in (1.4) is then justified. The
first term corresponds to the usual BEC (macroscopic-loops contribution) and the third term to the
thermal gas (short- loops contribution). Moreover from (3.17), the additional term corresponds to

the mesoscopic-loops contribution with loops of length in the range ⌊κ−σ⌋ < l ≤ ⌊e
κ2
c

κ2 ⌋.

3.3.2 A Quasi-2D trap model.

In Theorem 2.17 (C), we stated that the non-condensate part of the open-trap reduced density
matrix diverges when ν ≥ νc(β) if d = 2. In Annex 5.1, we precise this result and prove that:

∑

s∈(N∗)2

Ψ
(s)
∞,κ(x)Ψ

(s)
∞,κ(y)

e
β
(
E

(s)
∞,κ−µ∞,κ

)

− 1

∼ 1

λ2β
ln

(
1

~ω0κβ

)
when κ ↓ 0,

uniformly in (x,y) ∈ R4. We mention that a similar behavior has already been pointed out
in [37]. In this paragraph, we introduce a three-dimensional anisotropic harmonic trap model
mimicking the two-dimensional properties (for certain values of ν > νc(β)) while ’regularizing’ the
two-dimensional logarithmic divergence mentioned below. This trap model is defined as follows:

{
κ1 = κ
κ⊥ = κ exp

(
−
√

κc

κ

)
(= κ2 = κ3), κc > 0.

(3.18)

From (3.18), for small values of κ, the characteristic length
√
~(mωjκj)−1 along the xj -direction,

j = 2, 3 is very large compared to the one along the x1-direction (hence the name of quasi-2D
trap). This anisotropic model is inspired by a model introduced in [50] for homogeneous systems.
Contrary to the quasi-1D model in Sec. 3.3.1, this quasi-2D model does not exhibit a second kind
of transition. In fact, the counterpart of Propositions 2.12-2.15 is similar to the isotropic case:

Proposition 3.5. Consider a quasi-2D harmonically trapped Bose gas (the anisotropy is defined
by (3.18)), in the G-C ensemble. Then, for any β > 0, ν > 0 and κ0 > 0:
(i). The Bose gas manifests an open-trap BEC in the sense of Definition 2.11. Furthermore, the
open-trap rescaled average number of particles on the ground-state satisfies:

ν∞,0(β, ν;0) =

{
0, when ν < νc(β), (3.19a)

ν − νc(β), when ν ≥ νc(β), (3.19b)

where νc(β) is the critical open-trap rescaled average number of particles in (2.34) obeying (2.40b).
(ii). The Bose gas manifests no open-trap generalized-BEC in the sense of Definition 2.14:

lim
ε↓0

lim
κ↓0

∑

s∈(N∗)3 :
∑3

j=1 κjsj≤ε

ν∞,κ(β, ν; s) = 0. (3.20)

Moreover, ν∞,0(β, ν; s) = 0 ∀s ∈ (N∗)3.

(iii). µ∞,κ = µ∞,κ(β, ν) ∈ (−∞, E
(0)
∞,κ) satisfying (3.7) admits the asymptotics in the limit κ ↓ 0:

µ∞,κ =






E(0)
∞,κ + µ∞,0 + o(1), when ν < νc(β), (3.21a)

E(0)
∞,κ − κ1κ

2
⊥

β (ν − νc(β))
+ o

(
κ1κ

2
⊥
)
, when ν > νc(β). (3.21b)

Here, E
(0)
∞,κ = 1

2~ω1κ1 + ~ω⊥κ⊥, and µ∞,0 = µ∞,0(β, ν) ∈ (−∞, 0) satisfies the equation (2.41).
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Subsequently, we turn to the properties of the (rescaled) reduced density matrix in open-trap
limit. As a counterpart of Theorem 2.17, we establish:

Corollary 3.6. Consider a quasi-2D harmonically trapped Bose gas (the anisotropy is defined by
(3.18)), in the G-C ensemble. Then for any β > 0, ν > 0, κc > 0 and (x,y) ∈ R6:
(A). The open-trap reduced density matrix exists and satisfies:

ρ∞,0(x,y;β, ν) =





1

λ3β

∞∑

l=1

elβµ∞,0

l
3
2

e
− π

λ2
β

|x−y|2

l

, when ν < νc(β), (3.22a)

∞, when ν > νc(β). (3.22b)

(B). The open-trap rescaled reduced density matrix exists and satisfies:

r∞,0(β, ν) =
(mω0

π~

) 3
2 ν∞,0(β, ν;0)

π
3
2

=
(mω0

π~

) 3
2 ×





0, when ν < νc(β),
ν − νc(β)

π
3
2

, when ν ≥ νc(β).
(3.23)

As a result of (3.23), the Bose gas manifests an open-trap ODLRO if ν > νc(β).
(C). In addition: the open-trap rescaled reduced density matrix satisfies:

r∞,0(x,y;β, ν) = lim
κ↓0

ν∞,κ (β, ν;0)Ψ
(0)
∞,1

(
x
√
κ
)
Ψ

(0)
∞,1

(
y
√
κ
)
, (3.24)

as for the open-trap reduced density matrix without the ground-state:

lim
κ↓0

∑

s∈(N∗)3

Ψ
(s)
∞,κ(x)Ψ

(s)
∞,κ(y)

e
β
(
E

(s)
∞,κ−µ∞,κ

)

− 1

=





1

λ3β

∞∑

l=1

elβµ∞,0

l
3
2

e
− π

λ2
β

|x−y|2

l

, when ν < νc(β), (3.25a)

√
mωc

π~

2

λ2β
+

1

λ3β

∞∑

l=1

1

l
3
2

e
− π

λ2
β

|x−y|2

l

, when ν > νc(β), (3.25b)

where ω0 = (ω1ω
2
⊥)

1
3 and ωc := ω1κc.

The proof of Corollary 3.6 is sketched in Sec. 5.2. The results of Corollary 3.6 are similar
to Theorem 2.17 but with the difference that the non-condensate part of the open-trap reduced
density matrix has an additional term in the regime ν > νc(β), see (3.25b) (compared to (2.51c)).
Let us comment this result. In fact, we prove that when ν > νc(β):

∑

s∈(N∗)3

Ψ
(s)
∞,κ(x)Ψ

(s)
∞,κ(y)

e
β
(
E

(s)
∞,κ−µ∞,κ

)

− 1

∼
√
mω1

π~

1

λ2β
ln

(
1

κ2⊥

)
+

1

λ3β

∞∑

l=1

1

l
3
2

e
− π

λ2
β

|x−y|2

l

= 2

√
mωc

π~

1

λ2β
+

1

λ3β

∞∑

l=1

1

l
3
2

e
− π

λ2
β

|x−y|2

l

.

While mimicking the properties of the two-dimensional isotropic case, our quasi-2D trap model
provides a non-condensate part of the open-trap reduced density matrix that is finite. The loga-
rithmic divergence is then ’regularized’ by the third dimension (multiplication by

√
κ1 =

√
κ). We

point out that the additional contribution arises from the ’mesoscopic loops’ that we can interpret
as a local g-BEC, see (5.13)-(5.16) in Sec. 5.2. Note that this additional term still occurs in the
open-trap local density (i.e., when x = y).

Remark 3.7. Let us discuss the physical relevance of such an exponential-quasi-2D model. Prepar-
ing experimentally the system in a quasi-2D regime requires that the conditions ~ω⊥ ≪ ~ω1 and
~ω1β ≪ 1 are fulfilled. On the contrary, the condition ~ω⊥β ≪ 1 ≪ ~ω1β implies that the Bose
gas behaves like a two-dimensional system, see e.g. [56], and under the condition ω⊥ ≪ ω1 along
with ~ω1β ≈ 1, the Bose gas is in another quasi-2D regime, see [27]. As in Remark 3.2, we need a
condition on ωc := ω1κc so that the first term of the local density (diagonal part of (3.25b)) is of
the same order than the local density λ−3

β g 3
2
(1). Thus, ωc has to be of the order of ωβ = (~β)−1.
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Remark 3.8. We mention that the result in (3.25b) is similar to the one derived for the perfect
Bose gas when considering the analogous exponential-quasi-2D boxes in which one takes L1 = L
and L⊥ = LeαL, where α > 0 is the exponential rate of the model. We refer to [50, 55], and also
to [8]. If one compares the results from [8] along with Corollary 3.6 versus the results stated for the
isotropic case in Theorem 2.17, one can interpret the additional term in the local density matrix as
a g-BEC having the density of particles equals to ρm(x)− ρc(x) = 2αλ−2

β . Here, α =
√
mωc/(π~)

is analogous to the exponential rate appearing in the exponential-quasi-2D boxes, and ρm(x) is
analogous to the second critical density of particles (ρc(x) is the usual critical density).

Remark 3.9. In the proof of Corollary 3.6, see Sec. 5.2, the reduced density matrix is decomposed
into three sums corresponding to different sizes of loops: the short-loops giving rise to the second
term of the r.h.s. of (3.25b), the mesoscopic-loops to the first term, plus the macroscopic-loops
giving rise to (3.24). From (5.16), mesoscopic-loops of different scales contribute to the first term of
the r.h.s. of (3.25b). For instance, the sum over the loops in the range ⌊κ−σ1⌋ < l ≤ ⌊κ−σ2κ−1

⊥ ⌋
with σ1 > 0, σ2 ≥ 0 and κ < 1 gives rise to half of the contribution; the sum in the range
⌊κ−σ2κ−1

⊥ ⌋ < l ≤ ⌊κ−σ2κ−2
⊥ ⌋ gives rise to the other half. Note that in our sum-decomposition, the κ

plays the role of ~ω0β in the loop-gas approach in [38]. Therefore, if one uses numerical simulations
with PIMC method (see e.g. [33]) for investigations on the ideal Bose gas in exponential-quasi-2D
harmonic traps, then one should observe a non-negligible mesoscopic-loop-length distribution.

4 Proofs of the main results.

In all the proofs that we give in this section, we set ~ = m = ω0 = 1 for the sake of simplicity.

