N

N

Resource Management in Grids: Overview and a
discussion of a possible approach for an Agent-Based
Middleware

Mehrdad Senobari, Michal Drozdowicz, Maria Ganzha, Marcin Paprzycki,
Richard Olejnik, Ivan Lirkov, Pavel Telegin, Nasrollah Moghadam Charkari

» To cite this version:

Mehrdad Senobari, Michal Drozdowicz, Maria Ganzha, Marcin Paprzycki, Richard Olejnik, et al..
Resource Management in Grids: Overview and a discussion of a possible approach for an Agent-Based
Middleware. Saxe-Coburg Publications, Stirlingshire, UK. PARALLEL, DISTRIBUTED AND GRID
COMPUTING FOR ENGINEERING, Saxe-Coburg Publications, Stirlingshire, UK, pp 141-164, 2009,
Computational Science, Engineering & Technology Series, ISSN 1759-3158. 10.4203/csets.21.8 . hal-
00834409

HAL Id: hal-00834409
https://hal.science/hal-00834409

Submitted on 17 Jun 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00834409
https://hal.archives-ouvertes.fr

Resource management in Grids—overview and a
discussion of a possible approach for an agent-based
middleware
M. Senobari, M. DrozdowicZ, M. Ganzh3a, M. Paprzycki, R. Olejnik, I.
Lirkov®, P. Telegifi and N. M. Charkati

! Tarbiat Modares University, Tehran, IraBystem Research Institute Polish
Academy of Sciences, Warsaw, Poland
3Warsaw Management Academy, Warsaw, Poland
4University of Sciences and Technologies of Lille, LilleaRce
®Institute for Parallel Processing, Bulgarian Academy déBces, Sofia, Bulgaria
6SuperComputing Center Russian Academy of Sciences, Mofussia

Keywords: Grid computing, agent-based resource management, resmanage-
ment, job scheduling, meta scheduling.

Resource management and job scheduling are importantebsssue in computa-
tional Grids. When software agents are used as resourcegerdand brokers in the
Grid a number of additional issues and possible approaclasrialize. The aim of
this chapter is twofold. First, we discuss traditional jcheduling in Grids, and when
agents are utilized as Grid middleware. Second, we usegtagantext for discussion
of how job scheduling can be done in the agent-based systder development.

References

Abstract

Resource management and job scheduling are importantebsssue in computa-
tional Grids. When software agents are used as resourcegeraand brokers in the
Grid a number of additional issues and possible approaclasrialize. The aim of
this chapter is twofold. First, we discuss traditional jcheduling in Grids, and when
agents are utilized as Grid middleware. Second, we useghigantext for discussion
of how job scheduling can be done in the agent-based systdar development.

Keywords: Grid computing, agent-based resource management, resmanage-
ment, job scheduling, meta-schedulers

1 Introduction

According to [42], “computational Grid is a hardware andiwafe infrastructure that
provides dependable, consistent, pervasive, and inekgeascess to computational
resources.” In general, resources (also named service$33p can include super-
computers, data repositories, clusters, sensors, wtidkstaprograms, or individual
PCs. However, in this chapter we are interested in Grid adlection of computa-
tional (rather than data / software) resources, which haveeteffectively managed.
However, the heterogeneous highly dynamic nature of the Bakes development of
Grid Resource Management Systems (GRMS) a challenge. Haeeebeen many
projects focused on designing and implementing GRMSs. Awmd# been argued
in [62], the most important issues in the process are: (ap@uding adaptability, ex-
tensibility, and scalability, (b) allowing systems witHfdrent administrative policies
to inter-operate while preserving site autonomy, (c) doealting resources, (d) sup-
porting quality of service, and (e) meeting computatiometconstraints.

In the case of Grid computing scheduling means allocatiat¢hng) resources to
incoming jobs (we use terms task and job interchangeablyjléAhere exists exhaus-
tive work on scheduling in “traditional” parallel and difimted systems, it is rarely
applicable to the Grid. The main reason is that they oftenrasshat tasks are com-
pleted utilizing homogeneous dedicated resources regidia single administrative
domain [62]. However, the vision of the Grid assumes thatriiststs of heterogeneous
non-dedicated resources residing in multiple adminisgatomains.

One of interesting approaches to resource management@rithés based on soft-
ware agents. While arguments presented in [41, 68] theradr@ithout critics, we
are in the process of developing a GRMS, where agent teantbat®msic manage-
rial infrastructure [35]. Thus far we have concentrated attention on interactions
between users and the team leader [(ikasteragent) [48], and interactions between
Workeragents and the actual Grid infrastructure [65]. Currentky,need to address
the question: how will thé.Masterselect theNorkerto execute a given job (for the
time being we assume that a singMorker will execute a single job). In this con-
text, first, we presents an overview of approaches to Griduree management and
scheduling. Second, we discuss how understanding theseaames can help us to
solve the load distribution problem within our agent-basdihstructure.

2 Grid resource manager s and schedulers

An early survey of Grid resource management systems was ilgmmp 2002 by
Buyya et.al. [62]. There, three basic approaches to jobdsdimg were distinguished:
(i) centralized, (ii) hierarchical, and (iii) decentra. The centralized scheduling
is easiest to manage and deploy, but is not well suited foiGhd. Its main dis-
advantages are lack of scalability and fault-tolerancethinhierarchical approach,
schedulers at higher levels manage larger sets of reso{aedsutilize schedulers at
lower levels). Hierarchical schedulers are utilized, festance, in the 2K distributed
operating system [46], as well as in Darwin [31] and LegioR][Bsource manage-
ment systems. On the other hand, Ninf [53], MOL [45], and B¢28] projects adopt
decentralized scheduling. Note that Grid schedulers lysoahnot control Grid re-
sources directly. They mostly work asokers(or agent3. However, Grid schedulers
can also be tightly coupled with applications (applicatievel scheduling; see [36]).

While Grid heterogeneity includes applications, resosires well as middleware
components and their relations, it is possible to genergliocesses involved in Grid
scheduling. For instance, in [36] it is argued that Grid sithieg consist of: (1) re-
source discovering and filtering, (2) resource selectirgd) stheduling according to
certain objectives, and (3) job submission. In [36] we cad &rbird-eye view of the
structure of the Grid resource management. Here, the Gheédider (GS) receives
jobs from Grid Users, performs matchmaking (utilizing afolmation Service—IS),
and generates a schedule. In other words, result of scingdala map between jobs
and available resources. Note that in the Grid multiple dalegs may exist in sep-
arate administrative domains, and may be organized inrdiftestructures. Delivery

of a feasible schedule requires detailed information at@utroperties of the job and
(b) of available resources, and (c) current state of theesysHere, the Grid Informa-
tion Service (GIS) provides system state information. Afite schedule is prepared,
submitting a task to selected resource(s) and monitoriagueion is the responsibility
of the Launching and Monitoring (LM) service. Another fuioctality of the LM is
staging necessary executables and input data. Local ResManager (LRM) per-
forms the final scheduling and submission inside of a speifinain. The LRM has
additional control over the available resources (e.g.fvmes administrative policies
over resource usages, and reports the resource statusation to the GIS). Let us
now look into some details of popular schedulers.

21 AppLeS

The AppLeS project [1] was based at UC San Diego and was fdooisedevelop-
ment of scheduling agents for applications running in Gridée AppLeS system
collects resource information from the Network Weathewger (NWS) running at
each computing node, and dispatches tasks to lighter laaaléels; while scheduling
actual execution of applications is local. AppLeS useso®iMSs, e.g. Globus, Le-
gion, or NetSolve, to execute actual jobs (i.e. it can be gwkas a meta-middleware
placed above the standard Grid middleware). Each appmicdtas embedded Ap-
pLeS agents that perform resource scheduling. AppLeScgtigins utilize templates
that define specific computational models and thus allowerefiapplication patterns
(e.g. parametric and master-slave application templates heen provided). AppLeS
facilitates predictive heuristic state estimation moaalline rescheduling and fixed
application-oriented scheduling policy [26, 62]. Accarglito our best assessment the
AppLeS project is no longer active. All of its publicationsdathe WWW site were
completed before 2001 and most of its participants have thoueof UC San Diego.

