A. Banerjee, X. Guo, and H. Wang, On the Optimality of Conditional Expectation as a Bregman Predictor, IEEE Transactions on Information Theory, vol.51, issue.7, pp.2664-2669, 2005.
DOI : 10.1109/TIT.2005.850145

P. Bartlett and M. Jordan, Convexity, Classification, and Risk Bounds, Journal of the American Statistical Association, vol.101, issue.473, pp.138-156, 2006.
DOI : 10.1198/016214505000000907

D. Buffoni, C. Calauzènes, P. Gallinari, and N. Usunier, Learning scoring functions with order-preserving losses and standardized supervision, Proceedings of the International Conference on Machine Learning, pp.825-832, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00834045

C. J. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds et al., Learning to rank using gradient descent, Proceedings of the 22nd international conference on Machine learning , ICML '05, pp.89-96, 2005.
DOI : 10.1145/1102351.1102363

B. B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao et al., Early exit optimizations for additive machine learned ranking systems, Proceedings of the third ACM international conference on Web search and data mining, WSDM '10, pp.411-420, 2010.
DOI : 10.1145/1718487.1718538

Y. Cao, J. Xu, T. Y. Liu, H. Li, Y. Huang et al., Adapting ranking SVM to document retrieval, Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval , SIGIR '06, pp.186-193, 2006.
DOI : 10.1145/1148170.1148205

Z. Cao and T. Y. Liu, Learning to rank, Proceedings of the 24th international conference on Machine learning, ICML '07, pp.129-136, 2007.
DOI : 10.1145/1273496.1273513

S. Chakrabarti, R. Khanna, U. Sawant, and C. Bhattacharyya, Structured learning for non-smooth ranking losses, Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD 08, pp.88-96, 2008.
DOI : 10.1145/1401890.1401906

O. Chapelle and Y. Chang, Yahoo! learning to rank challenge overview, Journal of Machine Learning Research, vol.14, pp.1-24, 2011.

O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan, Expected reciprocal rank for graded relevance, Proceeding of the 18th ACM conference on Information and knowledge management, CIKM '09, pp.621-630, 2009.
DOI : 10.1145/1645953.1646033

S. Clemençon, G. Lugosi, and N. Vayatis, Ranking and scoring using empirical risk minimization, Proceedings of the Conference on Learning Theory, pp.783-800, 2005.

S. Clémençon and N. Vayatis, Ranking the best instances, Journal of Machine Learning Research, vol.8, pp.2671-2699, 2007.

W. W. Cohen, R. E. Schapire, and Y. Singer, Learning to order things, Proceedings of Advances in Neural Information Processing Systems, pp.243-270, 1997.

D. Cossock and T. Zhang, Statistical Analysis of Bayes Optimal Subset Ranking, IEEE Transactions on Information Theory, vol.54, issue.11, pp.5140-5154, 2008.
DOI : 10.1109/TIT.2008.929939

K. Crammer and Y. Singer, On the algorithmic implementation of multiclass kernel-based vector machines, Journal of Machine Learning Research, vol.2, pp.265-292, 2002.

O. Dekel, C. D. Manning, and Y. Singer, Log-linear models for label ranking, Proceedings of Advances in Neural Information Processing Systems, 2003.

K. Dembczynski, W. Kotlowski, and E. Huellermeier, Consistent multilabel ranking through univariate losses, Proceedings of the International Conference on Machine Learning, pp.1319-1326, 2012.

J. Duchi, L. W. Mackey, and M. I. Jordan, On the consistency of ranking algorithms, Proceedings of the International Conference on Machine Learning, pp.327-334, 2010.

Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, An efficient boosting algorithm for combining preferences, Journal of Machine Learning Research, vol.4, pp.933-969, 2003.

K. Järvelin and J. Kekäläinen, Cumulated gain-based evaluation of IR techniques, ACM Transactions on Information Systems, vol.20, issue.4, pp.422-446, 2002.
DOI : 10.1145/582415.582418

T. Joachims, Optimizing search engines using clickthrough data, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '02, pp.133-142, 2002.
DOI : 10.1145/775047.775067

W. Kotlowski, K. Dembczynski, and E. Huellermeier, Bipartite ranking through minimization of univariate loss, Proceedings of the International Conference on Machine Learning, pp.1113-1120, 2011.

Q. V. Le and A. J. Smola, Direct optimization of ranking measures, 2007.

J. Lee, Introduction to smooth manifolds. Graduate texts in mathematics, 2003.

T. Y. Liu, Learning to Rank for Information Retrieval, Foundations and Trends?? in Information Retrieval, vol.3, issue.3, pp.225-331, 2009.
DOI : 10.1561/1500000016

P. D. Ravikumar, A. Tewari, and E. Yang, On ndcg consistency of listwise ranking methods, Journal of Machine Learning Research -Proceedings Track, vol.15, pp.618-626, 2011.

C. Scott, Surrogate losses and regret bounds for cost-sensitive classification with example-dependent costs, Proceedings of the International Conference in Machine Learning, pp.153-160, 2011.