4.1 Proof of Theorem 2.17.

Part (A). Let β, ν > 0 be fixed. We start with the case of ν < νc(β) if d = 1, 2, 3. Consider the

representation in (2.29). From (2.43a), there exists a κ0 > 0 s.t. ∀0 < κ ≤ κ0, µ∞,κ ≤ µ∞,0

2 < 0.
This, together with the rough upper bound in the second inequality of (2.11), lead to:

∀0 < κ ≤ κ0, elβµ∞,κG(d)
∞,κ(x,y; lβ) ≤ elβ

µ∞,0
2 G

(d)
∞,0(x,y; lβ) ≤ elβ

µ∞,0
2 (2πlβ)

− d
2 ,

uniformly in (x,y) ∈ R2d. From the above inequality, (2.48a) follows by standard arguments. We
continue with the case of ν = νc(β) if d = 2. The strategy is to find a lower bound of the sum
in (2.29) whose the limit κ ↓ 0 diverges. Let us note that µ∞,κ ≥ 0 for κ > 0 small enough, see
(2.43b). Then, from (2.9)-(2.10), one has ∀l ∈ N∗, ∀(x,y) ∈ R4 and for κ > 0 sufficiently small:

elβµ∞,κG(d=2)
∞,κ (x,y; lβ) ≥ κ

2π sinh(κlβ)
e−

κ
4 |x+y|2e−

1
4 (κ+

2
β )|x−y|2, (4.1)

where we used the upper bounds in (A.8)-(A.9). Then, under the conditions of (4.1), one has:

ρ∞,κ(x,y;β, ν) ≥ − 1

2πβ
e−

κ
4 |x+y|2e−

1
4 (κ+

2
β )|x−y|2 ln

(
tanh

(
βκ

2

))
, (4.2)

and the above lower bound diverges in the limit κ ↓ 0. To get (4.2), we used an integral comparison
to minorize the sum, and then we performed explicitly the integral. Let us turn to the case of
ν > νc(β) if d = 2, 3. If d = 2, it is enough to use a similar reasoning than the one leading to
(4.2). If d = 3, from (2.9)-(2.10), one has ∀l ∈ N∗, ∀(x,y) ∈ R6 and for κ > 0 sufficiently small:

elβµ∞,κG(d=3)
∞,κ (x,y; lβ) ≥ π− 3

2κ
3
2 elβ(µ∞,κ−E(0)

∞,κ)e−
κ
4 |x+y|2e−

1
4 (κ+

2
β )|x−y|2,

where we used the upper bounds in (A.7)-(A.9). Since µ∞,κ < E
(0)
∞,κ, under the same conditions:

ρ∞,κ(x,y;β, ν) ≥
1

π
3
2β

e−
κ
4 |x+y|2e−

1
4 (κ+

2
β )|x−y|2κ

3
2
e−β(E(0)

∞,κ−µ∞,κ)

E
(0)
∞,κ − µ∞,κ

, (4.3)
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where we used again an integral comparison, and then we performed explicitly the integral. From
the asymptotic in (2.43c), the lower bound in (4.3) diverges in the limit κ ↓ 0.

Part (B). Let β, ν > 0 be fixed. We start with the case of ν < νc(β) if d = 1, 2, 3. From (2.31)
together with (2.29), then (2.48a) leads to limκ↓0 r∞,κ(x,y;β, ν) = 0 uniformly on R2d. Let us
turn to the case of ν ≥ νc(β) if d = 2, 3. The key-idea consists in decomposing ∀0 < κ < 1 the
quantity defined by (2.31) (knowing (2.29)) into two contributions:

r∞,κ(x,y;β, ν) = κ
d
2

Nκ,σ∑

l=1

elβµ∞,κG(d)
∞,κ(x,y; lβ) + κ

d
2

∞∑

l=Nκ,σ+1

elβµ∞,κG(d)
∞,κ(x,y; lβ), (4.4)

where Nκ,σ := ⌊κ−σ⌋ with 0 < σ < d for the moment (a limitation will appear when ν = νc(β)).
Here, ⌊· ⌋ denotes the floor function. Below, we prove that the contribution in (2.49) when ν >
νc(β) only arises from the second quantity in the r.h.s. of (4.4). Let us investigate the first term
in the r.h.s. of (4.4). From (2.12) followed by the lower bound in (A.10), one has ∀(x,y) ∈ R2d:

elβµ∞,κG(d=2)
∞,κ (x,y; lβ) ≤ κ

π
elβ(µ∞,κ−E(0)

∞,κ) +
elβ(µ∞,κ−E(0)

∞,κ)

2πlβ
, (4.5)

elβµ∞,κG(d=3)
∞,κ (x,y; lβ) ≤ κ

3
2

π
3
2

elβ(µ∞,κ−E(0)
∞,κ) ×





1 +

(
1

lβκ
+

1

(2lβκ)2

)
, (4.6a)

1 +

(
3√
2lβκ

+
3

2lβκ
+

1

(2lβκ)
3
2

)
. (4.6b)

In (4.6a) and (4.6b) we used that ∀x > 0 (1+ 1
x )

3
2 ≤ (1+ 1

x )
2 and (1+ 1

x)
3
2 ≤ (1+ 1√

x
)3 respectively.

Since µ∞,κ − E
(0)
∞,κ < 0, one has for κ < 1 sufficiently small the following upper bounds:

κ
d
2−m

Nκ,σ∑

l=1

e−lβ(E(0)
∞,κ−µ∞,κ)

lm
≤ e−β(E(0)

∞,κ−µ∞,κ) ×






2κ
d
2−m−σ(1−m), if m ∈ {0, 12},

κ
d
2−1 ln

( e

κσ

)
, if m = 1,

3κ
d
2−m, if m ∈ { 3

2 , 2}.
(4.7)

By the squeeze theorem, when ν ≥ νc(β) if d = 2, 3 one has uniformly in (x,y) ∈ R2d:

∀0 < σ < d, lim
κ↓0

κ
d
2

Nκ,σ∑

l=1

elβµ∞,κG(d)
∞,κ(x,y; lβ) = 0. (4.8)

Subsequently, let us turn to the second term in the r.h.s. of (4.4). Since µ∞,κ − E
(0)
∞,κ < 0, then

one has ∀d ∈ {2, 3}, ∀0 < σ < d, ∀(x,y) ∈ R
2d and for κ < 1 sufficiently small:

κ
d
2

∞∑

l=Nκ,σ+1

elβµ∞,κG(d)
∞,κ(x,y; lβ) ≥

κd

π
d
2

e−
κ
4 |x+y|2e−

κ
4 |x−y|2 coth(β

2 κ1−σ) e
−Nκ,σβ(E(0)

∞,κ−µ∞,κ)

e
β
(
E

(0)
∞,κ−µ∞,κ

)

− 1

.

(4.9)
Here, we used the upper bounds in (A.7)-(A.8) together with a formula to express the remainder
of the geometric series. Now, we distinguish the case of ν > νc(β) from the case of ν = νc(β).
When ν > νc(β), we get from the asymptotic in (2.43c) the existence of a Kβ > 0 s.t.

∀0 < κ ≤ Kβ, 3κd ≥ 2β (ν − νc(β))
(
E(0)

∞,κ − µ∞,κ

)
≥ κd > 0. (4.10)

By the upper bound in (4.10), one has ∀0 < σ < d, ∀(x,y) ∈ R2d and ∀0 < κ < min{1,Kβ}:

κ
d
2

∞∑

l=Nκ,σ+1

elβµ∞,κG(d)
∞,κ(x,y; lβ) ≥

ν∞,κ(β, ν;0)

π
d
2

e−
κ
4 |x+y|2e−

κ
4 |x−y|2 coth(β

2 κ1−σ)e−
3κd−σ

2(ν−νc(β)) .

(4.11)
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Next, let us find an upper bound for the l.h.s. of (4.11). If d = 2, from the upper bound in (4.5)
then ∀0 < σ < 2, ∀(x,y) ∈ R4 and for κ < min{1,Kβ} sufficiently small:

κ

∞∑

l=Nκ,σ+1

elβµ∞,κG(d=2)
∞,κ (x,y; lβ) ≤ κ2

π

∞∑

l=1

e−lβ(E(0)
∞,κ−µ∞,κ) +

κ

2πβ
Γ0

(
βNκ,σ

(
E(0)

∞,κ − µ∞,κ

))

≤ ν∞,κ(β, ν;0)

π
+

κ

2πβ
Γ0

(
κ2 (κ−σ − 1)

2 (ν − νc(β))

)
, (4.12)

where Γ0(· ) denotes the incomplete Gamma function (below γ stands for the Euler constant):

∀x > 0, Γ0(x) :=

∫ ∞

x

dt
e−t

t
= −γ − ln(x) −

∞∑

k=1

(−1)k
xk

k(k!)
. (4.13)

If d = 3, from the upper bound in (4.6a), ∀σ ∈ (0, 3), ∀(x,y) ∈ R6 and for κ < 1 small enough:

κ
3
2

∞∑

l=Nκ,σ+1

elβµ∞,κG(d=3)
∞,κ (x,y; lβ)

≤ ν∞,κ(β, ν;0)

π
3
2

+
κ2

βπ
3
2

Γ0

(
βNκ,σ

(
E(0)

∞,κ − µ∞,κ

))
+

1

(2β)2π
3
2

κ

Nκ,σ
, (4.14)

where we used some integral comparisons. Since the r.h.s. of (4.11) and (4.12)-(4.14) converge
∀0 < σ < d and uniformly in (x,y) ∈ R2d to the same value when κ ↓ 0, then limκ↓0 r∞,κ(x,y;β, ν)
exists by the squeeze theorem and equals (2.49). We emphasize that the result strongly relies on
the asymptotic form of the chemical potential in (2.43c). When ν = νc(β), we use a similar
method but the upper bounds in (4.12) and (4.14) have to be replaced with some independent of

the difference E
(0)
∞,κ − µ∞,κ. Indeed, the asymptotic in (2.43b) does not allow us to conclude from

the bounds in (4.12) and (4.14) because of the presence of the ln in (4.13). In the case of d = 2,
from (4.9) and (4.5), then one has ∀0 < σ < 2, ∀(x,y) ∈ R

4 and for κ < 1 sufficiently small:

ν∞,κ(β, ν;0)

π
e−

κ
4 |x+y|2e−

κ
4 |x−y|2 coth(β

2 κ1−σ)e−
β
2 κ1−σ

≤ κ

∞∑

l=Nκ,σ+1

elβµ∞,κG(d=2)
∞,κ (x,y; lβ) ≤ ν∞,κ(β, ν;0)

π

(
1 +

1

2β

1

κNκ,σ

)
. (4.15)

To derive the upper bound, we minorized the l in the denominator of the second term in the
r.h.s. of (4.5) before extending the sum up to l = 1. In order to apply the squeeze theorem
(remind that limκ↓0 ν∞,κ(β, νc(β);0) = 0, see (2.42b)), the limiting condition d > σ > 1 is re-
quired. From (4.6) and by using similar arguments, if d = 3 the same limitation is required as well.