2.2 Nimrod/G

Nimrod/G is a Grid resource broker based on an economy+dayproach to man-
age resources and schedule jobs. It utilizes servicesqed\by other Grid middle-
ware (e.g. Globus, Legion, Condor), and the GRACE [5] trgdirechanisms. More
detailed explanation of economical methods used in Nin@ad/presented in sec-
tion 3.2. Note that, while at the Nimrod/G site there areneiees to work completed
in 2007, the latest version of this middleware v3.0.1 wasastd in October, 2005.
Thus, to the best of our knowledge, today this project is mgéw active.

2.3 OpenPBS

OpenPBS [10, 11] is a simple workload management soluti@mded for small clus-
ters of dedicated homogeneous nodes. Here, computersdaetied into a virtual
pool of resources. Workload is scheduled to run within thitual pool, based on

simple scheduling algorithms. OpenPBS is one of workloadagars accessible from
the CSF meta-scheduler (see, Section 2.6). However, theelaase of the OpenPBS
as an independent project (v2.3.16) happened in 2001. Asdhee time, the PBS
Professional, is the commercial product developed andisottie Altair corporation.

2.4 NetSolve

The NetSolve project [37] was focused on execution of sifierpplications in het-
erogeneous environments, while utilizing different salied) algorithms for differ-
ent applications. Job completion time estimation was basegerformance and
load models, while a dynamic job queue was used for job arderLength of this
gueue was adaptively adjusted based on historical perfozendata (an example of
a system-level scheduling [26]). In addition, mechanisarsstheduling multi-step,
data-dependent jobs have been implemented [20]. Recdrel{yetSolve project has
been extended to Grids through the GridSolve infrastrecf@}. Both projects are
active; for instance, a new release of GridSolve softwapeagped on 2008-12-18.

2.5 Condor

Condor [2] is a high-throughput computing environment tim@nages large collec-
tions of diversely owned machines. It utilizes a centraliseheduler based on the
ClassAd matchmaker. To overcome the disadvantages obtieatt scheduling, Con-
dor allows the matchmaker (and/or the user) to forward rsigu® another match-
maker through the gateway flocking mechanism. The Condqgegires still under
development and has a large community of users.

2.6 Community Scheduler Framework

The Community Scheduler Framework (CSF) is an open sourde S¥evices Re-
source Framework compliant [15] metascheduler built fer@obus Toolkit [3, 66,
40]. The CSF provides interface and tools for Globus usergaate reservations,
define scheduling policies and submit jobs to the Grid. CSietionalities can be
extended to utilize other schedulers and support diffe@d deployment models.
For instance, using CSF allows a single interface acces} ltogd Sharing Facility
(LSF); [8]), (ii) OpenPBS, (iii) Condor, and (iv) Sun Grid Bime (SGE [12]). The
CSF is the default metascheduler for the Globus Toolkit 4s fdicates that the CSF
is not only active, but likely to be developed further (witletdevelopment of Globus).

2.7 ADAJ and SOAJA

The aim of the ADAJ (Adaptative Application in Java) and tl@/SA (Service Ori-
ented Adaptive Java Applications) projects is to develomémastructure to run ap-
plications in “desktop Grids” [57, 49]. ADAJ is a programrgiand execution envi-

ronment, which contains mechanisms for dynamic re-distioim of components of
an applications (in response to load imbalances among ©®dds). The SOAJA is a
WSRF-based ([61]) service oriented extension of ADAJ. basg developed on top
of ADAJ, by adding the webservices layer. Furthermore, ilA3®adjustments are
to be made to make it less dependent on proprietary solu@gsthe Enterprise Ser-
vice Bus and the JavaParty); see [44] for more details. Srgito ADAJ, SOADAJ
is to facilitate workload measurement and component-lieas balancing.

3 Approachesto task schedulingin Grids

Job/task scheduling has a long history of research in ghrafid distributed com-
puting systems. Obviously, a large number of methods dpeelin that context have
been adapted to Grid scheduling. Since a thorough summa&sidscheduling meth-
ods can be found in [36, 52], we will focus our attention ontyezonomic methods,
which fit very well with agent systems (see literature reddteutilization of software

agents in e-commerce scenarios, for instance [18, 19]).

3.1 Economic models

Metaphorically speaking, computational Grids and the payie share the same gen-
eral economic model. In the power grid, we use electricity pay for usage of a “unit
of electricity.” In the computational Grid we are to use cartgtional resources and
pay for their usage (possibly, one day a “unit of computing! tae established and
globally accepted). Therefore, in the computational Gredaan distinguish produc-
ers and consumers (with their objectives) and commoditeso(rces) that are traded
(e.g. programs, data, storage, CPU cycles, etc.). To stiiperaspect of the Grid
(Grid economy), we need infrastructure (algorithms/pesg similar to that in the e-
commerce. In other words, we need to be ale to establish pficesource, service
level agreement (SLA) and its enforcement, secure paynetat, [26]. Similarly
to the case of the (commodity) market, it is possible to zdiliransactions based on
both bartering and commaodity prices. In the case of bageerchange of resources
takes place (e.g., storage space for CPU time). When priginged, price of services
should be based on supply, demand and possibly other ecoffiactors.

For the Grid economy to materialize, Grid users need bothto(be able to spec-
ify resource requirements, and (2) to establish their pesiees (e.g. that a given job
should be high priority and price is not important). At thengetime the Grid infras-
tructure (acting as a resource broker) has to be able totsekmurces that meet these
requirements. Obviously, what is also needed are effeatigehanisms for price /
SLA negotiations. Mechanisms of this type have been studiegsearch in broadly
understood e-commerce. For instance, when resource peoasidered alone, mech-
anisms for establishing price equilibrium should be ugidiz

According to [26], service providers and users can be fonetized as represented

by Grid Service Providers (GSPs) and Grid Resource BrokeRBg). The GSPs
deliver Grid enabled resources (e.g. Globus or ADAJ) asagBrid Trading Services
(GTS) to facilitate resource usage negotiations (basedsen nequests delivered by
the GRBs). Interactions between GRBs and GSPs during abmiegyotiations are
mediated by a Grid Market Directory (GMD).

Depending on the mechanism used for establishing transedétails (negotiating
the Service Level Agreement, the price, etc.) either GRB&8Ps can initiate the
negotiation. For instance, a GRB may invite proposals frd®& and select one that
satisfies its requirements (e.g. job will be done before #edtine and within cost
constraints). Alternatively, a GSP may invite bids from gpective users and offer
its services to the highest bidder. Note that both GSPs arBisGRve constraints to
be satisfied and utility functions to be maximized. Let usklouo details of selected
mechanisms that can be used to negotiate transactionsdgtaiimore information, as
well as a list of projects that, before 2002, used economidets) see [26]).

3.1.1 Bargaining Mechanism

In the bargaining model, GBRs bargain with GSPs, for instdaclower access price
and/or higher usage duration. In the e-commerce literditisenodel is also known as
iterative bargaining58]. Here, GBRs and GSPs have objective functions and iregot
ate as long as their objectives are met or until it is esthbtighat finding an agreement
is not possible. Negotiation can involve a single item (ggce), or multiple items
(e.g. price and deadline). According to [26] this model istipalarly useful when
market supply-and-demand and service prices are notglestdblished.

