Multi Scale Random Sets: From Morphology to Effective Behaviour

Abstract : Complex microstructures in materials and in biology often involve multi-scale heterogeneous textures, that we model by random sets derived from Mathematical Morphology. Our approach starts from 2D or 3D images; a complete morphological characterization is performed, and used for the identification of a model of random structure. Simulations of realistic microstructures are introduced in a numerical solver to compute appropriate fields (electric, elastic, velocity, ...) and to estimate the effective properties by numerical homogenization, accounting for scale dependent statistical fluctuations of the fields.
Type de document :
Chapitre d'ouvrage
Michael Günther, Andreas Bartel, Markus Brunk, Sebastian Schöps, and Michael Striebel. Progress in Industrial Mathematics at ECMI 2010, Springer, pp.381-393, 2012, Mathematics in Industry, 978-3-642-25099-6. 〈10.1007/978-3-642-25100-9_45〉
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-00834450
Contributeur : Doriane Ibarra <>
Soumis le : samedi 15 juin 2013 - 10:24:41
Dernière modification le : mardi 12 septembre 2017 - 11:40:54

Identifiants

Collections

Citation

Dominique Jeulin. Multi Scale Random Sets: From Morphology to Effective Behaviour. Michael Günther, Andreas Bartel, Markus Brunk, Sebastian Schöps, and Michael Striebel. Progress in Industrial Mathematics at ECMI 2010, Springer, pp.381-393, 2012, Mathematics in Industry, 978-3-642-25099-6. 〈10.1007/978-3-642-25100-9_45〉. 〈hal-00834450〉

Partager

Métriques

Consultations de la notice

99