Part (C). Let β, ν > 0 be fixed. We start with (2.50). From (2.6)-(2.4) with (2.35)-(2.42):

lim
κ↓0

ν∞,κ(β, ν;0)Ψ
(0)
∞,1(x

√
κ)Ψ

(0)
∞,1(y

√
κ) = lim

κ↓0
ν∞,κ(β, ν;0)

e−
κ
2 (|x|

2+|y|2)

π
d
2

=
ν∞,0(β, ν;0)

π
d
2

.

From (2.49), the r.h.s. is nothing but r∞,0(x,y;β, ν) which is independent of x,y ∈ R2d.
We continue with (2.51). Let us mention that the reduced density matrix can be rewritten as:

∀(x,y) ∈ R
2d, ρ∞,κ(x,y;β, ν) =

Ψ
(0)
∞,κ(x)Ψ

(0)
∞,κ(y)

e
β
(
E

(0)
∞,κ−µ∞,κ

)

− 1

+
∑

s∈(N∗)d

Ψ
(s)
∞,κ(x)Ψ

(s)
∞,κ(y)

e
β
(
E

(s)
∞,κ−µ∞,κ

)

− 1

. (4.16)

When ν < νc(β) if d = 1, 2, 3, the first quantity in the r.h.s. of (4.16) vanishes in the limit κ ↓ 0.
Then (2.51a) follows from (2.48a). We turn to the cases of ν ≥ νc(β) if d = 2, ν > νc(β) if d = 3.
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Similarly to (4.4), we decompose ∀0 < κ < 1 the reduced density matrix into two contributions:

ρ∞,κ(x,y;β, ν) =

Nκ,σ∑

l=1

elβµ∞,κG(d)
∞,κ(x,y; lβ) +

∞∑

l=Nκ,σ+1

elβµ∞,κG(d)
∞,κ(x,y; lβ), (4.17)

where Nκ,σ = ⌊κ−σ⌋ with 0 < σ < d for the moment. When ν ≥ νc(β) if d = 2, the strategy
consists in finding a lower bound for the l.h.s. of (2.51) involving the first term in the r.h.s. of
(4.17). ∀(x,y) ∈ R4, ∀0 < σ < 2 and for κ < 1 sufficiently small, one has from (2.28)-(2.29):

Nκ,σ∑

l=1

elβµ∞,κG(d=2)
∞,κ (x,y; lβ) =

Nκ,σ∑

l=1

∑

s∈N2

elβ(µ∞,κ−E(s)
∞,κ)Ψ(s)

∞,κ(x)Ψ
(s)
∞,κ(y)

≤ κ

π

1− e−βNκ,σ(E(0)
∞,κ−µ∞,κ)

e
β
(
E

(0)
∞,κ−µ∞,κ

)

− 1

e−
κ
2 (|x|

2+|y|2) +
∑

s∈(N∗)2

Ψ
(s)
∞,κ(x)Ψ

(s)
∞,κ(y)

e
β
(
E

(s)
∞,κ−µ∞,κ

)

− 1

, (4.18)

where we separated the case s = 0 from the sum over s before extending to ∞ the sum over l in
the second term of (4.18). Under the same conditions, and since µ∞,κ ≥ 0 for κ < 1 small enough:

∑

s 6=0

Ψ
(s)
∞,κ(x)Ψ

(s)
∞,κ(y)

e
β
(
E

(s)
∞,κ−µ∞,κ

)

− 1

≥
Nκ,σ∑

l=1

elβµ∞,κG(d=2)
∞,κ (x,y; lβ)− κ

π

1− e−βNκ,σ(E(0)
∞,κ−µ∞,κ)

e
β
(
E

(0)
∞,κ−µ∞,κ

)

− 1

e−
κ
2 (|x|

2+|y|2)

≥ 1

2βπ

(
e−

κ
4 |x+y|2e−

1
4 (κ+

2
β )|x−y|2 ln

(
κ−σ − 1

1 + βκ1−σ

)
− 2βκ1−σe−

κ
2 (|x|

2+|y|2)
)
, (4.19)

and the above lower bound diverges when κ ↓ 0 ∀0 < σ < 1 and ∀(x,y) ∈ R4. In the l.h.s. of
the second inequality, we majorized the second term by the lower and upper bound in (A.11) and
(A.10) respectively, then we minorized the sum by an integral (as we did in (4.2) from (4.1)) and
used (A.9). Next, we treat the case of ν > νc(β) if d = 3. The strategy consists in showing that
the l.h.s. of (2.51) equals the limit κ ↓ 0 of the first term in the r.h.s. of (4.17) for some suitable
σ. ∀(x,y) ∈ R6, ∀0 < σ < 3 and ∀0 < κ < min{1,Kβ} (see (4.10)), one has:

∞∑

l=Nκ,σ+1

elβµ∞,κG(d=3)
∞,κ (x,y; lβ)− Ψ

(0)
∞,κ(x)Ψ

(0)
∞,κ(y)

e
β
(
E

(0)
∞,κ−µ∞,κ

)

− 1

≥ κ
3
2

e
β
(
E

(0)
∞,κ−µ∞,κ

)

− 1

e−
κ
2 (|x|

2+|y|2)

π
3
2

(
e−

κ
4 [coth(

β
2 κ1−σ)−1]|x−y|2e−βNκ,σ(E(0)

∞,κ−µ∞,κ) − 1
)

≥ −1

2

ν∞,κ(β, ν;0)

κ
3
2

e−
κ
2 (|x|

2+|y|2)

π
3
2

(
κ

e−βκ1−σ

1− e−βκ1−σ |x− y|2 + 3
κ3−σ

(ν − νc(β))

)
,

(4.20)

and the above lower bound vanishes when κ ↓ 0 ∀1 < σ < 3
2 and ∀(x,y) ∈ R6. To get the r.h.s.

of the second inequality from the l.h.s., we used the lower bound in (A.11). Here, the exponential
decay in κ1−σ arises from the difference coth(β2κ

1−σ)− 1. Under the same conditions than (4.20):

∞∑

l=Nκ,σ+1

elβµ∞,κG(d=3)
∞,κ (x,y; lβ) − Ψ

(0)
∞,κ(x)Ψ

(0)
∞,κ(y)

e
β
(
E

(0)
∞,κ−µ∞,κ

)

− 1

≤ κ
3
2

eβ(E
(0)
∞,κ−µ∞,κ) − 1

e−
κ
2 (|x|

2+|y|2)

π
3
2

×
(
e

κ
4 (1−tanh(κ

2 βκ
1−σ))|x+y|2 − 1

)
+
κ

3
2

π
3
2

∞∑

l=Nκ,σ+1

(
1

κlβ
+

1

(2lβκ)2

)
e−lβ(E(0)

∞,κ−µ∞,κ), (4.21)

where we used (4.6a). Afterwards, by using the upper bound in (A.11) and the argument which
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lead to the estimate in (4.14), then under the conditions of (4.20), the r.h.s. of (4.21) is less than:

ν∞,κ(β, ν;0)

κ
3
2

e−
κ
2 (|x|

2+|y|2)

π
3
2

κ

2

e−βκ1−σ

1 + e−βκ1−σ |x+ y|2eκ
2 e

−βκ1−σ |x+y|2+

+

√
κ

βπ
3
2

Γ0

(
κ3 (κ−σ − 1)

2 (ν − νc(β))

)
+

1

(2β)2π
3
2

κσ−
1
2

1− κσ
. (4.22)

Here, the exponential decay in κ1−σ arises from the difference 1− tanh(β2κ
1−σ)− 1. Since (4.22)

vanishes when κ ↓ 0 ∀σ ∈ (1, 3) and ∀(x,y) ∈ R6, we conclude from (4.20) by the squeeze theorem:

∀1 < σ <
3

2
, lim

κ↓0




∞∑

l=Nκ,σ+1

elβµ∞,κG(d=3)
∞,κ (x,y; lβ) − Ψ

(0)
∞,κ(x)Ψ

(0)
∞,κ(y)

e
β
(
E

(0)
∞,κ−µ∞,κ

)

− 1


 = 0. (4.23)

In view of (4.16), (4.17) and the foregoing, to prove (2.51c) it remains to show that:

∀1 < σ <
3

2
, ∀(x,y) ∈ R

6, lim
κ↓0

Nκ,σ∑

l=1

elβµ∞,κG(d=3)
∞,κ (x,y; lβ) =

∞∑

l=1

1

(2πlβ)
3
2

e−
|x−y|2

2lβ . (4.24)

On the one hand, ∀(x,y) ∈ R6, ∀0 < σ < 3 and ∀0 < κ < min{1,Kβ} (see (4.10)), one has:

Nκ,σ∑

l=1

elβµ∞,κG(d=3)
∞,κ (x,y; lβ) ≥ e−

κ
4 |x+y|2e−

κ
4 |x−y|2e−

3
2

κ3−σ

ν−νc(β)

Nκ,σ∑

l=1

e−
|x−y|2

2βl

(2πβl)
3
2

, (4.25)

where we used the upper bounds in (A.10) and the ones in (A.8)-(A.9). On the other hand, from
(4.6b) together with (4.7), one has under the same conditions than (4.25):

Nκ,σ∑

l=1

elβµ∞,κG(d=3)
∞,κ (x,y; lβ) ≤

Nκ,σ∑

l=1

e−
|x−y|2

2βl

(2πlβ)
3
2

+2
e−

κ3

2(ν−νc(β))

π
3
2

(
κ

3
2−σ +

3√
2β
κ1−

σ
2 +

3

4β

√
κ ln

( e

κσ

))
.

