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Abstract 

It is known that arteries experience significant axial stretches in vivo. Several authors have 

shown that the axial force needed to maintain an artery at its in vivo axial stretch does not 

change with transient cyclical pressurization over normal ranges. However, the axial force 

phenomenon of arteries has never been explained with microstructural considerations. In this 

paper, we propose a simple biomechanical model to relate the specific axial force 

phenomenon of arteries to the predicted load-dependent average collagen fiber orientation. It 

is shown that (a) the model correctly predicts the authors’ experimentally measured biaxial 

behaviour of pig renal arteries and (b) the model predictions are in agreement with additional 

experimental results reported in the literature. Finally, we discuss the implications of the 

model for collagen fiber orientation and deposition in arteries. 

 

Key terms 

Biomechanics; Arterial wall; axial stretch; anisotropy; biaxial testing; modelling; collagen 

fibers; law of mixtures, inverse identification.
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1. Introduction 

It is known that arteries experience significant axial stretches in vivo [14, 16, 24, 25].  

According to Humphrey et al. [16], the axial component of wall stress plays a fundamental 

role in controlling arterial geometry, structure, and function. Given the explosion of interest in 

mathematical modeling of arterial growth and remodeling [4, 8, 12, 17, 19, 24], the 

fundamental role of axial wall stress has been investigated in conceptual and theoretical 

models of arterial growth and remodeling [7, 8, 16, 29]. 

 

The most important result in the literature regarding the role of axial stretch in arteries is that 

the axial force needed to maintain an artery at its in vivo axial stretch does not change with 

transient cyclical pressurization over normal ranges [1, 3, 5, 15, 24, 25]. This is a very 

interesting phenomenon and the specific biaxial behaviour of blood vessels has received much 

attention by numerous authors [20, 22, 23, 26]. 

 

Although mathematical models considering the three primary structural constituents of 

arterial walls (elastin, collagen, and smooth muscle) are now able to predict arterial anisotropy 

and residual stresses [4, 17, 21], to the authors’ knowledge, conceptual understanding of the 

in vivo axial force phenomenon has not been explained through the use of biomechanical 

models. 

 

In this paper, we propose a biomechanical model based on the law of mixtures to relate the 

specific biaxial behaviour of arteries to the predicted load-dependent average collagen fiber 

orientation. It is shown that the model correctly predicts both (a) the authors’ experimentally 

measured biaxial behaviour of pig renal arteries and (b) additional experimental results 
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reported in the literature regarding the biaxial behaviour of arteries. Finally, we discuss the 

implications of this model for collagen fiber orientation and deposition in arteries. 

 

2. Material and methods 

 

2.1 Model for predicting axial load and internal pressure in arteries 

 

The objective of this paper is to focus on the relationship between the axial force and the 

internal pressure applied to a cylindrical segment of an artery (Fig. 1). The basic equation of 

equilibrium for a cylindrical tube subjected to the combined loading of axial load and internal 

pressure is: 

 

 Fz = 2π 
o

i

r

r

zz rdr)r( – π ri
2
 P (1) 

 

where Fz is the measured axial force, called reduced axial force [12]; ro and ri are respectively 

the current outer and inner radii of the cylinder in the deformed configuration; σzz is the axial 

stress in the wall; and P is the pressure inside the artery (the pressure outside is neglected).  

 

The internal pressure may be related to the circumferential and radial stress in the arterial wall 

as follows:  

 

 P =   

o

i

r

r

rr
r

dr
)r()r(     (2) 

 

where σθθ and σrr are respectively the circumferential and radial stresses in the wall.  
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An arterial wall is constructed of a network of collagen fibers and smooth muscle cells 

reinforcing an amorphous matrix [15]. The microstructure of the arterial tissue is very 

complex and it is preferred to represent it by an equivalent material model.  