3.1.2 Tender/Contract-Net Mechanism

Tender/Contract-Net model is one of the popular modelsdorise negotiations (see,
also [4]). Here, the GRB announces its requirements (ussygaific template) and
invites bids from GSPs. Interested GSPs evaluate the asemaent and respond by
submitting their bids. The GRB awards the contract to the G&Psubmitted the best
offer. In the case when no (satisfactory) offer is obtaired®@RB may adjust and re-
submit its call for proposals. The negotiation template nmzyude, among others,
addressee, requirements specifications (e.g. Linux, kB6and 1024MB memory),
task/service description (e.g a Matlab job), maximum p(metional), bid specifi-
cation (what should offer contain), expiration time (deaelifor receiving bids), etc.
Note that the Tender/Contract-Net allows finalizing coctisavithout bargaining. This
simplifies interactions and can improve the efficiency ofghstem (e.g. it is easy to
imagine a very long sequence of iterations taking placeerctise of Bargaining).

3.1.3 Auction Modd

According to [26] the Auction model involves one-to-manyagations, between a
GPS and multiple GRBs, and reduces negotiation to a sindle {ae., price). Note

that this view is a clear oversimplification of what has be&tussed in the e-com-
merce literature, see for instance [18, 50, 21]. Let, us lwewaccept this view as an
approximation of what could be used in this case. Here, te&lpocess involves:
(a) start of the Auction, (b) bid submission, (c) agreementnftion, or establishing
that agreement cannot be formed (see, also [19]). Most popoitms of Auctions
are: English Auction, First-price sealed-bid, Vickrey Aioa, and Dutch Auction.
However, the literature concerning single and multi-itessteons considers a much
broader spectrum of contract negotiation mechanisms.

3.2 Job scheduling in Nimrod/G

To illustrate application of an economic model in Grid reseumanagement, let us
look into the Nimrod/G approach. In [27], three economydabalgorithm used in the

Nimrod/G are presented (note that neither one of them eslikhe elaborate economic
mechanisms presented above):

e Time Minimization—complete job(s) within time and budgenstraints,
e Cost Minimization—complete job(s) within time and budgehstraints,

e None Minimization—complete job(s) within time and budgenstraints.

Let us assume that a task to be completed consists of one @ jolzs. When
the Time Minimization algorithm is used, the goal is to coetplthe task as quickly
as possible (within the available budget). The key stephisfalgorithm are as fol-
lows [27]:

1. For each available resource, use information about uely assigned jobs to
estimate the completion time for a new job.

2. Sort resources according to the expected completiorstime

3. Assign a given job to the resource for which the completime is the “short-
est,” while the cost is less than the remaining budget per job

4. Repeat until all jobs are assigned.

In the case of the Cost Minimization, the goal is to complkeetask as cheaply as
possible, while still satisfying the deadline constra|@#():

e Sort available resources according to the advertised cbstpest first).

e Utilize estimates of job execution times to assign as mabyg gs possible to
cheapest resources; without exceeding the deadline.

Finally, for the None Minimization algorithm, the goal is tommplete the task
within the deadline and cost constraints, but no minimaratif either is attempted [27]:

¢ Divide resources in such a way that in each case cost per Jebsshan budget
available per job.

¢ In the case of the cheaper resources, assign jobs (inveggrpgonally to the
estimated job completion time (e.g. “cheap resource” wstineated completion
time = 4 received twice as many jobs as resource with estimated etiopl
time = 8).

¢ Inthe case of more expensive resources, repeat stepsallijutils are assigned),
but use recalculated budget per job (budget based on moftefter cheaper
resources have been contracted).

Note that implementation of either one of these three gliesanvolves taking care
of special situations. For instance, during systems giatmpletion times estimates
are unknown, and thus a supplemental strategy has to be 8srilarly, when there
are “too many” jobs in the task and they cannotieassigned to available resources
(an example of an infeasible schedule), system has to bécatlanage such situation.

4 Agent based scheduling systems

Since in our project we utilize software agents as Grid resomanagers, let us now
focus our attention on approaches to Grid resource schepatipearing in the context
of agent-Grid integration.

41 ARMS

ARMS was an agent-based Grid RMS. It used agents for resagkesEtisement and
discovery [28]. It utilized performance prediction mectsams provided by the Per-
formance Analysis and Characterise Environment (PACHkiiof®6]. Furthermore,

scheduling was focused on QoS requirements; e.g. users kpéddify an explicit job
execution deadline.

In ARMS homogeneous cooperating agents are organized grarbhy, and their
goal is to manage and schedule applications over availaida€sources. Each agent
acts as a representative for a single Grid resource, whi@BP& used to create a
hardware characterization template. Next, hardware mamglservices information
is spread across the agent hierarchy. This informationiliged to build the Agent
Capability Table (ACT). Each ACT item is a tuple containihg tagent 1D, informa-
tion about services as well as performance. ACTs are upgeieddically and both
pull and push methods are used to maintain them.

When an application is submitted to the system, it includeassociated perfor-
mance model and requirements related to its executiong&ag.time, deadline, etc.).
Service discovery involves communicating with agents Inleaging in the hierarchy
(upward and downward). It is claimed that this approach ésefore more scalable
when the Grid becomes large.

ARMS agents consist of three layers: (i) communication da{i§ coordination
layer, and (iii) local management layer. The communicatayer acts as an inter-
face to the external world. It receives service advertisgmand discovery messages
and forwards them to appropriate modules in the coordindéger, which perform
matchmaking and scheduling. For the service discovery agessagent tries to find
an available Grid resource. This involves utilization oé t@) application model,
(b) job requirements, and (c) the PACE engine. Specifictily,expected execution
time of a given application on a selected resources is ettthand compared with the
requirements. If time constraints are satisfied for one efithprocess is completed.
Otherwise agent forwards the request to other agents (hogth@ver in the hierarchy)
to find resource that will satisfy user defined constraints.

In [29], an ant-based self-organizing mechanism is utllieperform load balanc-
ing for batch jobs with no explicit execution deadlines. sltshown that application
of such mechanism improves global load balancing in theegy$given large enough
number of ants). Separately, in [30], scheduling depenadéstand executing work-
flows in ARMS was discussed.

It should be noted, that while this approach seems veryasterg, work on the
PACE framework and the ARMS system is not pursued furthezesapproximately
2003. What is left are only papers reporting results (no agede pertinent to any
part of the system can be found).

4.2 JADE Extensions

In their work, Poggi et al. extended the JADE agent frameworke used in Grid
applications [59]. They argued that realizing an agent@rtegration is possible
through: (i) extending Grid middleware to support agentuess, or (ii) extending
agent-based middleware to support functionalities of thed.Grhey follow the sec-
ond approach by attempting at adding new features to JAD&ale a Grid environ-
ment. Considered extensions are mechanisms for: codédisin, reconfiguration,
goal delegation, load balancing optimization and QoS dedimi To realize these
goals new types of agents are proposed. They are to suppatiletbased creation
and composition of tasks, and (ii) mobility of the code at tagk level (i.e., JADE
behaviors or rules are exchanged by agents). Fii3tpals agenis developed, which
uses the Drools rule engine, to receive and execute rulesiigarom other agents).
The BeanShell agenteceives and executes behaviors coming from other agents. |
integrates the BeanShell engine, which allows usage ofaseascripting language.
Here, each rule can contains scripts in its condition, cgueece or extractor fields.
When a rule is scheduled for execution (its preconditioesatisfied), Drools invokes

the BeanShell interpreter to execute the code containdrbiodnsequence of the rule.
To address security issues in the Grid, the JadeS secuaitefrvork is used.