From (4.25) along with the above upper bound, (4.24) follows from the squeeze theorem. �

4.2 Proof of Theorem 2.20.

Part (A). Let β, ν > 0 be fixed.

• Case of ν < νc(β) if d = 1, 2, 3 - Proof of (2.52)-(2.53).

At first, let us note that from (2.43a) and (2.9)-(2.10), one has ∀l ∈ N∗ and ∀x ∈ Rd:

lim
κ↓0

elβµ∞,κG(d)
∞,κ

(
xκ−δ,xκ−δ; lβ

)
=

elβµ∞,0

(2πlβ)
d
2

×
{

1, if 1 > δ ≥ 0,

e−
1
2 lβ|x|

2

, if δ = 1.
(4.26)

Here, we used the following:

∀l ∈ N
∗, lim

κ↓0

(
κ

2π sinh(κlβ)

) d
2

=
1

(2πlβ)
d
2

, lim
κ↓0

κ1−2δ tanh
(κ
2
lβ
)
=

{
0, if 1− 2δ > −1,
lβ
2 , if 1− 2δ = −1.

Subsequently, from (2.43a) again, there exists a κ0 > 0 s.t. ∀0 < κ ≤ κ0, µ∞,κ ≤ µ∞,0

2 < 0. By

using the rough upper bound in (2.11), then one has ∀0 ≤ δ ≤ 1 and uniformly on Rd:

∀0 < κ ≤ κ0, elβµ∞,κG(d)
∞,κ

(
xκ−δ,xκ−δ; lβ

)
≤ (2πlβ)−

d
2 elβ

µ∞,0
2 .

By standard arguments, it follows:

lim
κ↓0

∞∑

l=1

elβµ∞,κG(d)
∞,κ

(
xκ−δ,xκ−δ; lβ

)
=

∞∑

l=1

lim
κ↓0

elβµ∞,κG(d)
∞,κ

(
xκ−δ,xκ−δ; lβ

)
,

what proves (2.52) because of (4.26). From (2.31), (2.53) results directly from (2.52).
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• Case of ν ≥ νc(β) if d = 2, 3 - Proof of (2.54)-(2.55).

Let us start with (2.54a)-(2.55a). We look for a lower bound of the sum in (2.29) whose the limit
κ ↓ 0 diverges. If d = 2, from (2.9)-(2.10), then ∀l ∈ N∗, ∀x ∈ R2 and for κ > 0 small enough:

elβµ∞,κG(d=2)
∞,κ

(
xκ−δ,xκ−δ; lβ

)
≥ 1

lβ

κlβ

2π sinh(κlβ)
e−

1
2κ

2−2δ|x|2lβ ≥ 1

2π

1

lβ
e−κlβe−

1
2κ

2−2δ|x|2lβ .

In the l.h.s. of the second inequality, we used (A.9) and µ∞,κ ≥ 0 for κ > 0 small enough, see
(2.43b)-(2.43c). To get the r.h.s., we used the expansion in power series of the sinh which yields:

κlβ

sinh(κlβ)
=

κlβ
∑∞

m=0
(κlβ)2m+1

(2m+1)!

=

( ∞∑

m=0

(κlβ)2m

(2m+ 1)!

)−1

≥ (cosh(κlβ))
−1 ≥ e−κlβ . (4.27)

Then, one gets for κ > 0 sufficiently small and ∀x ∈ R
2:

ρ∞,κ

(
xκ−δ,xκ−δ;β, ν

)
≥ 1

2πβ

∫ ∞

1

dt
e−β(κ+ 1

2κ
2−2δ|x|2)t

t
= Γ0

(
β

(
κ+

1

2
κ2−2δ|x|2

))
,

where Γ0 is the incomplete Gamma function in (4.13). In the limit κ ↓ 0, the above lower bound
diverges ∀0 ≤ δ ≤ 1 if x = 0, ∀0 ≤ δ < 1 otherwise. If d = 3, from (2.9)-(2.10) and by mimicking
the arguments leading to (4.3), then ∀l ∈ N∗, ∀x ∈ R3 and for κ > 0 small enough:

ρ∞,κ

(
xκ−δ,xκ−δ;β, ν

)
≥ 1

(2π)
3
2β

e−κ1−2δ|x|2 κ
3
2

E
(0)
∞,κ − µ∞,κ

e−β(E(0)
∞,κ−µ∞,κ).

By (2.43c), the above lower bound diverges in the limit κ ↓ 0 ∀0 ≤ δ ≤ 1 if x = 0, ∀0 ≤ δ ≤ 1
2

otherwise. Next, let us prove (2.54b) and (2.55b)-(2.55c). To do so, we first give a lower bound
for the quantity ρ∞,κ(xκ

−δ,xκ−δ;β, ν) when δ = 1 if d = 2 and when 1
2 < δ ≤ 1 if d = 3.

If d = 2 and δ = 1, for any x ∈ (R∗)2 and for κ > 0 small enough:

ρ∞,κ

(
xκ−1,xκ−1;β, ν

)
≥ 1

2πβ

∞∑

l=1

e−lβ[(E(0)
∞,κ−µ∞,κ)+ 1

2 |x|
2]

l
=

g1

(
e−β[(E(0)

∞,κ−µ∞,κ)+ 1
2 |x|

2]
)

2πβ
,

(4.28)
where we used (4.27). If d = 3 and 1 ≥ δ > 1

2 , ∀x ∈ (R∗)3 and for κ > 0 small enough:

ρ∞,κ

(
xκ−δ,xκ−δ;β, ν

)
≥

g 3
2

(
e−β[(E(0)

∞,κ−µ∞,κ)+ 1
2 |x|

2κ2−2δ]
)

(2πβ)
3
2

. (4.29)

In the limit κ ↓ 0, the lower bounds in (4.28) and (4.29) converge to (2.54b) and (2.55b)-(2.55c)
respectively following the values of δ. Secondly, we give an upper bound for ρ∞,κ(xκ

−δ,xκ−δ;β, ν)
when δ = 1 if d = 2 and when 1

2 < δ ≤ 1 if d = 3 whose the limit κ ↓ 0 reduced to the announced
results. Under these conditions, introduce ∀0 < κ < 1 and ∀x ∈ (R∗)d the decomposition:

ρ∞,κ

(
xκ−δ,xκ−δ;β, ν

)
=





Nκ,σ∑

l=1

elβµ∞,κ +
∞∑

l=Nκ,σ+1

elβµ∞,κ



G(d)

∞,κ

(
xκ−δ,xκ−δ; lβ

)
, (4.30)

where Nκ,σ := ⌊κ−σ⌋ with 0 < σ < d for the moment. Let us give an upper bound for the second
term in the r.h.s. of (4.30). From (4.5)-(4.6a) and by mimicking the arguments leading to (4.12)
and (4.14), one has ∀d ∈ {2, 3}, ∀x ∈ (R∗)d, ∀0 < σ < d and for κ < 1 sufficiently small:

∞∑

l=Nκ,σ+1

elβµ∞,κG(d)
∞,κ

(
xκ−δ,xκ−δ; lβ

)
≤ e

− 1
2β|x|

2 κ2−2δ−σ

1+βκ1−σ

× 1

βπ
d
2

{
κ

d
2
e−β(E(0)

∞,κ−µ∞,κ)

E
(0)
∞,κ − µ∞,κ

+
κ

d
2−1

23−d
Γ0

(
Nκ,σβ

(
E(0)

∞,κ − µ∞,κ

))
+
d− 2

4β

1√
κNκ,σ

}
, (4.31)
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where we used that ∀l ≥ Nκ,σ + 1, tanh(κβ2 l) ≥ tanh(β2κ
1−σ) followed by the upper bound in

(A.9). From (2.43c), the upper bound in (4.31) vanishes in the limit κ ↓ 0 ∀2 − 2δ < σ < d if
d = 2, 3 and ∀x ∈ (R∗)d. Let us give an upper bound for the first term in the r.h.s. of (4.30).
From (4.5), (4.6b) and (4.7), ∀d ∈ {2, 3}, ∀x ∈ (R∗)d, ∀0 < σ < d and for κ < 1 small enough:

Nκ,σ∑

l=1

elβµ∞,κG(d)
∞,κ

(
xκ−δ,xκ−δ; lβ

)

≤
∞∑

l=1

e−lβ(E(0)
∞,κ−µ∞,κ)

(2πlβ)
d
2

e
− 1

2 lβ|x|
2 κ2−2δ

1+βκ1−σ −
∞∑

l=Nκ,σ+1

e
−lβ

[
(E(0)

∞,κ−µ∞,κ)+
|x|2

2
κ2−2δ

1+βκ1−σ

]

(2πlβ)
d
2

+

+ 2
e−β(E(0)

∞,κ−µ∞,κ)

π
d
2

(
κ

d
2−σ +

3(d− 2)√
2β

κ1−
σ
2 +

3(d− 2)

4β

√
κ ln

( e

κσ

))
. (4.32)

From the asymptotic in (2.43c), the last term in the r.h.s. of (4.32) vanishes in the limit κ ↓ 0
∀0 < σ < d

2 if d = 2, 3. By an integral comparison, one can prove that the second term vanishes
in the limit κ ↓ 0 ∀2− 2δ < σ < d if d = 2, 3 and ∀x ∈ (R∗)d. Finally by standard arguments, one
has ∀0 < σ < 1 if d = 2, ∀0 < σ < d if d = 3 and ∀x ∈ (R∗)d:

lim
κ↓0

∞∑

l=1

e−lβ(E(0)
∞,κ−µ∞,κ)

(2πlβ)
d
2

e
− 1

2 lβ|x|
2 κ2−2δ

1+βκ1−σ =

∞∑

l=1

lim
κ↓0

e−lβ(E(0)
∞,κ−µ∞,κ)

(2πlβ)
d
2

e
− 1

2 lβ|x|
2 κ2−2δ

1+βκ1−σ .