In this study, the equivalent material model is based on the law of mixtures. It neglects the 

mechanical contribution of the amorphous matrix and considers four families of parallel fibers 

[27, 28] aligned in preferred directions that are oriented at an angle, Φ, relative to the 

circumferential direction (Fig. 2). Conceptually, the fiber model shown in Fig. 2 supports 

loads (hence, stresses) mainly along the fiber directions. The tensile/compressive stress in the 

fibers is denoted σΦ. The four angles are Φ= 0°, Φ =90°, Φ =+β and Φ =–β. The fiber families 

at Φ =+β and Φ =–β represent helically distributed fibers (see schematic in Fig. 1) which are 

known to be responsible for coupling effects between circumferential and axial stresses [12]. 

 

Assuming that the fibers at angle +β and –β contribute similarly to the arterial stresses σθθ and 

σzz so that ρβ denotes the sum of volume fractions of fibers at +β and –β, the stresses in the 

circumferential and axial directions within the arterial wall are determined in terms of stresses 

in the fibers at orientation Φ and the volume fraction of fibers (see details in the Appendix): 

 

σθθ – σrr = ρβ σβ cos
2
(β) + ρ0 σ0 (3) 

σzz – σrr = ρβ σβ sin
2
(β) + ρ90 σ90 (4) 

 

where ρΦ denotes the volume fraction of the fibers oriented at angle Φ. 
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Assuming incompressibility and neglecting shear in the tension/inflation tests, the following 

deformation gradient tensor (from the stress-free configuration to the loaded state) written in 

cylindrical coordinates is used to describe the artery deformation state: 
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where λθ and λz are, respectively, the stretches in the circumferential and axial directions. 

Uniform deformation of the cylindrical artery is assumed for the axial stretch. Radial 

variations of λθ are considered, satisfying: 
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where R is the radial coordinate in the reference undeformed configuration, R i is the inner 

radius in the reference undeformed configuration, α is the opening angle [5] in radian relating 

the traction-free to the stress-free state (the definition of the opening angle for an open sector 

of artery is shown in Fig. 3). Note that, in practice, we measure the outer radius ro, and the 

inner radius is deduced under the assumption of incompressibility according to: 
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In this study, it is assumed that the fibers are hyperelastic with an exponential strain energy 

function (equation A6), yielding the following relationships between σβ, σ90 and σ0 and the 

stretch ratios; 

 

 ρβ σβ = kβ1(λβ0
2
-1) exp[kβ2(λβ0

2
-1)

2
] λβ0

2 
(7) 

 ρ90 σ90 = k901(λz
2
 -1) exp[k902(λz

2
 -1)

2
] λz

2
  (8) 

 ρ0 σ0 = k01(λθ
2
 -1) exp[k02(λθ

2
 -1)

2
] λθ

2 
 (9) 

 

where kβ1, kβ2, k901, k902, k01 and k02 are material parameters and λβ0 is the stretch of the 

helical fibers (see details in the Appendix) 

 

Combining Eqs (2), (3), (7) and (9), the internal pressure predicted by the model can be 

written in the following form; 
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Combining Eqs (1), (4), (7) and (8), the axial force predicted by the model can be written in 

the following form; 

      2
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Where ra is defined in the appendices (Eq. A22) and )(F
~
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only and not on P ( 0F
~
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~
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In the following, 0z F
~

F
~
  will be designated F

~
. Note that Eq (11) is able to predict the F-P 

relationship from the knowledge of the current outer diameter and length and that it only 

depends on the orientation angle and material properties of the helical fibers.  

 

Eventually, the proposed material equivalent model has 8 parameters to be determined:  

- the opening angle: α 

- the orientation angle of helical fibers in the stress-free state: β0  

- the stiffness property of the helical fiber: kβ1  

- the exponential stiffening coefficient of the helical fibers: kβ2 

- the stiffness property of the circumferential fibers: k01 

- the exponential stiffening coefficient of the circumferential fibers: k02. 

- the stiffness property of the axial fibers: k901 

- and the exponential stiffening coefficient of the axial fibers: k902. 