Work on extending JADE agent framework was originally repdrin 2004. Since
then the following three papers, in some way related to tlhgest, have been pub-
lished [54, 55, 60]. It is thus difficult to see this projectlasng actively pursued.
This is even more so, as there is no Grid related add-on leteashg JADE add-on
software [6].

4.3 Bond

Bond is a Java-based object-oriented middleware for nétwomputing. Bond was
developed to create an infrastructure for a Virtual Lalbmsat It was to support

scheduling of complex tasks and data annotation for dagéaante applications. One
of the goals of the Bond system was to facilitate collabweeadictivities through sup-
port for knowledge and workflow management. These funclibesare based on a
distributed object system [22] (e.g. to store and processuree information). Re-
sources exchange information using messaging and uglitie KQML language.

Dissemination of resource information is achieved thropghodic data pushes. In
Bond, mechanism called distributed awareness is used to &#out existence of
other agents. Specifically, each node maintains informathmut nodes it has com-
municated with, and periodically exchanges it with othegrdg. In this way, infor-

mation about existing agents is propagated in the systemall¥;ijob scheduling is

decentralized and utilizes predictive pricing models tatesestimation [22].

Again, situation is similar to the two other systems desatikhus far. All pub-
lications related to the Bond system have appeared in th8-2@®3 time frame.
Therefore, we have to conclude that the project is no longiirea

4.4 Agent-based Scheduling Framewor k

Agent-based Scheduling Framework (ASF) is an agent-ceshrheduling approach
applied to Grid scheduling [63]. ASF is composed of a metadualer and autonomous
agents attached to computing resources. The main idea &S3Fkes to reduce the
responsibilities of a conventional metascheduler. Spadi§i, the main issues that the
ASF attempts to address are ([63]):

e The workload of the metascheduler grows when the numbermpating re-
sources grows.

¢ If the metacheduler is overloaded, accuracy of schedulkeggatles as it is going
to be based on incomplete information (not all informatian e processed in
time to make accurate predictions).

e What is needed is a new approach to managing large numbeesesbgeneous
computers; especially, when many domains with variousaifmer policies are

10

combined in a Grid as a VO (conventional frameworks are raaty¢o deal with
such complex issues).

To achieve its goals the ASF relies on agents that autondsneaarch for jobs;
instead of jobs being assigned to them by the metaschediiles, the ASF is “dual”
to conventional metaschedulers, which continuously coligate information of re-
sources under their control, decide about the schedulifigypand pushjobs to se-
lected resources. In the ASF, instead, each agent disgobsr¢hat can be processed
by its resource and retrieves them from the metascheduprri(based approach).

A prototype of the ASF has been implemented based on the &ldbalkit 4.
Experimental results of utilization of the ASF metaschedhlave been discussed in
[63]. It was shown, that for a relatively small environmeatheterogeneous cluster
with 3 nodes(!)) utilization of the ASF resulted in an 11% uetion of the total
elapsed time of job processing.

45 MAGDA

Mobile Agent based Grid Architecture (MAGDA; [16]) is a Javased mobile agent
toolkit designed to overcome some of the limitations of &g Grid middlewares.
According to its creators [16], these include:

Lack of ability to migrate an application from one system nother.

Low level of abstraction of the heterogeneity of the envinemt.

Lack robust fault tolerance.

Existing information and monitoring frameworks do not sct the Grid level
(or are focused only on specific issues).

e Lack of support of task migration, monitoring and execut{@ith adequate
checkpointing).

MAGDA supports (1) resource discovery, (2) performance mooimg and load
balancing, and (3) task execution within the Grid. It hasyetad architecture fol-
lowing the Layered Grid Model [43] and thus it should be pblkesto implement or
integrate MAGDA components with other systems that aredasdhe same model.

In the current release of MAGDA, service discovery is pearfed by help of Web
Services and Web Services technologies (such as UDDI) aektosmplement this
component. Application-level load balancing is providgdnbeans of aCoordina-
tor Agent This agent manages lists of registered workers and ofablaifree hosts.
When an agent is initialized, coordinator updates list gistered agents. It stores
information about their state of computation, and theatieé speed. In this way, the
Coordinator Agentcan recognize imbalance in the system and ask the most loaded

11

worker to split its workload, part of which will then be assegl to the less loaded
worker.

After migration from Aglets [14] to JADE [6], MAGDA is contimally being de-
veloped with the aim of maximization of integration with W8ervices, workflow
management, service orchestration and choreography [17].

5 Job schedulingin the Agentsin Grid project

Let us now look how issues discussed above can be utilizedeigents in Grid
project. In our approach it is assumed that agents work imseg@5]. Each team

is managed by th&Master agent. This agent also represents the team to the out-
side world. In other words, agents representiggrs namedLAgentsinteract with
LMasterseither to contract job execution [34], or to join the team &mdbecome a
Worker[48]. EachLMasteris supported by ahMirror agent, which stores copies of
crucial team data (e.g. list of workers, list of contractafss of job execution, etc.).

In the context of this chapter, we are interested in proctbsd take place when a job

is contracted and forwarded to a selecféorkerto be actually executed.

5.1 Formingtheteam

To start we need to consider the way that workers join the téedescribed in [48],
the process consists of the following steps:Uagr specifies conditions of joining to
its LAgent (b) theLAgentinteracts with theClient Information Centerepresented by
the CIC agent, to obtain list of teams that seek workers satisfyertai conditions
(e.g. CPU power, available memory. etc.), (c) upon recgiguch list, thedLAgent
eliminates these that are not trustworthy [38], (d) nextiiiaes the FIPA Contract Net
Protocol [13] to negotiate which team to join (note that,ha tontext of this chapter,
we omit details of contract negotiations; e.g. howltivasterestablishes the optimal
price; we simply assume that one of bargaining mechanisswithed in Section 3.1
is used), (e) negotiations can result in a success (joinitggia), or in a failure (no
acceptable team was found). Here, we are particularlyasted in: (i) description of
capabilities of resource(s) represented byltAgent and (ii) details of the contract.
To illustrate them, let us consider the ACL message in Figute It could have been
sent by thd_Agentas a call for proposals (within the Contract Net Protocol).

Here, agentdem), representing machinedrszcz with CPU running at 2.6 GHz,
2 Gbytes of RAM and 8 Gbytes of disc space available for Grigliagtions, is
sending aake-memessage to agebruce (LMaster of some team residing on node
tequila). Agentdemiis proposing the following contract conditions: avail#igieach
day between 22:00 and 7:55 (next day in the morning), andactiduration 14 days.

It is obvious that this is the information that matches whkattilized by the above
described schedulers. First, provided are capabilitiedsemachine (Grid node) rep-
resented by agemtemi They are needed to be able to estimate job completion time.

12

(cfp
:sender (agentidentifier :name demi@barszcz:1099/JADE)
:receiver (agentidentifier :name bruce@tequila:1099/JADE)

:content
((action
(agent-identifier :name bruce@tequila:1099/JADE)
(take—me
:configuration (hardware
icpu 2.6

:memory 2048
:quota 8000)
:conditions (condition
cavailability (frequency
;unit (day)
:day—-time (period
:from 00000000T22000000
:to 00000000T07550000))
:contract—duration +00000014T000000000))
:language fipa-slO
:ontology joining—ontology
:protocol fipa—contract—net

)

Figure 1: Sample call for proposals, containing descriptibavailable resources and
conditions of joining

Second, let us assume thHauce “takes” demito be aWorkerin the team. In this
case, contract details alloruceto approximate if a task contracted by its team can
be completed while the Grid node that agdatnirepresents will be still available. It
would be very bad for the reputation of the “bruce-team” ibh was to be paused
until the “demi-node” comes back online, and as a resultamonditions would not
be fulfilled. Observe that this form of utilization of avala information follows the
Nimrod/G-based approach.