By adding the r.h.s. of (4.31) and (4.32), we got an upper bound for the l.h.s. of (4.30) converging
when δ = 1 to (2.54b)-(2.55c) ∀0 < σ < d

2 if d = 2, 3, when 1
2 < δ < 1 to (2.55b) ∀1 < σ < 3

2 if
d = 3. In view of (4.28)-(4.29), (2.54b) and (2.55b)-(2.55c) follow from the squeeze theorem.

• Case of ν ≥ νc(β) if d = 2, 3 - Proof of (2.56).

Similarly to (4.4), the starting-point is a decomposition of the quantity defined by (2.29) ∀0 ≤
δ ≤ 1, ∀d ∈ {2, 3} and ∀0 < κ < 1 into two contributions:

r∞,κ

(
xκ−δ,xκ−δ;β, ν

)
= κ

d
2





Nκ,σ∑

l=1

elβµ∞,κ +

∞∑

l=Nκ,σ+1

elβµ∞,κ



G(d)

∞,κ

(
xκ−δ,xκ−δ; lβ

)
, (4.33)

where Nκ,σ := ⌊κ−σ⌋ with 0 < σ < d for the moment (a limitation will appear if δ = 1
2 when

ν > νc(β) or when ν = νc(β)). From (4.5)-(4.7), one has ∀0 ≤ δ ≤ 1, ∀d ∈ {2, 3} and ∀x ∈ Rd:

∀0 < σ < d, lim
κ↓0

κ
d
2

Nκ,σ∑

l=1

elβµ∞,κG(d)
∞,κ

(
xκ−δ,xκ−δ; lβ

)
= 0.

Let us investigate the second term in the r.h.s. of (4.33). We distinguish the case of ν > νc(β)
from the case of ν = νc(β). When ν > νc(β), by using the same arguments leading to (4.11) and
(4.12)-(4.14), one has ∀0 ≤ δ ≤ 1, ∀d ∈ {2, 3}, ∀x ∈ (R∗)d, ∀0 < σ < d and ∀0 < κ < min{1,Kβ}:

ν∞,κ(β, ν;0)

π
d
2

e−κ1−2δ|x|2e−
3κd−σ

2(ν−νc(β)) ≤ κ
d
2

∞∑

l=Nκ,σ+1

elβµ∞,κG(d)
∞,κ

(
xκ−δ,xκ−δ; lβ

)

≤ e−κ1−2δ|x|2 tanh(β
2

1
κσ−1 ) ×

{
r.h.s. of (4.12), if d = 2,
r.h.s. of (4.14), if d = 3.

In the limit κ ↓ 0, the above l.h.s. and r.h.s. tend to (2.56a) ∀0 < σ < d if 0 ≤ δ < 1
2 , to (2.56b)

∀1 < σ < d if δ = 1
2 , and to 0 ∀0 < σ < d if 1

2 < δ ≤ 1. When ν > νc(β), (2.56) follows from the
squeeze theorem. The case of ν = νc(β) can be treated by the same arguments than the ones used
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at the end of the proof of Theorem 2.17, see (4.15). The limiting condition d > σ > 1 is required.

Part (B). Let β, ν > 0 be fixed. In view of (2.53)-(2.56), (2.57) follows by direct calculations
from (2.42) along with (2.6)-(2.4). Let us turn to (ii). By setting x = y in (4.16) after dilating
the spatial variables by κ−δ, then from (2.6)-(2.4) the first term of the r.h.s. can be rewritten as:

∀x ∈ R
∗,

∣∣∣ψ(0)
∞,κ

(
xκ−δ

)∣∣∣
2

e
β
(
E

(0)
∞,κ−µ∞,κ

)

− 1

=

√
κ

e
β
(
E

(0)
∞,κ−µ∞,κ

)

− 1

e−x2κ1−2δ

√
π

, (4.34)

∀d ∈ {2, 3}, ∀x ∈ (R∗)d,

∣∣∣Ψ(0)
∞,κ

(
xκ−δ

)∣∣∣
2

e
β
(
E

(0)
∞,κ−µ∞,κ

)

− 1

= ν∞,κ(β, ν;0)
e−|x|2κ1−2δ

(κπ)
d
2

. (4.35)

From (2.43a), the r.h.s. of (4.34) vanishes in the limit κ ↓ 0 ∀0 ≤ δ ≤ 1. This leads to (2.58a).
From (2.42), the r.h.s. of (4.35) vanishes in the limit κ ↓ 0 ∀ 1

2 < δ ≤ 1 and ∀d ∈ {2, 3}. This
proves (2.58d). Let us turn to the case of 0 ≤ δ ≤ 1

2 if d = 2, 3. To do that, it is enough to mimic
the arguments used in the proof of Theorem 2.17. By setting x = y in (4.16)-(4.17) after dilating
the spatial variable by κ−δ, then since 1 − 2δ ≥ 0 ∀0 ≤ δ < 1

2 , the conclusions obtained from
(4.18)-(4.19) and from (4.20)-(4.22) still hold true ∀x ∈ (R∗)2 and ∀x ∈ (R∗)3 respectively. �

4.3 Proof of Lemma 2.9 and Propositions 2.12-2.15.

Proof of Lemma 2.9. Let d ∈ {1, 2, 3}, β > 0 and µ < 0 kept fixed. From (2.26), one has:

lim
κ↓0

∑

s1,...,sd∈Nd

κd

eβ(κ(s1+···+sd)+κ d
2−µ) − 1

=

∫ ∞

0

dτ1 · · ·
∫ ∞

0

dτd
1

eβ(τ1+···+τd−µ) − 1
, (4.36)

where the integrals over τj , j = 1, . . . , d are obtained by taking the limit κ ↓ 0 of the Darboux-
Riemann sum in the l.h.s of (4.36). Therefore, limκ↓0 ν∞,κ(β, µ) exists, and by simple calculations:

ν∞,0(β, µ) =
1

Γ(d)

∫ ∞

0

dτ
τd−1

eβ(τ−µ) − 1
. (4.37)

Afterwards, by expanding (eβ(ǫ−µ) − 1)−1 in power series and by using the Fubini theorem:

ν∞,0(β, µ) =

∞∑

l=1

elβµ
1

Γ(d)

∫ ∞

0

dτ τd−1e−lβτ =

∞∑

l=1

elβµ

(lβ)d
=

gd
(
eβµ
)

βd
.

The proof of (i) is done. (ii) follows from the definition (2.34) together with (2.39). Finally, (iii)
results from the fact that µ 7→ ν∞,0(β, µ) is continuous and strictly increasing on (−∞, 0). �

Proof of Proposition 2.12. Let β, ν > 0 kept fixed. We start with the case of d = 1. From
Definition 2.11 along with (2.40a), then the Bose gas does not manifest an open-trap BEC. Besides,
µ∞,0 = µ∞,0(β, ν) satisfies ν = β−1g1(e

βµ∞,0) from (2.39). Ergo, µ∞,κ = µ∞,κ(β, ν) has to obey
the asymptotic in (2.43a) since similarly to the calculus performed in the proof of Lemma 2.9:

lim
κ↓0

∑

s∈N

ν∞,κ

(
β, µ∞,κ; s

)
= lim

κ↓0

∑

s∈N

κ

eβ(κs−µ∞,0+o(1)) − 1
=

g1
(
eβµ∞,0

)

β
= ν.

Moreover, the definition in (2.27) and the asymptotic in (2.43a) lead to ν∞,0(β, ν; s) = 0 ∀s ∈ N.
Let us turn to the cases of d = 2, 3. When ν < νc(β) and ν = νc(β), the µ∞,κ = µ∞,κ(β, ν) has
to obey the asymptotic in (2.43a) and (2.43b) respectively by the same arguments than the ones
used to treat the case d = 1. Hence, (2.27) and (2.43a)-(2.43b) together lead to ν∞,0(β, ν; s) = 0
∀s ∈ Nd. When ν > νc(β), one has to investigate the open-trap rescaled average number of
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particles on the ground-state to conclude the existence of an open-trap BEC, see Definition 2.11.
For such ν’s, assume that the µ∞,κ = µ∞,κ(β, ν) has the following asymptotic in the limit κ ↓ 0:

µ∞,κ = E(0)
∞,κ − Cκd + o

(
κd
)
, (4.38)

for some constant C > 0. Set µ̃∞,κ := µ∞,κ − E
(0)
∞,κ. We decompose ν∞,κ into two contributions:

∀κ > 0, ν = ν∞,κ

(
β, µ∞,κ

)
= ν∞,κ

(
β, µ∞,κ;0

)
+

∑

s∈(N∗)d

ν∞,κ

(
β, µ∞,κ; s

)
. (4.39)

By mimicking the arguments leading to (4.36)-(4.37), the second term of the r.h.s. of (4.39) obeys:

lim
κ↓0

∑

s∈Nd :
∑

d
j=1 sj>0

κd

eβ(κ
∑

d
j=1 sj−µ̃∞,κ) − 1

=
1

Γ(d)

∫ ∞

0

dτ
τd−1

eβτ − 1
=

gd(1)

βd
= νc(β). (4.40)

This means that the first term in the r.h.s. in (4.39) satisfies, see the definition in (2.35):

ν∞,0 (β, ν;0) := lim
κ↓0

ν∞,κ

(
β, µ∞,κ;0

)
= ν − νc(β) > 0. (4.41)

Finally, from (4.38) one has for s = 0:

ν∞,κ

(
β, µ∞,κ;0

)
=

κd

eβ(Cκd+o(κd)) − 1
=

1

βC
+ o(1) when κ ↓ 0. (4.42)

Gathering (4.42), (4.41) and (4.38) together, the asymptotic in (2.43c) follows. We emphasize that
the asymptotic form in (4.38) is determined by the limits κ ↓ 0 in (4.40)-(4.41). Finally, (2.42b)
follows from the foregoing. Therefore, the Bose gas manifests an open-trap BEC for d = 2, 3. �

Proof of Proposition 2.15. Let β > 0 and ν > 0 be fixed. From the results of Proposition 2.12,
the l.h.s. of (2.45) is identically zero if d = 1, and if d = 2, 3 when ν ≤ νc(β). When ν > νc(β) if
d = 2, 3, the method consists in decomposing the sum in the r.h.s. of (4.39) into two contributions:

∀0 < ε ≤ 1,
∑

s∈Nd : 0<
∑

d
j=1 κsj≤ε

ν∞,κ(β, µ∞,κ; s) +
∑

s∈Nd :
∑

d
j=1 κsj>ε

ν∞,κ(β, µ∞,κ; s), (4.43)

and then in investigating successively the limits κ ↓ 0 and ε ↓ 0. By a direct calculation, one gets:

lim
ε↓0

lim
κ↓0

∑

s∈Nd :
∑

d
j=1 κsj>ε

ν∞,κ(β, µ∞,κ; s) = lim
ε↓0

1

Γ(d)

∫ ∞

ε

dτ
τd−1

eβτ − 1
=

gd(1)

βd
= νc(β).