 

The opening angle is measured experimentally (section 2.2).  

The identification of the other material parameters is achieved in 3 stages: 

1. First, we identify β0, kβ1 and kβ2 by calibrating equation (11) against experimental F-P 

data.  

2. Second, we identify k01 and k02 by calibrating equation (10) against experimental P 

data. Equation 10 also involves β0, kβ1 and kβ2 but they have already been identified at 

stage 1. 

3. Third, we identify k901 and k902 by calibrating equation (12) against experimental F0 

data (axial tensile tests at zero pressure).  
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The identification is achieved by maximizing the coefficient of determination R
2
 which is 

defined such as: 

R
2
 = 1 - 

 
2

Y

n

1i

2

ii

n

Y
~

Y




  (13) 

where Yi is a measurement (F at stage 1, P at stage 2), iY
~

 is the model prediction ( F
~

predicted 

by Eq. (11) at stage 1, P
~

 predicted by Eq. (10) at stage 2), n is the number of measurements 

and Y is the standard deviation of the measurements. 

 

2. 2. Experiments on porcine artery specimens 

 

Pairs of porcine kidneys attached to intact abdominal aortic segments were acquired post-

mortem from a local processing facility in Lexington, SC. Based on information provided by 

the facility, the specimens were obtained from 2-3 yr old sows (weight range approx. 159-205 

kg). After removal from the carcass, the arterial specimens remained immersed in solution 

until the mechanical loading process was completed; all experiments were performed within a 

few hours of tissue removal from the pig. When detaching the porcine renal and first branch 

specimens from the kidneys, the in situ axial and circumferential stretches were estimated 

through measurement of (a) the axial contraction of the artery specimen during removal and 

(b) the final outer diameter of the artery specimen after removal. Opening angle α was also 

measured from cylindrical ring specimens cut from the artery after its removal.  

 

To obtain an estimate for the in situ axial stretch, markers were placed on the renal artery 

specimen at a few locations along the length. Then, with a ruler in the field of view, a camera 

was placed perpendicular to the renal artery and an image of the specimen and ruler was 

acquired prior to excision. After excision, another image was acquired of the specimen 



10 

 

without altering the camera settings and with a ruler again in the field of view. Using these 

images, post-processing was performed to obtain estimates for the stretch ratio between the 

markers. The average of all stretch ratios is used in our studies. 

 

To obtain an estimate for the in situ circumferential stretch ratio, the same images were again 

post-processed.  Here, the diameter of the vessel was obtained by post-processing of the 

images at several clearly identifiable locations along the vessel, before and after excision. 

Finally, the data is used to obtain estimates for the circumferential stretch ratio at several 

locations, with the average used in our studies. 

 

Mechanical testing using both pressurization and axial loading was carried out on a Bose 

Electroforce Biodynamic 5100 Test Bench (Bose, Eden Prairie, MN). The Bose Test Bench 

includes (a) 22N load cell, (b) micro-pump capable of delivering 102ml/min, (c) catheter-

mounted pressure sensor with a range of 0-300mm Hg, (d) actuator that can produce a total 

displacement of 13mm, (e) environmental chamber to maintain hydration of the arterial 

specimens (Fig. 4A) and (f) Bose software to control the entire mechanical loading process.  

 

To perform the experiments, each arterial specimen was mounted to hollow cylindrical, barb-

ended Luer stubs (McMaster-Carr) using 3-0 silk sutures. After the specimen was sutured 

onto the Luer stubs, the stub-artery combination was attached to the end fixtures of the Bose 

Test Bench and immersed in a bath of 1X phosphate-buffered saline (PBS) solution within the 

environmental chamber (see Fig. 4B). The specimen was immediately perfused internally 

with the same solution at room temperature and perfusion was maintained throughout the 

loading process. 
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Arterial specimens were pre-conditioned mechanically by 5 cycles of stretching to 3.5% 

beyond the traction-free length, L0. Then, experiments were performed at a constant perfusion 

rate over the range 20mmHg ≤ P ≤ 140mmHg, while maintaining a constant axial stretch ratio 

in the range encompassing 1.00  ≤  λz  ≤  1.25. To determine the axial stretch ratio, the initial 

(undeformed) length was defined to be the specimen length between the sutured ends when 

the axial load is zero.  