5.2 Contracting job execution

The second aspect that needs to be considered is: what IsappenUser would
like a job to be executed in our system. As described in [3d]dlocess consists
of the following steps: (alJser specifies to itd Agentacceptable conditions of job
execution, (b) thé.Agentcontacts the€CIC agent to obtain the list of teams that have
the required resources, (c) this list is then adjusted ob&sés of trust considerations
([38]), (d) as in the previous case, FIPA Contract Net proté utilized as a negoti-
ation mechanism to find the best team to execute the taskydeg¢gs can result in a
success (finding a team to do the job), or in a failure (no deddp team is found).
Here, of particular interest is available information cemgng the job. This informa-
tion is a part of the Contract Net CFP. To illustrate our aliapproach let us present
a snippet of our ontology of constraints:

:NegotiationSet a owl:Class .

:negotiationParam a owl:ObjectProperty ;
rdfs:domain :NegotiationSet ;
rdfs:range NegotiationParam .

:NegotiationParam a owl: Class .

13

:paramWeight
a owl: DatatypeProperty , owl: FunctionalProperty ;
rdfs:domain :NegotiationParam
rdfs:range xsd:float

:Cost a owl:Class
rdfs:subClassOf :NegotiationParam
:costConstraint
a owl: ObjectProperty , owl: FunctionalProperty ;
rdfs:domain :Cost ;
rdfs:range :FloatConstraint
:costValue
a owl: DatatypeProperty , owl: FunctionalProperty ;
rdfs:domain :Cost ;
rdfs:range xsd:float
:JobStartTime a owl: Class ;
rdfs:subClassOf :NegotiationParam
:jobStartTimeValue
a owl: DatatypeProperty , owl: FunctionalProperty ;
rdfs:domain :JobStartTime
rdfs:range xsd:dateTime .
:jobStartTimeConstraint
a owl:ObjectProperty , owl:FunctionalProperty
rdfs:domain :JobStartTime
rdfs:range :TimeConstraint.
:JobEndTime a owl: Class
rdfs:subClassOf :NegotiationParam .
:jobEndTimeValue
a owl: DatatypeProperty , owl: FunctionalProperty ;
rdfs:domain :JobEndTime ;
rdfs:range xsd:dateTime .
:jobEndTimeConstraint
a owl:ObjectProperty , owl: FunctionalProperty
rdfs:domain :JobEndTime ;
rdfs:range :TimeConstraint

Here, we can see that three constraints of job executionceereeptualized: (igost
(as a constraint, this value is private to th&gent but is also used in the contract),
(ii) job start time and (iii) job end time It is obvious, thajob start timeandjob end
time may provide useful information for job schedulers, but tieeds to be consid-
ered further. Note that, it is possible to use jbk start timeconstraint also in the
case when there is no estimate as to how long this job is goitake. However, in
this case we cannot have tjod end timespecified as well, as there is no feasible way
to estimate if this constraint can be satisfied. Furtherpriarthis casejpb start time
only), job has to be scheduled on a node with non-stop cdrfvsaan extended time
(e.g. constant contract). Utilization of tl@b end timerequires existence of at least
some estimate of the job execution time. This information mréginate from: (a) job
description (could be provided by thiseras a part of the CFP), or (b) could be based
on past execution times. However, the latter case requiegdgriformation about the
“type of the job” has to be a part of the CFP. Only then tivasterwould be able
to estimate job execution time utilizing historical datahe$e considerations show
clearly that the question of description of jobs, resourcesastraints has to be revis-
ited. Being aware of this, in another chapter of this booR]}3~ve have presented an
overview of resource descriptions utilized in various Grydtems, as well as attempts
at creating an ontology of the Grid. As a result we have fourat the Core Grid
ontology is the one that is most likely going to be utilizedonr system. However,

14

we have established also that it will have to be extendeddaodie additional aspects
of resource management, brokering and scheduling, negdssaur system (e.g. to
deal with various constraints discussed above and suppsttrhanagement).

Let us now assume that an appropriate Grid ontology has belented an ex-
tended to facilitate robust descriptions of: (1) resour@sob characteristics, (3) job
execution constraints, and (4) trust related conceptshdulsl be obvious that such
ontology will support advanced contract negotiation sdesa In this context let us
stress that following [42, 33], we believe that one of the kspects of future Grid
computing will be the economic model (involvingserswho pay for job execution,
or are paid for usage of their resources). This being the, eas&onsider economic
mechanisms described in Sections 3.1 and 3.2 as necessdrglielevel resource
management in the Grid. In this context, we expect that dgwveént of a robust Grid
ontology will allow us to utilize semantic reasoning andgtapens the Grid up to a
large number of autonomic contract negotiations mecha@msidered, among oth-
ers, in e-commerce research (see, also [18, 64, 67, 51]).etmwwe will omit the
very process of contract negotiations as outside of scoff@o€hapter.

Now, let us see what happens when a CFP reachddMiaster. The first thing that
it has to do is to check job execution constraints. Let usrassinat on the basis of
available data, theMaster(i) can obtain an estimate of job execution time; or (ii) es-
tablishes, that there is a contradiction in constraintsenognded job (no completion
time estimate available) combined with tjod end timeconstraint; or (iii) finds out
that it has to deal with an open ended job. In the case of ainstontradiction, the
LMastercan send an ACIREFUSEmessage to the CFP originator. In the remaining
two cases theMastercan combine the job and constraint information with its kirow
edge of: (a) all “job execution contracts” that have beemeigthus far, (b) current
“work contracts” of all teamWWorkers and (c) current status of teaworkers(which
Workersare available, what is their workload etc.) to decide whethe proposed job
can be executed within specified constraints or not. Foants, thd_Mastershould
not contract an open ended job if it does not have a trustwakbrkerwith non-stop
contract. Similarly, it cannot contract a job with deadline24 hours, if all of its
Workersare 100% utilized for the next 36 hours. In such cased, Masterresponds
with an ACL REFUSEmessage. If job execution is feasible (i.e, constraintshzan
satisfied), then theMastersends a “positive” response to the originator of the CFP.
This response may contain a detailed final proposal (e.ghdarcase of contract net
negotiations) or may be a part of more elaborate contraaitisgpns.

Recall that we assume th@forkeragents work within their contract and are paid
on its basis and thus do not posses access to the informatiah price does the
LMastercharge for their work (however, they may explore offers frmtiple teams
to find the market price of resources they offer). In this wag/dole responsibility for
contract negotiation is on tHeMaster. Obviously, in a different scenario it could be
assumed that theMasterwould negotiate “subcontracts” with it8/orkers (e.g. use
a local Contract Net protocol) and use results of these (&gotiations to prepare a
response to thelser. However, we consider this approach unnecessarily coatplic

15

and stay with the model in which theMasteris the only contract negotiator.

5.3 Selecting worker to execute a task

Thus far we have established that, during the process ofpingeteam members
(Workerg, the LMaster obtains a complete description of resources represented by
each one of them. Furthermore, for edbbrkerit knows details of its contract. Ad-
ditionally, during evaluation of the Call for Proposalsg ttMasteris able to establish
that its team is capable of fulfilling the request within gped constraints. Let us
now assume that tHeMasterwas able to successfully complete contract negotiations.
Now, it has to obtain all information/data necessary to cletepthe job (including,

for instance, needed files or information about their laradj see, [65], for more de-
tails). Recall that thé.Masteris the only representative of the team known to the
outside world. Here we follow basic tenets of agent systesigt69] and reduce the
number of possible agent interactions (ileAgentsrepresentingJsersdo not know
individual Workerg. Assuming that th&Masterhas all the information ready for the
job execution to be initiated, the following two questionse: (1) which agent should
actually execute the job, and (2) when should it receive it.