Since the limit κ ↓ 0 of the first sum in (4.43) exists, then (2.45) follows by Proposition 2.12. �

5 Annexes.

5.1 Annex 1 - An additional result for the two-dimensional case.

We stated in (2.51b) that the open-trap limit of the non-condensate part of the reduced density
matrix diverges when ν ≥ νc(β) if d = 2. We can prove that the divergence is logarithmic in κ−1:

Proposition 5.1. Let d = 2. For any β > 0 and ν ≥ νc(β), one has uniformly in (x,y) ∈ R4:

∑

s∈(N∗)2

Ψ
(s)
∞,κ(x)Ψ

(s)
∞,κ(y)

eβ(E
(s)
∞,κ−µ∞,κ) − 1

∼ 1

λ2β
ln

(
1

~ω0κβ

)
when κ ↓ 0. (5.1)
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Proof. For the sake of simplicity, we set ~ = m = ω0 = 1 in the following. On the one hand, for
κ < 1 small enough, one has the following lower bound:

∀(x,y) ∈ R
4,

∞∑

l=1

elβµ∞,κG(d=2)
∞,κ (x,y; lβ) − Ψ

(0)
∞,κ(x)Ψ

(0)
∞,κ(y)

eβ(E
(0)
∞,κ−µ∞,κ) − 1

≥ κ

π
e−

κ
2 (|x|

2+|y|2)
∞∑

l=1

e−lβ(E(0)
∞,κ−µ∞,κ)

{
−
(
1− e−

κ
4 [coth(

β
2 κl)−1]|x−y|2

1− e−2κlβ

)
+

e−2κlβ

1− e−2κlβ

}
, (5.2)

and from the arguments leading to (4.20), the r.h.s. of (5.2) is greater than:

− κ

π
e−

κ
2 (|x|

2+|y|2)
∞∑

l=1

e−lβ(E(0)
∞,κ−µ∞,κ)

(κ
2
e−κβl|x− y|2

)(
1 +

1

2κlβ

)(
1 +

1

κlβ

)
+

+
1

2πβ
e−

κ
2 (|x|

2+|y|2)
∞∑

l=1

e−lβ(E(0)
∞,κ−µ∞,κ) e

−2κlβ

l
.

Here, we used the upper and lower bounds in (A.10) to majorize the first term inside the braces
in the r.h.s. of (5.2). By using some integral comparison, the above quantity is bigger than:

− ν∞,κ(β, ν;0)

2π
|x− y|2 − 3κ

4βπ
|x− y|2

(
e−βκ +

∫ ∞

1

dt
e−κβt

t

)
+

− 1

4β2π
|x− y|2

(
e−βκ +

∫ ∞

1

dt
1

t2

)
+

1

2πβ
e−

κ
2 (|x|2+|y|2)

∫ ∞

1

dt
e−3κβt

t
. (5.3)

(5.3) is made independent of E
(0)
∞,κ − µ∞,κ by using that e−lβ(E(0)

∞,κ−µ∞,κ) ≤ 1 in the second/third

term, and elβµ∞,κ ≥ 1 in the fourth term. On the other hand, for κ < 1 one has the upper bound:

∀(x,y) ∈ R
4,

∞∑

l=1

elβµ∞,κG(d=2)
∞,κ (x,y; lβ) − Ψ

(0)
∞,κ(x)Ψ

(0)
∞,κ(y)

eβ(E
(0)
∞,κ−µ∞,κ) − 1

≤ κ

π
e−

κ
2 (|x|

2+|y|2)
∞∑

l=1

e−lβ(E(0)
∞,κ−µ∞,κ)

(
e

κ
4 [1−tanh( β

2 κl)]|x+y|2 − 1

1− e−2κlβ
+

e−2κlβ

1− e−2κlβ

)
. (5.4)

From the arguments leading to (4.21) along with the above method, the r.h.s. of (5.4) is less than:

κ

π

∞∑

l=1

e−lβ(E(0)
∞,κ−µ∞,κ)

(
κ

2

e−κβl

1 + e−κβl
|x+ y|2e

κ
2

e−κβl

1+e−κβl |x+y|2
+ e−2κβl

)(
1 +

1

2κβl

)

≤ ν∞,κ(β, ν;0)

2π
|x+ y|2eκ

2 |x+y|2 +
κ

4πβ
|x+ y|2eκ

2 |x+y|2
∫ ∞

0

dt e−κβt+

+
κ

π

∫ ∞

0

dt e−2κβt +
1

2πβ
e−2κβ +

1

2πβ

∫ ∞

1

dt
e−2κβt

t
. (5.5)

The equivalent in (5.1) arises from the last term of the r.h.s. of (5.5) and (5.3) via (4.13). �

5.2 Annex 2 - Sketch of the proof of Corollaries 3.3 and 3.6.

In this section, we set ~ = m = ω0 = 1 for the sake of simplicity.

Sketch of the proof of Corollary 3.3.
Part (A). The proof of (3.13a) is similar to the proof of (2.48a). We turn to (3.13b). In view

33



of (3.5), then from (2.9), one has ∀l ∈ N∗, ∀(x,y) ∈ R6 and for κ > 0 sufficiently small:

elβµ∞,κG(1)
∞,κ1

(x1, y1; lβ)G
(2)
∞,κ⊥

(x⊥,y⊥; lβ) ≥ π− 3
2
√
κ1κ⊥e

−κ1
4 (x1+y1)

2

e−
1
4 (x1−y1)

2(κ1+
2
β )

× e−
κ⊥
4 |x⊥+y⊥|2e−

1
4 |x⊥−y⊥|2(κ⊥+ 2

β ) ×





e−lβ(E(0)
∞,κ−µ∞,κ)

√
2κ1lβ

, when νc(β) < ν ≤ νm(β),

e−lβ(E(0)
∞,κ−µ∞,κ), when ν > νm(β),

(5.6)

where we used that (1 − e−2κ1lβ)
1
2 ≤ √

2κ1lβ if νc(β) < ν ≤ νm(β) (≤ 1 otherwise). From (3.5),
it remains to use an integral comparison as in (4.3) and the asymptotics in Proposition 3.1 (iii).

Part (B). When ν < νc(β), the result is obvious. When ν > νc(β), the key-idea consists, as in
the proof of (2.49), in decomposing ∀0 < κ < 1 the sum involved in (3.5) into two contributions:

r∞,κ(x,y;β, ν) = |κ| 32






Nκ,σ∑

l=1

+

∞∑

l=Nκ,σ+1




 elβµ∞,κG(1)
∞,κ1

(x1, y1; lβ)G
(2)
∞,κ⊥

(x⊥,y⊥; lβ), (5.7)

where Nκ,σ := ⌊κ−σ⌋ with σ > 0. For the following, one has the upper bounds:

∀(x,y) ∈ R
6, elβµ∞,κG(1)

∞,κ1
(x1, y1; lβ)G

(2)
∞,κ⊥

(x⊥,y⊥; lβ)

≤ |κ| 32
π

3
2

e−lβ(E(0)
∞,κ−µ∞,κ) ×






(
1 +

1√
2κ1lβ

+
1

2κ⊥lβ
+

1

(2|κ|lβ) 3
2

)
, (5.8a)

(
1 +

1

4κ1lβ
+

1

2κ⊥lβ
+

1

8κ1κ⊥(lβ)2

)
, (5.8b)

where we used that ∀x > 0 1√
1−e−x

≤ (1 + 1√
x
) and 1√

1−e−x
≤ (1 + 1

2x ) respectively. From (5.8a):

∀σ > 0, lim
κ↓0

|κ| 32
Nκ,σ∑

l=1

elβµ∞,κG(1)
∞,κ1

(x1, y1; lβ)G
(2)
∞,κ⊥

(x⊥,y⊥; lβ) = 0,

where we mimicked the arguments leading to (4.8). Let us turn to the second sum in the r.h.s. of
(5.7). By mimicking the arguments leading to (4.11), one has on R6 for κ < 1 sufficiently small:

|κ| 32
∞∑

l=Nκ,σ+1

elβµ∞,κG(1)
∞,κ1

(x1, y1; lβ)G
(2)
∞,κ⊥

(x⊥,y⊥; lβ) ≥
ν∞,κ(β, ν;0)

π
3
2

e−
κ1
4 (x1+y1)

2

× e−
κ⊥
4 |x⊥+y⊥|2e−

κ1
4 (x1−y1)

2 coth(β
2 κ1Nκ,σ)e−

κ⊥
4 |x⊥−y⊥|2 coth(β

2 κ⊥Nκ,σ)e−Nκ,σβ(E(0)
∞,κ−µ∞,κ). (5.9)

From (5.8) along with the arguments leading to (4.14), one has on R6 for κ < 1 small enough:

|κ| 32
∞∑

l=Nκ,σ+1

elβµ∞,κG(1)
∞,κ1

(x1, y1; lβ)G
(2)
∞,κ⊥

(x⊥,y⊥; lβ) ≤
ν∞,κ(β, ν;0)

π
3
2

+

√
κ1κ

2
⊥√

2π
3
2

√
β

∫ ∞

Nκ,σ

dt
e−β(E(0)

∞,κ−µ∞,κ)
√
t

+
κ1κ⊥

2π
3
2β

∫ ∞

Nκ,σ

dt
e−β(E(0)

∞,κ−µ∞,κ)

t
+

√
κ1κ⊥

(2πβ)
3
2

∫ ∞

Nκ,σ

dt
1

t
3
2

.