 

During the mechanical loading process, the deformed outer diameter and length of the 

specimen were determined at each loading step by analyzing images of the specimen. In this 

study, all images were acquired using a Grasshopper 50S5M 5.0 megapixel CCD camera 

(Point Grey, Richmond, BC) with a 28mm Nikon lens. Image acquisition was performed 

using Vic-Snap 2010 Software (Correlated Solutions, Columbia, SC). The images were 

analyzed using ImagePro Plus 7 image analysis software (Media Cybernetics, McClean, VA) 

to determine the average deformed diameter in the central region and the deformed length. To 

obtain the axial and circumferential strains during the mechanical experiment, the procedures 

outlined above for measurement of in situ dimensions were essentially repeated at each load 

step to determine the current diameter and current length at selected marker positions along 

the length. These were then used with the reference values to obtain an average axial stretch 

ratio and average circumferential stretch ratio.  

 

Ten segments of pig renal arteries from five different pigs were tested using this protocol. 

Five segments came from the right renal artery (RRA) of the pigs, one from the left renal 

artery (LRA) and four others came from the left segmental artery (LSA) of the pigs, which is 

the first branch of the renal artery entering the kidney.  
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3. Results 

 

Equations (10) and (11) present a model for the biomechanical behaviour of arteries subjected 

simultaneously to the actions of an axial force and internal pressure. For example, with 

knowledge of λz and λθ(Ri), typical graphs of P
~

 can be obtained (Eq. 10) and with knowledge 

of λz, λθ(Ri) and P, typical graphs of F
~

 can be obtained (Eq. 11). The computations are 

performed in Matlab where the integrals of Equations (10) and (11) have been discretized.  

 

Table 1 presents a summary of the artery measurements for all specimens.  The traction-free 

outer diameter of the main renal artery is significantly greater that that of its first branch 

(segmental artery), 7.8±1.1 mm vs. 5.1±0.6 mm (two-tailed t-test, P < 0.01), as expected in a 

diverging, branched arterial tree.  In addition, the arterial wall in the stress-free reference 

configuration is significantly thicker in the main renal artery than in the first branch vessel 

(1.5±0.4 mm vs. 1.1±0.1 mm, P=0.045, 1-tailed t-test).  Measured opening angles were not 

significantly different between the main renal artery and the first segmental artery.   

 

The identified values for all the parameters of this model are reported in Table 2. It should be 

noted that the small number of specimens and the large variability among samples did not 

allow us to identify any statistically significant differences in fitted parameters between the 

main renal artery and its first branch. In particular, the fitted fiber angle parameter, 0, was 

not significantly different between the main renal artery and the first branch vessel (40±30 

vs. 47±28, NS).  It is emphasized that the β0 value, along with the kβ1 and kβ2 parameters, 

has been identified by calibrating the model given in Eq (11) against the experimental F-P 

curves. The k01 and k02 parameters have been identified by calibrating the model given in 

Eq (10) against the experimental P curves. The coefficients of determination R
2
 of both 
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calibrations are reported in Table 2. A perfect fit corresponds to R
2
=1. Six out of 10 F-P fits 

have a coefficient of determination larger than 0.7 which shows that our model is able to 

reproduce very satisfactorily the F-P behaviour of the arteries. For the same arteries, the 

prediction of the P curves also has fairly good coefficients of determination.  

 

Parameters k901 and k902 were identified from the values of the axial load at the beginning of 

each pressure controlled test. Coefficients of determination larger than 0.75 are obtained for 9 

out of 10 samples (Tab 2) for the identification of k901 and k902. 