In general, we have identified three possible responsestéirt question. The
first one is based on the ASF approach (see, Section 4.4)., HhereMaster acts
as a meta-scheduler, whi&orkerscontact it to obtain the next task to be executed.
While this approach has some potential advantages (e.gciregthe workload of the
LMasterand givingWorkersmore autonomy), it does not seem to work well in the
case of Grid economy, as it is not able to handle complex SUAs® instance, let us
assume that a special job-contract has been successfgbyiaied. This task requires
specific resources and immediate commencement of execulioneturn, price is
substantially higher than a typical one. In this caselilkastercannot wait until the
right resource becomes available and requests that jodll(rd@t in the ASF, agents
pull tasks from the meta-scheduler “at their will”). Instedahe LMastershould be
able to “act” and rearrange work of the team in such a way treahtgh-priority high-
paying job would start executing immediately while using tight resources. This
illustrates that the ASF approach is not easy to combine th@gleconomic model.

The second possible approach is conceptually based ongR4;18re theMaster
andWorkersnegotiate job execution. Note that, as specified above, stmasthat the
LMasteris the sole contract negotiator, whMgorkersact in a non-competitive way.
As a matter of fact, they should support each other, as theess®f the team means
also their (financial) success. Obviously, this assumptiay need to be changed
(introducing agent spoilers and/or competitive/selfishadweors ofWorkerg, but this
would require reexamination of all trust-focused consatiens (see [38]) and thus, for
the time being, will not be pursued further. In the negatiatbased approach, when
theLMasterwins a contract, it could utilize the FIPA Contract Net toarh Workers
and to find out which of them could execute it. In response¢ddRPWorkerswould
inform about their conditions of job execution. Answersaiged from eactWorker

16

could be evaluated on the basis of their resources, cos@adttrust to establish which
should execute the given job. Here, trust is used to attetrgptaading (or at least to
minimize the impact of) failures diVorkers(see, [38] for more details). While in
[24, 25] improvement of order of 10% resulting from utiligithis method has been
reported, we can see also some problems with this approaahbicaly, this is the
problem discussed in the previous solution. Let us assuatethigh-paying job has
been negotiated and has to start immediately. In the cuseartario it is possible to
envision that as a result of internal negotiations this jayre started immediately
on an appropriate machine. The select®drker stops executing its current job to
work on the special task. However, this situation may haveraido effect. Now,
the job that has been executed on that machine may need to \sedrtw another
one (it also has a relatively high priority and a close deejliand so on. Now, it is
extremely difficult to envision how such job movement candt@eved in the situation
when eachNorkeris an autonomous entity that may or may not agree to the change
And, even if they do agree, the process of job-alignment meagive large number of
additional negotiations, or will actually be realized ugihe third approach (discussed
in the next paragraph). Overall, in this approach, autongiven toWorkersmay turn
against the capability of the team to efficiently completmsgobs, and thus compete
in the marketplace.

Finally, theLMasteritself can decide about the task assignment without any com-
munication with itsNorkers In other words, th&Mastercan act as a meta-scheduler.
This being the case, following examples of meta-scheduessribed above, the
LMastercan use, historical performance data for e&tdrker, information about their
current load, etc., to establish which resource shouldwggeghich job. We can as-
sume here that tHeMasternot only can decide whicWorkerwill execute which job,
but also can issue anrder that a givenWorkershould send its job to another, while
the recipient has to accept it. In other words, we functi@eathe LMaster as an
omnipotent meta-scheduler. It is easy to observe that gpsoach minimizes com-
munication between theMasterandWorkersand overall programmatic complexity
of interactions within the team; only orders are send/twkers who report their com-
pletion. Furthermore, this means thébrkersdo not have to have special reasoning
capacities (required in the second approach, in particufamally, this approach pro-
vides an easy way to deal with jobs that come at various pigerand deadlines (it
is theLMasterthat takes care of them). Unfortunately, we can find also gromant
disadvantage: requirements placed onliMasterincrease considerably as it has to
be able to deal with all possible scenarios without any “h&lpm Workers This, in
turn, substantially increases hardware requirementseohtde it runs on. This re-
guirement propagates also to thiirror , which has to be as good as thilasteras
it may take its place at any moment. Furthermore Liktastermay become the bot-
tleneck of the team (it will not scale with increasing teaime} which was one of the
important disadvantages of the centralized schedulingtediabove. However, our
proposed system is to be adaptive. Thus ik&sterthat cannot handle the load will
loose both clients and/orkers As a result its team will either decrease in size (to the
size it can manage successfully), or disappear complétécan thus assume that, as

17

the time passes, eatMasterwill be able to establish size of the team it can manage.
The question that remains open is, will the size of the teartatye enough for this
approach to be feasible in a long run? However, an answetndagjtlestion can be
established only experimentally. Summarizing, we belibat the advantages of this
approach outweigh its potential disadvantages. We arelitkelg to pursue this ap-
proach as the first attempt at introducing job schedulinmagient teams in our system.

As far as the second question is concerned (when should bhigejoransferred to
the selectedVorkel), taking into account the dynamic nature of the Grid, thered
easy answer to it. First, recall that we assume that each cenddisappear without
warning. This means that staging a job at nédas soon as it is contracted may result
in a wasted effort if this node crashes. However, sincd.tastercan crash as well,
it means that data needs not only to be kept until it is rekk&s¢he selectethVorker,
but also has to be mirrored by thdirror. We will thus leave this question open,
pending further analysis.

5.3.1 Monitoringin the system

One of the important issues in most schedulers is monitahegwvorkload. In the
case of our system not only the workload \Wbrkershas to be monitored. More
importantly, their very existence needs to be establiskRegtall that we assume that
Grid nodes can disappear without any warning. However, taong existence of
nodes has been addressed in [47]. There, we have reporteddnbave implemented

a mechanism (based on principles derived from network m&magt) in which the
LMasteris “pinging” its Workersand expects that they respond in time to a certain
number of pings. Lack of response is an indication of a probAgéth theWorker.

Let us now assume that tihdlastermonitors existence of team members. What it
needs is information about their workloads. Since Java dotekave a direct method
to access the load information of the underlying system,xaereal library had to
be used to fulfill this requirement]Jsysmons a Java library (which works both in
Linux and Windows) that permits Java applications to acegstem monitoring in-
formation, e.g. the CPU or the Memory usage [7]. This libriarysed by théVorker
agent. Specifically, in th&Vorkeragent, we have added a new behavidsdgeRe-
porterBehaviouy, which has been implemented as a subclass of the stand&@d JA
TickerBehaviour At predefined intervals, this behavior collects the loddrimation
from the local system (using thlisysmonibrary commands), and sends it as an ACL
message to theMaster. At the same time, theMasterhas been extended by adding
a workload data collecting behavidvipnitorStatusBehavioywhich is a subclass of
standard JADECyclicBehaviouywhich receives the load messages from team mem-
bers and stores them for future use.

18

6 Concludingremarks

The aim of this chapter was three-fold. First, to presentbdef overview of Grid
resource management techniques found in standard Gridlewnidces. Second, we
have considered attempts at utilizing software agents asdan@ddleware, and thus
as resource brokers and job (meta-)schedulers. Finalljpave discussed how the
knowledge gathered in the first two parts of the chapter inftes our thinking about
job scheduling within our system. We have realized, ag&iat time has come to
infuse our system with a robust Grid ontology (see also,)[33his ontology will
not only allow us to utilize a broad range of possible SLA riegimn mechanisms. It
will also provide the scheduler with the necessary inforameéibout the resources, the
job and its execution constraints. Finally, analysis ofilatde scheduling techniques
performed within the context of our system (based heaviltherGrid economy based
vision of the nature of Grid computing of the future) pointad that at this stage we
should proceed with making thévasteran omnipotent manager and meta-scheduler,
which has total command ov&vorkersin its team. We will report on our progress in
subsequent publications.