Here, we used the upper bound in (5.8a). Under the same conditions, the above r.h.s. is less than:

ν∞,κ(β, ν;0)

π
3
2

+

√
κ1κ

2
⊥√

2πβ

1√
E

(0)
∞,κ − µ∞,κ

+
κ1κ⊥

2π
3
2β

Γ0

(
Nκ,σβ

(
E(0)

∞,κ − µ∞,κ

))
+

√
κ1κ⊥√
2(πβ)

3
2

1√
Nκ,σ

.

(5.10)
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In view of Proposition 3.1 (iii), the lower bound in (5.9) and the upper bound in (5.10) converge
∀σ > 0 and uniformly in (x,y) ∈ R6 to the same value when κ ↓ 0. The squeeze theorem leads to
(3.14) when ν > νc(β). Turning to the case of ν = νc(β), one has to use the decomposition:

r∞,κ(x,y;β, ν) = |κ| 32





Mκ,σ∑

l=1

+

∞∑

l=Mκ,σ+1




 elβµ∞,κG(1)
∞,κ1

(x1, y1; lβ)G
(2)
∞,κ⊥

(x⊥,y⊥; lβ), (5.11)

where Mκ,σ = Mκ,σ,κc
:= ⌊κ−σe

κ2
c

κ2 ⌋, with σ > 0 for the moment. Firstly, the open-trap limit of
the first sum in the r.h.s. of (5.11) vanishes ∀0 < σ < 3. Subsequently, one has the inequality:

ν∞,κ(β, ν;0)

π
3
2

e−
κ1
4 (x1+y1)

2

e−
κ⊥
4 |x⊥+y⊥|2e−

κ1
4 (x1−y1)

2 coth(β
2 κ1Mκ,σ)e−

κ⊥
4 |x⊥−y⊥|2 coth(β

2 κ⊥Mκ,σ)

× e−βMκ,σ[κ1+2κ⊥] ≤ |κ| 32
∞∑

l=Mκ,σ+1

elβµ∞,κG(1)
∞,κ1

(x1, y1; lβ)G
(2)
∞,κ⊥

(x⊥,y⊥; lβ)

≤ ν∞,κ(β, ν;0)

π
3
2

(
1 +

1
√
2βπ

3
2

1√
κ1Mκ,σ

+
1

2π
3
2β

1

κ⊥Mκ,σ

)
+

√
κ1κ⊥

(2πβ)
3
2

∫ ∞

Mκ,σ

dt
1

t
3
2

. (5.12)

The r.h.s. of (5.12) converges to π− 3
2 (νc(β) − ν) = 0 ∀σ > 1. Therefore, (3.14) when ν = νc(β)

follows from the foregoing provided that 1 < σ < 3 in (5.11).
Part (C). The proof of (3.16a) is similar to the proof of (2.51a). We turn to the proof of

(3.16b). The strategy consists in decomposing ∀0 < κ < 1 the non condensate part of the reduced
density matrix into 3 contributions:

∑

s∈(N∗)3

Ψ
(s)
∞,κ(x)Ψ

(s)
∞,κ(y)

e
β
(
E

(s)
∞,κ−µ∞,κ

)

− 1

=






Nκ,σ∑

l=1

+

Mκ∑

l=1+Nκ,σ

+

∞∑

l=1+Mκ






×
(
elβµ∞,κG(1)

∞,κ1
(x1, y1; lβ)G

(2)
∞,κ⊥

(x⊥,y⊥; lβ)− elβ(µ∞,κ−E(0)
∞,κ)Ψ(0)

∞,κ(x)Ψ
(0)
∞,κ(y)

)
,

where Nκ,σ := ⌊κ−σ⌋ with σ > 0 and Mκ := ⌊e
κ2
c

κ2 ⌋. From Proposition 3.1 and by using accurate
estimates as we did in the proof of Part (B), one can prove that for any ν > νc(β):

lim
κ↓0

bκ∑

l=aκ

(
elβµ∞,κG(1)

∞,κ1
(x1, y1; lβ)G

(2)
∞,κ⊥

(x⊥,y⊥; lβ)− elβ(µ∞,κ−E(0)
∞,κ)Ψ(0)

∞,κ(x)Ψ
(0)
∞,κ(y)

)

=






0, when aκ = 1 +Mκ, bκ = ∞,
∞∑

l=1

1

(2πlβ)
3
2

e−
|x−y|2

2lβ , when aκ = 1, bκ = Nκ,σ,
,

Mκ∑

l=Nκ,σ+1

(
elβµ∞,κG(1)

∞,κ1
(x1, y1; lβ)G

(2)
∞,κ⊥

(x⊥,y⊥; lβ)− elβ(µ∞,κ−E(0)
∞,κ)Ψ(0)

∞,κ(x)Ψ
(0)
∞,κ(y)

)

∼ κ⊥√
2π2β

×
{

eβ
ν−νc(β)

2κ2 , when νc(β) < ν ≤ νm(β),

e
κ2
c

2κ2 , when ν > νm(β),
when κ ↓ 0.

Sketch of the proof of Corollary 3.6.
Part (A). The proof of (3.22a) is similar to the proof of (2.48a). The proof of (3.22b) follows

from the lower bound in (5.6) in the case of ν > νm(β) along with the asymptotic in (3.21b).
Part (B). When ν < νc(β) the proof is obvious. When ν > νc(β), it is enough to use the

decomposition in (5.7). The lower bound in (5.9) and the upper bound in (5.10) still hold true,
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and from the asymptotic in (3.21b), then (3.23) follows by the squeeze theorem. When ν = νc(β),

one has to use the decomposition as in (5.11) but with M̃κ,σ = M̃κ,σ,κc
:= ⌊κ−σe

√
κc
κ ⌋, σ > 1.

Part (C). The proof of (3.25a) is similar to the proof of (2.51a). We turn to the proof of
(3.25b). The strategy consists in decomposing ∀0 < κ < 1 the reduced density matrix into 3
contributions:

ρ∞,κ(x,y;β, ν) =





Nκ,σ1∑

l=1

+

M̃κ,σ2,χ∑

l=1+Nκ,σ1

+

∞∑

l=1+M̃κ,σ2,χ



 elβµ∞,κG(1)

∞,κ1
(x1, y1; lβ)G

(2)
∞,κ⊥

(x⊥,y⊥; lβ),

(5.13)

where Nκ,σ1 = ⌊κ−σ1⌋ with σ1 > 0 and M̃κ,σ2,χ = M̃κ,σ2,χ,κc
:= ⌊κ−σ2eχ

√
κc
κ ⌋ with σ2 ≥ 0, χ > 0

for the moment. By mimicking the arguments leading to (4.23), ∀σ2 ≥ 0 and for χ = 2 on R6:

lim
κ↓0




∞∑

l=1+M̃κ,σ2,2

elβµ∞,κG(1)
∞,κ1

(x1, y1; lβ)G
(2)
∞,κ⊥

(x⊥,y⊥; lβ)−
Ψ

(0)
∞,κ(x)Ψ

(0)
∞,κ(y)

eβ(E
(0)
∞,κ−µ∞,κ) − 1



 = 0. (5.14)

To derive (5.14), the upper bound in (5.8b) turns out to be more convenient. Next, by a similar
method than the one leading to (4.24), one has ∀σ1, ∀σ2 ≥ 0 and ∀0 < χ < 2 on R6:

lim
κ↓0

Nκ,σ1∑

l=1

elβµ∞,κG(1)
∞,κ1

(x1, y1; lβ)G
(2)
∞,κ⊥

(x⊥,y⊥; lβ) =
∞∑

l=1

1

(2πlβ)
3
2

e−
|x−y|2

2βl , (5.15)

lim
κ↓0





M̃κ,σ2,χ∑

l=1+Nκ,σ1

+

M̃κ,σ2,2∑

1+M̃κ,σ2,χ



 elβµ∞,κG(1)

∞,κ1
(x1, y1; lβ)G

(2)
∞,κ⊥

(x⊥,y⊥; lβ) = {χ+ (2− χ)}
√
κc

2π
3
2β
.

(5.16)

6 Acknowledgments.

B.S. was partially supported by the Lundbeck Foundation, and the European Research Council
under the European Community’s Seventh Framework Program (FP7/2007–2013)/ERC grant
agreement 202859. A part of this work was done while the second author was visiting DIAS-STP,
B.S. is grateful for invitation and financial support. Both authors thank Tony C. Dorlas for helpful
and stimulating discussions.

A Appendices.

A.1 Appendix 1 - The large volume behavior.

In this section, we prove the thermodynamic limit of the grand-canonical potential and average
number of particles associated to the harmonically trapped Bose gas in the G-C situation.

We start by introducing the one-parameter semigroup generated by HL,κ in (2.1). It is defined
∀L > 0 and ∀κ > 0 by {GL,κ(t) := e−tHL,κ : L2(Λd

L) → L2(Λd
L)}t≥0. It is strongly continuous,

and it is a self-adjoint and positive operator by the spectral theorem and the functional calculus.
By standard arguments, {GL,κ(t)}t>0 is an integral operator whose the integral kernel, denoted

by G
(d)
L,κ(· , · ; t), is jointly continuous in (x,y, t) ∈ Λd

L × Λd
L × (0,∞) and vanishes if x ∈ ∂Λd

L or

y ∈ ∂Λd
L. Moreover, the mapping L 7→ G

(d)
L,κ(x,y; t) is positive and monotone increasing, see [12,

Coro. 6.3.13]. This leads to the following pointwise inequality which holds ∀κ > 0 and ∀L > 0:

∀(x,y, t) ∈ Λd
L × Λd

L × (0,∞), G
(d)
L,κ(x,y; t) ≤ sup

L>0
G

(d)
L,κ(x,y; t) = G(d)

∞,κ(x,y; t). (A.1)
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Here, G
(d)
∞,κ(· , · ; t) is defined by (2.9)-(2.10). It results from (A.1) that ∀L > 0 and ∀κ > 0, the

semigroup {GL,κ(t)}t>0 is a trace-class operator on L2(Λd
L), and moreover, see e.g. [7, Lem. A.4]:

TrL2(Λd
L
) {GL,κ(t)} ≤ TrL2(Rd) {G∞,κ(t)} = e−E(0)

∞,κt
(
1− e−κt

)−d
. (A.2)

From the foregoing and under the conditions of (2.17), the G-C potential can be rewritten as:

ΩL,κ(β, z) =
1

β
TrL2(Λd

L) {ln (1− zGL,κ(β))} ,

and the operator inside the trace is defined via the Dunford functional calculus. Clearly, ΩL,κ(β, · )
is a C∞-function on (0, eβE

(0)
L,κ) (remind that E

(0)
L,κ := inf σ(HL,κ)). In fact, we can prove more:

Lemma A.1. ∀d ∈ {1, 2, 3}, ∀L ∈ (0,∞), ∀κ > 0 and ∀β > 0, ΩL,κ(β, · ) has an analytic

continuation to the domain D := C \ [eβE
(0)
L,κ,∞). In the following, we denote it by Ω̂L,κ(β, · ).