 

Figure 5 presents a direct comparison of the F-P measurements from two of our porcine artery 

experiments for various values of axial stretches, λz, and model predictions using Eq (11).  As 

shown in Fig. 5, there is very good to excellent agreement between the experimental data and 

theoretical predictions for the porcine renal artery specimens. 

 

Figure 6 presents a direct comparison of the P measurements from the same porcine artery 

experiments for various values of λθ ratios, and model predictions using Eq (10).  As shown in 

Fig. 6, there is also good agreement between the experimental data and theoretical 

predictions. 

 

Figure 7 presents a direct comparison of the axial stress measurements (ratio between the 

measured values of F0 and the current cross section area of the vessel wall) from the same 

porcine artery experiments for various values of λz ratios, and model predictions using 

Eq (12).  There is also very good agreement between the experimental data and theoretical 

predictions. 
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4. Discussion 

 

4.1. The typical F-P behaviour of arteries 

 

Typical experimental F-P curves for arteries have been reported in many scientific papers [1, 

3, 5, 15, 24, 25]. These curves generally have the shape which is displayed in Fig. 5 by our 

recent experimental results and model predictions. It is noted that, depending upon the axial 

stretch λz, the slope dF/dP may be negative or positive. Most importantly, there is always an 

axial stretch λz for which dF/dP=0.   

 

This specific F-P behaviour is actually a consequence of the presence of helical fibers as 

shown in our equivalent material model. This is an original result because, while several 

scientific papers have reported the existence of an axial stretch for which dF/dP = 0, the 

connection of this observation to the orientation angle of the helically arranged fibers of an 

equivalent material model has not previously been reported.  

 

This result is not restricted to our experimental data. For instance, as shown in Fig. 8, Hu et al. 

[14] reported F-P curves for a pig basilar artery. Also shown in Fig. 8 are the predicted trends 

using Eq (11), where it is clear that the experimental trends of Hu et al [14] are predicted by 

the model. The β0 value of the model used for plotting the curves of Fig. 8 is 32.6°.  

 

4.2. Specific cases 

In our model, we considered four families of fibers, but the results reported in Tab. 2 show 

that for 7 out of 10 specimens, the F and P experimental data can be reproduced by the model 
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without using the circumferential fibers in the model (k01=0). This is the case for instance of 

RRA pig ID#5 for which the F and P curves are shown in Fig. 5 and Fig. 6.  

 

In this specific case, Eq. 4 may be rewritten: 

 

σzz – σrr = σθθ tan
2
(β) + ρ90 σ90 (14) 

 

Note that β is the current orientation angle and it is related to the orientation angle β0 in the 

stress free state according to rotation equations which are detailed in Appendix. 

 

Our model was devised for thick-walled membranes as the radius/thickness ratio is less than 

5. However, it is interesting to consider the F-P relationship in the membrane approximation 

(h<<ri) as this approximation may be satisfied for larger arteries. In this case, a single radial 

position is used for estimating σθθ and σrr, conventionally ri and it may be written: 

  

P  ≈  σθθ(ri) h/ri     and     σrr(ri) ≈ 0 (15) 

 

Combining Eqs (14) and (15) into Eq (1), one may find an interesting F-P relationship for 

thin-walled arteries having only helical fibers oriented at an angle 0°< β<90°: 

 

F  ≈  1)(tan2Pr 22

i   (16) 

 

Even though Eq. (16) is only satisfied under very specific assumptions, it is worth noting that 

the only combination of (F, P) for which dF/dP=0 is, as previously introduced by Badel et al. 

[2]: 
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












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2

1
tanβ 1 =35.3° (17)  

This means that an average angle β ≈ 35.3° is required for observing dF/dP=0 in the specific 

case of thin-walled arteries having only helical fibers oriented at an angle 0°< β<90°. 

 

 

4.3.  Implications on the orientation and deposition of collagen fibers through 

remodeling processes  

 

We have shown that the specific F-P behavior of arteries can be fully explained by the 

presence of helical fibers which induce a coupling between circumferential and axial stresses. 