Acknowledgments

Work of the Polish team was in part supported from the “FumisScience” of the
Polish Ministry for Science and Higher Education for yead®&-2011, as a research
project (contract number N N516 382434). Collaborationhef Polish and Bulgar-
ian teams is partially supported by tRarallel and Distributed Computing Practices
grant. Collaboration of Polish and French teams is paytslipported by the PICS
grantNew Methods for Balancing Loads and Scheduling Jobs in thé &rd Ded-
icated SystemsCollaboration of the Polish and Russian teams is partglfyported
by theEfficient use of Computational Gridgant.

References

[1] “About AppLeS”, http://ww. cs. ucsd. edu/ gr oups/ hpcl /
appl es/ het pubs. ht M #AppLeS.

[2] “Condor Manual”,ht t p: / / www. cs. wi sc. edu/ condor / manual /.

[3] “CSF”, htt p://www. gl obus. org/ gri d_sof tware/ conputation/
csf. php.

[4] “FIPA Contract Net Interaction Protocol Specicatiortif t p: / / ww. f i pa.
or g/ specs/ fi pa00029/ SCO0029H. ht ni .

[5] “GRACE—GRIid seArch & Categorization Engine”, http://ww.
grace-ist.org/.

19

[6] “Homepage of the JADE projecthttp://jade.til ab. com .

[7] “Jsysmon—JAVA library for system monitoring”, http://j sysnon.
sour ceforge. net/.

[8] “Load Sharing Facilitiy”,ht t p: / / hel p. unc. edu/ 4484.

[9] “NetSolve(GridSolve) Overview”, http://icl.cs.utk.edu/
net sol ve/ overvi ew i ndex. ht i .

[10] “OpenPBS homepageht t p: / / www. openpbs. org/ .
[11] “PBS Pro homepagehtt p: / / www. pbsgri dwor ks. coni .

[12] “Sun Grid Engine Project”, htt p: / / www. sun. coni sof t war e/
gridware/.

[13] “Welcome to the FIPA” ht t p: // ww. fi pa. org/.
[14] “Wikipedia: Aglets”, htt p: // en. w ki pedi a. org/ wi ki / Agl et s.
[15] “The WS-Resource Framework”.

[16] R. Aversa, B. Di Martino, N. Mazzocca, S. VenticinquayIAGDA: A Mobile
Agent based Grid Architecture”Journal of Grid Computing4(4): 395-412,
2006, 10.1007/s10723-006-9049-1.

[17] R. Aversa, B. Di Martino, N. Mazzocca, S. VenticinqueA Skeleton based
programming paradigm for mobile multi-agents on dist@slisystems and its
realization within the MAGDA Mobile Agents platform”Mobile Information
Systems4(2): 131-146, 2008.

[18] C. Badica, M. Ganzha, M. Paprzycki, “Implementing Rélased Automated
Price Negotiation in an Agent SystemJpurnal of Universal Computer Science
13(2): 244-266, 2007.
[19] C. Bartolini, C. Preist, N. Jennings, “Architectingf@euse: A Software Frame-
work for Automated Negotiation”, iRroceedings of AOSEolume 2585, pages
88-100. Springer, Berlin, 2002.
[20] M. Beck, H. Casanova, J. Dongarra, T. Moore, J. PlanBdfman, R. Wolski,
“Logistical quality of service in NetSolve'Computer Communication22(11):
1034-1044, 1999.

[21] H. Benameur, B. Chaib-draa, P. Kropf, “Multi-item aiacts for automatic nego-
tiation”, Journal of Information and Software Technolpgy: 291-301, 2002.

20

[22] L. Boloni, K. Jun, K. Palacz, R. Sion, D. Marinescu, “TBend Agent System
and Applications”, inProceedings of the Second International Symposium on
Agent Systems and Applications and Fourth International@ysium on Mobile
Agents Volume 1882, pages 99-112. Springer-Verlag, London, W02

[23] L. Boloni, D. Marinescu, “An object-oriented framevkdior building collabora-
tive network agents”, itntelligent systems and interfacgmges 31-64. Kluwer
Academic Publishers, Norwell, MA, USA, 2000.

[24] H.J. Burckert, K. Fischer, G. Vierke, *“Holonic Trangp&cheduling with
Teletruck”, Applied Artificial Intelligence14(7): 697—725, August 2000.

[25] S. Bussmann, K. Schild, “An Agent-Based Approach toG@uatrol of Flexible
Production Systems”, iRroc. of the 8th IEEE Int. Conf. on Emergent Technolo-
gies and Factory Automation (ETFA 200¥plume 2, pages 481-488. IEEE CS
Press, Los Alamitos, CA, 2001.

[26] R. Buyya, D. Abramson, J. Giddy, H. Stockinger, “Econommodels for re-
source management and scheduling in Grid computi@ghcurrency and Com-
putation: Practice and Experienc&4(13-15): 1507-1542, 2002.

[27] R. Buyya, J. Giddy, D. Abramson, “An Evaluation of Ecomp-based Resource
Trading and Scheduling on Computational Power Grids foafater weep Ap-
plications”, inProceedings of the Second Workshop on Active Middleware Ser
vices (AMS 2000KIluwer Academic Press, Pittsburgh, USA, August 2000.

[28] J. Cao, “ARMS: An agent-based resource managemergmyfstr grid comput-
ing”, Scientific Programmingl0(2): 135-148, 2002.

[29] J. Cao, “Self-organizing agents for grid load balagéjnin Proceedings of the
Fifth IEEE/ACM International Workshop on Grid ComputingR{®’04), 2004.

[30] J. Cao, S.A. Jarvis, S. Saini, G.R. Nudd, “GridFlow: Wisw Management
for Grid Computing”, in3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGRID’032003.

[31] P. Chandra, A. Fisher, C. Kosak, T. Ng, P. Steenkistddkahashi, H. Zhang,
“Darwin: Customizable Resource Management for Value-Alddetwork Ser-
vices”, in Network Protocols, IEEE International Conference, pages 177—
188. IEEE Computer Society, Los Alamitos, CA, USA, Oct 1998.

[32] S. Chapin, D. Katramatos, J. Karpovich, A. Grimshawhé&TLegion Resource
Management System”, idob Scheduling Strategies for Parallel Processing
pages 162-178. 1999.

[33] K. Czajkowski, I. Foster, C. Kesselman, “Agreemensdshresource manage-
ment”, Volume 93(3), pages 631-643, 2005.

21

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

M. Dominiak, M. Ganzha, M. Paprzycki, “Selecting grgdient-team to execute
user-job—initial solution”, inProceedings of the Conference on Complex, In-
telligent and Software Intensive Systemages 249-256. IEEE CS Press, Los
Alamitos, CA, 2007.

M. Dominiak, W. Kuranowski, M. Gawinecki, M. Ganzha, Maprzycki, “Uti-
lizing agent teams in grid resource management—prelimioansiderations”,
in Proceedings of the IEEE J. V. Atanasoff Conferemages 46-51. IEEE CS
Press, Los Alamitos, CA, 2006.

F. Dong, S.G. Akl, “Scheduling Algorithms for Grid Comting: State of the
Art and Open Problems”, Technical report, Queen’s UnivgiSchool of Com-
puting, January 2006.

J. Dongarra, “NetSolve: A network server for solvingmautational science
problems”, The International Journal of Supercomputer Applicationsl &ligh
Performance Computind 1(3): 212-223, 1997.

M. Drozdowicz, M. Ganzha, W. Kuranowski, M. Paprzycki, Alshabani,
R. Olejnik, M. Taifour, M. Senobari, I. Lirkov, “Software Agnts in ADAJ:
Load Balancing in a Distributed Environmen#pplications of Mathematics in
Engineering and Economics’3pages 527-540, 2008.