The proof of Lemma A.1 is standard, the main arguments can be found in [3]. See also [15].

Denote by B(r) an open ball in C centered at the origin and having the radius r > 0. When

restricting to the domain B(eβE(0)
∞,κ) ⊂ D, one gets a very convenient representation of the analytic

continuation of ΩL,κ(β, · ) involving the semigroup {GL,κ(β)}β>0. In particular:

Lemma A.2. ∀d ∈ {1, 2, 3}, ∀L ∈ (0,∞), ∀κ > 0, ∀β > 0 and ∀z ∈ B(eβE(0)
∞,κ):

Ω̂L,κ(β, z) = − 1

β

∞∑

l=1

zl

l
TrL2(Λd

L
) {GL,κ(lβ)} . (A.3)

The proof of Lemma A.2 follows the strategy used to prove [3, Prop. 2 (i)], see also [15, pp. 4]

for further details. In view of (A.3), introduce ∀d ∈ {1, 2, 3}, ∀κ > 0, ∀β > 0 and ∀z ∈ B(eβE(0)
∞,κ):

Ω̂∞,κ(β, z) := − 1

β

∞∑

l=1

zl

l
TrL2(Rd) {G∞,κ(lβ)} .

Next, let us turn to the thermodynamic limit of the G-C potential. Here is the main result:

Proposition A.3. ∀d ∈ {1, 2, 3}, ∀0 < κ1 < κ2 < ∞, ∀0 < β1 < β2 < ∞ and for any compact

subset K ⊂ B(eβ1E
(0)
∞,κ1 ):

lim
L↑∞

Ω̂L,κ(β, z) = Ω̂∞,κ(β, z),

uniformly in (κ, β, z) ∈ [κ1, κ2]× [β1, β2]×K.

Because of the Weierstrass theorem, one has as a corollary of Proposition A.3:

Corollary A.4. ∀d ∈ {1, 2, 3}, ∀κ > 0 and ∀β > 0, z 7→ Ω̂∞,κ(β, z) is analytic on B(eβE(0)
∞,κ).

Moreover ∀0 < κ1 < κ2 <∞, ∀0 < β1 < β2 <∞ and for any compact subset K ⊂ B(eβ1E
(0)
∞,κ1 ):

∀m ∈ N
∗, lim

L↑∞

∂mΩ̂L,κ

∂zm
(β, z) =

∂mΩ̂∞,κ

∂zm
(β, z),

uniformly in (κ, β, z) ∈ [κ1, κ2]× [β1, β2]×K.

Remark A.5. From Proposition A.3 along with Corollary A.4, one has in particular ∀κ > 0,

∀β > 0 and ∀z ∈ (0, eβE
(0)
∞,κ) the following pointwise convergences:

Ω∞,κ(β, z) := lim
L↑∞

ΩL,κ(β, z) = − 1

β

∞∑

l=1

zl

l
TrL2(Rd) {G∞,κ(lβ)} ,

N∞,κ(β, z) := −βz ∂Ω∞,κ

∂z
(β, z) = lim

L↑∞
−βz ∂ΩL,κ

∂z
(β, z).
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The proof of Proposition A.3 leans on the below estimate which is the main subject of [7]:

Lemma A.6. ∀d ∈ {1, 2, 3} there exists a constant Cd > 0 and ∀0 < κ0 < 1 there exists a Lκ0 > 0
s.t. ∀L ∈ [Lκ0 ,∞), ∀κ ∈ [κ0,∞) and ∀t > 0:

∣∣∣TrL2(Λd
L) {GL,κ(t)} − TrL2(Rd) {G∞,κ(t)}

∣∣∣

≤ Cd

(
1 +

√
κ
)
(1 + κ)d(1 + t)3(d+

1
2 )
(
2 sinh

(κ
2
t
))−d

e−
κ
32

L2

4 tanh( κ
2 t). (A.4)

Proof of Proposition A.3. ∀L ∈ (0,∞) and ∀(κ, β, z) ∈ [κ1, κ2]× [β1, β2]×K, introduce:

∀M ∈ N
∗, QL,κ,M(β, z) :=

1

β

M∑

l=1

zl

l

∣∣∣TrL2(Rd) {G∞,κ(lβ)} − TrL2(Λd
L) {GL,κ(lβ)}

∣∣∣ .

Let L = Lκ1 s.t. ∀L ≥ Lκ1 the estimate in (A.4) holds. Then ∀L ∈ [L,∞) and ∀z ∈ K, one has:

QL,κ,M (β, z) ≤ Cd

(
1 +

√
κ
)
(1 + κ)d

(1 + β)3(d+
1
2 )

β (1− e−κβ)
d
e−

κ
32

L2

4 tanh(κ
2 β)

(
M∑

l=1

(
|z|e−βE(0)

∞,κ

)l
l3d+

1
2

)
,

for another constant Cd > 0. Since ∀(κ, β) ∈ [κ1, κ2] × [β1, β2] one has supz∈K |z|e−βE(0)
∞,κ < 1,

then from the above estimate there exists another constant Cd = Cd(κ1, κ2, β1, β2,K) > 0 s.t.

lim
L↑∞

sup
κ∈[κ1,κ2]

sup
β∈[β1,β2]

sup
z∈K

lim
M↑∞

QL,κ,M (β, z) ≤ Cd lim
L↑∞

e−
κ1
32

L2

4 tanh( κ1
2 β) = 0. �

We end this section by proving:

Proof of (2.25). Let us show that:

µ∞,κ ≤ µinf
∞,κ ≤ µsup

∞,κ ≤ µ∞,κ, with µinf
∞,κ := lim inf

L↑∞
µL,κ and µsup

L,κ := lim sup
L↑∞

µL,κ. (A.5)

We prove the first inequality in (A.5). Suppose the contrary, i.e., µinf
∞,κ < µ∞,κ. Then there exists

η > 0 and a divergent sequence {Ln}n≥1 s.t. limn↑∞ µLn,κ = µinf
∞,κ and µLn,κ ≤ µ∞,κ − η ∀n ≥ 1.

Now by using that the map µ 7→ NLn,κ(β, µ) is increasing on (−∞, E
(0)
∞,κ), then:

ν = νLn,κ(β, µLn,κ) ≤ νLn,κ(β, µ∞,κ − η) ∀n ≥ 1.

Afterwards, since {νLn,κ(β, · )}n≥1 converges uniformly on compacts w.r.t. µ to ν∞,κ(β, · ) as a

result of Corollary A.4, then by using that µ 7→ ν∞,κ(β, µ) is strictly increasing on (−∞, E
(0)
∞,κ):

ν = ν∞,κ(β, µ
inf
∞,κ) ≤ ν∞,κ(β, µ∞,κ − η) < ν∞,κ(β, µ∞,κ) = ν.

This contradiction yields µ∞,κ ≤ µinf
∞,κ. The last inequality in (A.5) can be proved similarly. �

A.2 Appendix 2 - Some useful identities/inequalities.

Here, we collect some miscellaneous inequalities/identities involving the hyperbolic functions
we use in this paper. Most of them can be found in [1, Sec. 4.5]. For any real x ≥ 0:

1 ≤ cosh(x) ≤ ex, (A.6)

x ≤ sinh(x) ≤ 1

2
ex, (A.7)

0 ≤ tanh(x) ≤ 1, (A.8)

1

x
≤ coth(x) :=

1

tanh(x)
≤ 1 + x

x
, x > 0. (A.9)
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For any reals x ≥ 0 and p, q > 0:

x

1 + x
< 1− e−x < x, (A.10)

x ≤ ex − 1 ≤ xex, (A.11)

xpe−qx ≤
(
2p

eq

)p

e−
q
2x. (A.12)
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[44] Pulé J.V., The free Boson gas in a weak external potential, J. Math. Phys. 24(1), 138 (1983)

[45] Reed M., Simon B., Methods of Modern Mathematical Physics, II : Fourier Analysis, Self-Adjointness,
Academic Press, Inc., San Diego, 1975

[46] Reed M., Simon B., Methods of Modern Mathematical Physics, IV : Analysis of Operators, Academic
Press, Inc., San Diego, 1978

[47] Ruelle D., Statistical Mechanics - Rigorous Results, W.A. Benjamin, New York, 1969

40



[48] Tamura H., Zagrebnov V.A., Mean field interacting Boson random point fields in weak harmonic

traps, J. Math. Phys. 50(2), 023301 (2009)

[49] Tamura H., Zagrebnov V.A., Random point field approach to analysis of anisotropic Bose-Einstein

condensations, Markov Process. Relat. Fields 18(3), 473–530 (2012)

[50] van den Berg M., On the free Boson gas in a weak external potential, Phys. Lett. A 78(1), 88–90
(1980)

[51] van den Berg M., On condensation in the free-Boson gas and the spectrum of the Laplacian, J. Stat.
Phys 31(3), 623–637 (1983)

[52] van den Berg M., Lewis J.T., On the free Boson gas in a weak external potential, Commun. Math.
Phys, 81(4), 475–494 (1981)

[53] van den Berg M., Lewis J.T., On generalized condensation in the free Boson gas, Physica A: Statistical
Mechanics and its Applications 110(3), 550–564 (1982)
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