Even if in reality they are not all aligned along a single direction, helical fibers have already 

been observed in arteries. For instance, Haskett et al.  [10] measured fiber alignment for the 

human aorta using small angle light scattering (SALS). However their conclusion was that the 

regression fit of tensile curves predicted different fiber alignment angles than those measured 

by SALS. Comparison with a direct observation of the histological microstructure using 

micrographs may be more in agreement with the mechanical predictions [13]. Measurement 

of fiber alignment angles using multiphoton microscopy is another promising alternative [11].   

 

Our prediction for some specific arteries that an angle β ≈ 35.3° yields dF/dP=0 is in 

agreement with the fact that collagen fiber angles in this range have also been observed in situ 

[13].  

 

Accordingly, the presence of helical fibers oriented in this range in vivo may explain why it is 

supposed by several authors [1, 3, 5, 15, 24, 25] that the axial force in vivo remains almost 
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constant in similar arteries over the normal range of physiologic pressures. However, more 

precise comparison with actual histological microstructures should be achieved, and future 

work in our laboratories will include histological measurements to improve understanding 

regarding this issue. 

 

The impact of our result is important for predicting the deposition of collagen fibers. Indeed, 

if dF/dP=0 represents a normal configuration for the artery in vivo, this can be reached by the 

deposition of collagen fibers at a certain angle to the circumferential direction.  Several 

scientific papers have reported that remodeling processes may act on the deposition of 

collagen fibers [9] and that axial stresses may affect these remodeling processes. This view is 

fully consistent with our model.  

 

4.4. Identification of the k901 and k902 parameters 

Parameters k901 and k902 were identified from the values of F0 at the beginning of each 

pressure controlled test. Even though the data results in very good R
2
 values (see Tab. 2, last 

column) and very good curve fitting agreement (Fig 7), in general the identification should be 

carried out with a separate axial tensile test at a controlled zero pressure before doing the 

other pressure controlled tests. Though the separate axial tensile test was not performed in the 

current study despite this limitation, the model accurately predicts the incremental variations 

of axial loads in arteries when pressures and axial stretches vary. In principle, the model 

should be restricted to such incremental predictions before separate axial tensile experiments 

are performed in future studies.  

 

 

4.5. Limitations and future improvements 
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Arteries are usually made up of several layers, and Eq (11) is a monolayer model averaging 

the effects of the various layers. Therefore, in order to be more complete, multilayer modeling 

should be considered and scatter in the fiber orientation angles should also be introduced into 

the model [6]. Moreover, since collagen is initially crimped and gradually becomes engaged 

as the vessel stretches, this effect should play a role in the reorientation of the fibers but it is 

not taken into account in our model. Considering gradual fiber recruitment [11] is a promising 

improvement to be considered.  

 

Separate experiments, such as uniaxial and biaxial loading, could also be performed on the 

media and on the adventitia of arteries [18] to identify the properties of the individual layers, 

though this was not done in our porcine renal artery experiments. 

 

Models in the literature usually consider the contribution of the amorphous matrix in the 

artery through a Neo-Hookean hyperelastic potential [12]. This was neglected in the final 

expression of the Cauchy stress in our model (Eq. A16). It was verified a posteriori that 

varying the Neo-Hookean parameter values within normal ranges for this parameter 

(0 < c < 100 kPa [4, 12, 13]) does not affect the F-P curves. Regarding the P predictions, 

considering the Neo-Hookean term did not help either to improve the R
2
 coefficients. This 

means that the circumferential mechanical response is dominated by the fiber behavior, which 

is consistent with similar results obtained recently on veins for instance [26]. 

 

Finally, the effect of testing conditions such as temperature has been assumed to be negligible 

but this needs to be confirmed. Moreover, the axial stretch may not be perfectly uniform in all 

the specimens due to ‘end effects’. End effects occur in tensile tests when the length/diameter 
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ratio is low. This is the case of most of the specimens tested in this study and this may affect 

the P vs λθ behaviour, which may explain the low coefficients of determination reported in 

Table 2 for some specimens.   