M. Drozdowicz, M. Ganzha, M. Paprzycki, R. Olejnik, lirkov, P. Telegin,
M. Senobari, “Ontologies, Agents and the Grid—an Overvieln'Profeedings
of the PARENG’2009 Conferenc009, in press.

L. Ferreira, M. Batista, S. Fibra, C.Y. Lee, C.A.Q. Si)\M. Almeida, F. Lucchese,
N. Keung, Grid Computing Products and ServicdBM Redbooks, 2005.

|. Foster, N. Jennings, C. Kesselman, “Brain Meets Brawhy Grid and
Agents Need Each Other” Autonomous Agents and Multiagent Systems, In-
ternational Joint Conference oi: 8—15, 2004.

|. Foster, C. Kesselmaithe Grid: Blueprint for a Future Computing Infrastruc-
ture, Morgan Kaufmann Publishers Inc., 1999.

|. Foster, C. Kesselman, S. Tuecke, “The Anatomy of thiel:GEnabling Scal-
able Virtual Organizations”International Journal of High Performance Com-
puting Applications15(3): 200-222, 2001.

M. Ganzha, M. Paprzycki, I. Lirkov, “Trust Managementn Agent-based Grid
Resource Brokering System—Preliminary ConsideratiomsRk]. Todorov (Ed-
itor), Applications of Mathematics in Engineering and Econon3@8sVolume
946 of AIP Conf. Proc, pages 35-46. American Institute of Physics, College
Park, MD, 2007.

22

[45] J. Gehring, A. Streit, “Robust Resource Management Ntatacomput-
ers”, in HPDC, pages 105-112, 2000, URLi t eseer.i st. psu. edu/
gehri ng00r obust . ht i .

[46] F. Kon, R. Campbell, M. Mickunas, K. Nahrstedt, F. Batkros, “2K: A
Distributed Operating System for Dynamic Heterogeneousr&Bnments”, in
HPDC’00: Proceedings of the 9th IEEE International Sympasion High
Performance Distributed Computingages 201-210. IEEE Computer Society,
Washington, DC, USA, 2000, ISBN 0-7695-0783-2.

[47] W. Kuranowski, M. Ganzha, M. Paprzycki, I. Lirkov, “Segvising Agent Team
an Agent-based Grid Resource Brokering System—Initial&m”, in F. Xhafa,
L. Barolli (Editors),Proceedings of the Conference on Complex, Intelligent and
Software Intensive Systenpaiges 321-326. IEEE CS Press, Los Alamitos, CA.

[48] W. Kuranowski, M. Paprzycki, M. Ganzha, M. Gawinecki, Lirkov,
S. Margenov, “Agents as resource brokers in grids—formiggna teams”,
in Proceedings of the LSSC Meetjingplume 4818 ofLNCS Springer, Berlin,
2007.

[49] E. Laskowski, M. Tudruj, R. Olejnik, B. Toursel, “Bytede Scheduling of Java
Programs with Branches for Desktop GricdPuture Generation Computer Sys-
tem (FGCS) -The International Journal of Grid Computing:e®hy, methods
and Applications23(8): 977-982, November 2007.

[50] B.Q. Li, J.C. Zeng, M. Wang, G.M. Xia, “A negotiation meldthrough multi-
item auction in multi-agent system”, iMachine Learning and Cybernetics,
2003 International Conference p¥olume 3, pages 1866—-1870, 2003.

[51] J. Li, R. Yahyapour, “Negotiation Strategies for Gridfg@duling”, inAdvances
in Grid and Pervasive Computingages 42-52. 2006.

[52] Y. Li, Z. Lan, “A Survey of Load Balancing in Grid Computy”, Computational
and Information Scien¢gages 280-285, 2005.

[53] H. Nakada, M. Sato, S. Sekiguchi, “Design and Impleragah of Ninf: To-
wards a Global Computing Infrastructure. Future Genematomputing Sys-
tems (Metacomputing Special Issue)”, 1999.

[54] A.Negri, A. Poggi, M. Tomaiuolo, “Intelligent Task Cquosition and Allocation
through Agents”, pages 255-260, 2005.

[55] A. Negri, A. Poggi, M. Tomaiuolo, P. Turci, “Dynamic Gritasks composition

and distribution through agentsConcurrency and Computation: Practice and
Experience18(8): 875—-885, 2006.

23

[56] G. Nudd, D. Kerbyson, E. Papaefstathiou, S. Perry, Jpéta D. Wilcox,
“Pace—A Toolset for the Performance Prediction of Paraledl Distributed
Systems”, Int. J. High Perform. Comput. Appl14(3): 228-251, 2000, ISSN
1094-3420.

[57] R. Olejnik, E. Laskowski, B. Toursel, M. Tudruj, I. Alsbani, “DG-ADAJ: a
Java Computing Platform for Desktop Grid”, in K.W. Marianliak, Michal Tu-
rala (Editor), Cracow Grid Workshop '05 Proceedingécademic Computer
Centre CYFRONET AGH, Cracow, Poland, April 2006.

[58] M. Paprzycki, M. Ganzha, “Adapting Price Negotiatiolmsan E-commerce
System Scenario”, in K. Saeed, et.al. (EditoRpceedings of the CISIM Con-
ference pages 380—-386. IEEE CS Press, Los Alamitos, CA, 2007.

[59] A. Poggi, M. Tomaiuolo, P. Turci, “Extending JADE for > Grid Applica-
tions”, in Proceedings of the 13th IEEE International Workshops onlding
Technologies: Infrastructure for Collaborative Enterpes 2004.

[60] A. Poggi, M. Tomaiuolo, P. Turci, “An Agent-Based Sax®iOriented Architec-
ture”, in Proceedings of the WOA'Qpages 157-165, 2007.

[61] R. Prodan, T. Fahringer, “From Web Services to OGSA:dtignces in Imple-
menting an OGSA-based Grid ApplicationGrid, 00: 2, 2003, ISBN 0-7695-
2026-X.

[62] K.K. Rajkumar Buyya, M. Maheswaran, “A taxonomy and\sy of grid re-
source management systems for distributed computi@gftware Practical Ex-
perience 32(2): 135-164, 2002.

[63] K. Sakamoto, H. Sato, “A Resource-Oriented Grid Meth&luler Based on
Agents”, inProceedings of the 25th IASTED International Multi-Coefase,
Parallel and Distributed Computing and Networksnsbruck, Austria, 2007.

[64] B. Schnizler,Resource Allocation in the Grid, A Market Engineering A
PhD thesis, 2007.

[65] M. Senobari, M. Drozdowicz, M. Paprzycki, W. Kuranowsk. Ganzha,
R. Olejnik, I. Lirkov, “Combining an JADE-agent-based Gmdrastructure with
the Globus middlewarelnitial Solution”, in M. Mohammadig@ditor), Proceed-
ings of the CIMCA-IAWITC 2008 Conferengages 890-895. IEEE CS Press,
Los Alamitos, CA, 2008.

[66] C. Smith, “Open source metascheduling for Virtual OGrigations with the Com-
munity Scheduler Framework (CSF)”, 2003, Techical Whipepa

[67] Z. Tan, Market-Based Grid Resource Allocation Using A Stable Cudus
Double Auction PhD thesis, 2007.

24

[68] H. Tianeld, R. Unland, “Towards self-organization irultiragent systems and
Grid computing”,Multiagent and Grid System(2): 89-95, 2005.

[69] M. Wooldridge, An Introduction to Multiagent Systemslohn Wiley & Sons
(Chichester, England), 2002.

25

	summ
	ResourceManagement