 

Further validation of the key findings in this study will employ a larger number of 

experimental tests for providing confirmation of these original results and offering a strong 

foundation for suggesting implications regarding the development of vascular disorders, the 

adaptation to alterations, and the extension to human arteries. 

 

 

5. Conclusions  

 

In this paper, we have proposed a simple biomechanical model and demonstrated it can 

predict the specific relationship between axial force and internal pressure for pig renal arteries 

and for other experimental results reported in the literature.   

 

Several implications of the model predictions have been highlighted in the process of 

presenting the findings. For the homeostasis condition where the axial force is independent of 

the applied pressure, our results indicate that it is fully controlled by the orientation angle of 

helical collagen fibers. Therefore, the deposition of collagen fibers in arteries has a direct 

impact on this homeostasis condition as the axial force can only remain independent of the 

applied pressure if the average angle is preserved.  
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List of figures and Figure captions 

 

Figure 1: Schematic of the cylindrical segment of artery and the loading system (in dotted 

lines, schematic of the helically arranged fibers). 

 

Figure 2: Schematic of a network of fibers with two symmetric orientations. 

 

Figure 3: Diagram defining the opening angle. It is known that the “traction-free” state in 

which the artery is excised from the body is not a stress-free state. Thus the arterial ring 

springs open when cut in a radial direction. It is assumed that the open sector is the 

undeformed stress-free reference configuration. No axial deformation is assumed to occur 

during radial separation, so that the axial stretch between the stress-free to traction-free state 

is approximated to 1. 

 

Figure 4: Pictures of the experimental test performed on the segments of artery. (a) 

Environmental chamber in Bose test bench and vertically oriented camera; (b) representative 

example of porcine renal artery attached to barbed Luer fixtures inside environmental 

chamber for mechanical testing.  Scale bar in mm. 
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Figure 5: F-P curves obtained on two different specimens (experiment and model):  

(a): RRA on pig ID#5, coefficient of determination R
2
=0.59 

(b): LSA2 on pig ID#3, coefficient of determination R
2
=0.87 

 

Figure 6: P vs λθ curves obtained on two different specimens (experiment and model):  

(a): RRA on pig ID#5, coefficient of determination R
2
=0.65 

(b): LSA2 on pig ID#3, coefficient of determination R
2
=0.7 

 

Figure 7: σzz vs λz curves obtained on two different specimens (experiment and model):  

(a): RRA on pig ID#5, coefficient of determination R
2
=0.96 

(b): LSA2 on pig ID#3, coefficient of determination R
2
=0.85 

 

Figure 8: Qualitative comparison between experimental data obtained for a pig basilar artery 

[14] and our model for the same artery.  

(a) Experimental force vs pressure curves obtained for a pig basilar artery [14] 

(b) Theoretical force vs pressure curves obtained with Eq. (11) for the same artery 
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Appendix 

 

Let eΦ0 denote a unit vector in the stress-free configuration defined such that: 
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Due to the deformation, this vector is transformed as follows: 
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where: )(sin)(cos 0

22

z0

222

0
  is the stretch in the direction aligned at an angle Φ0 in 

the stress-free configuration. 

 

This means that a vector aligned at an angle Φ0 in the stress-free configuration is transformed 

into a vector aligned at an angle Φ such that: 

 

 tan(Φ) = tan(Φ0) [λz
 
/ λθ]

 
(A3) 

 

Denoting the initial fiber orientations of the model as +β0 and -β0 (stress-free configuration) 

for the helically arranged fibers, and considering fiber rotation to an angle +β and -β during 

mechanical loading, the following expression is obtained relating β0 and β: 

 

 tan
2
(β) = tan

2
(β0) [λz

2 
/ λθ

2
]

 
(A4) 
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The strain energy function considered in this study may be written as: 

mm909000  

 
(A5) 

Where ρΦ denotes the volume fraction of the fibers oriented at angle   and   denotes the 

strain energy function of the fibers oriented at angle   (Note that  represents the 

contribution of fibers at β0 and – β0), ρm denotes the volume fraction of the matrix and m is 

the strain energy function of the matrix (NeoHookean type).  

 

In this study, we use the following form of strain energy function for the fibers: 
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Assuming incompressibility, the Cauchy stress tensor may be written: 
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Where F  is the deformation gradient tensor, E  is the Green-Lagrange strain tensor, c is a 

scalar and I  is the identity tensor. 

It can be derived: 
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So:  
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Eventually, the whole Cauchy stress for the material model of this study may be written: 

Ic

00

00

00

C2

100

000

000

000

010

000

)(sin00

0)(cos0

000

2

z

2

2

z

2

10909000

2

2 















































































 







 (A14) 

Finally, the following equations can be derived: 
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Neglecting the NeoHookean contribution, one obtains: 
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Feeding Eq. 2 with the derived stress expressions, the prediction of the pressure is: 
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Feeding Eq. 1 with the derived stress expressions, the prediction of the axial force is: 
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It is recalled that: 
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So )r(rr varies from –P to 0 for r varying between ri and ro. 

It means that there exists a radius value, denoted ra, such as: ri<ra<ro and:  
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 Eventually: 
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The value of ra is calibrated by running repetitively the identification of the material 

properties. At the first run, it is assumed: ra=ri+h/2, where h=ro-ri. Then, at the next iteration, 

for each load step, using Eq. (A20), it can be written: 
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The identified values of the material properties vary less than 1% after 3 iterations of this 

repeated process.
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Table 1:  Measured dimensions of the tested arteries. 

Pig 

ID 

Specimen Traction-

free 

outer 

diameter 

(mm) 

Traction-

free 

length 

(mm) 

α 

(°) 

Thickness in the 

reference stress-free 

configuration (mm) 

1 RRA 7.22 16.6 120 1.12 

1 LSA 5.52 9.5 120 1.06 

2 RRA 7.47 11.7 116 1.7 

2 LSA 4.77 11 94 1.22 

3 RRA 6.59 10.77 118 2.26 

3 LSA 5.73 10.87 82 1.25 

3 LSA 4.34 18.89 46 0.98 

5 RRA 7.8 22.3 314 1.14 

6 LRA 7.82 12.8 128 1.65 

6 RRA 9.72 24.8 60 1.23 
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Table 2:  Identified model parameters of the tested arteries. 

 

Pig 

ID 

Speci-

-men 

kβ1  (kPa) kβ2 0 k01  

(kPa) 

k02 k901  

(kPa) 

k902 R
2
  

of 

F-P 

R
2
 of 

P vs 

λθ 

R
2
 of 

F0 vs 

λz 

1 RRA 9.4 13.8 61° 0 0 15.7 8.2 0.91 0.75 0.87 

1 LSA 61.6 4.4 65° 0 0 14.6 0.3 0.98 0.42 0.85 

2 RRA 2.49 1.75 37° 0 0 121 4.4 0.81 0.36 0.85 

2 LSA 69.5 3.3 55° 21.8 2.97 36.6 5.2 0.55 0.44 0.85 

3 RRA 34.4 0.46 5° 0 0 2.98 27 0.97 0.24 0.79 

3 LSA 203 0.04 5° 0 0 0.27 72 0.77 0.3 0.3 

3 LSA 45.2 2.22 63° 6 0.45 87 0.1 0.87 0.7 0.80 

5 RRA 19.7 2.6 49° 0 0 71.3 1.6 0.59 0.65 0.96 

6 LRA 6220 0 5° 0 0 13.9 9.6 0.52 0.4 0.75 

6 RRA 3780 0.13 80° 0.01 1.7 27.2 0.4 0.3 0.24 0.91 
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Figure 4 
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