
HAL Id: hal-00834061
https://hal.science/hal-00834061

Submitted on 14 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal verification of Mobile Robot Protocols
Béatrice Berard, Laure Millet, Maria Potop-Butucaru, Yann Thierry-Mieg,

Sébastien Tixeuil

To cite this version:
Béatrice Berard, Laure Millet, Maria Potop-Butucaru, Yann Thierry-Mieg, Sébastien Tixeuil. Formal
verification of Mobile Robot Protocols. [Research Report] LIP6. 2013. �hal-00834061�

https://hal.science/hal-00834061
https://hal.archives-ouvertes.fr

Formal Verification of Mobile Robot Protocols

Béatrice Bérard, Laure Millet, Maria Potop-Butucaru,
Yann Thierry-Mieg and Sébastien Tixeuil.

Université P. et M. Curie, LIP6, Paris, France
E-mail: firstname.lastname@lip6.fr

June 14, 2013

Abstract

Mobile robot networks emerged in the past few years as a promising distributed computing
model. Existing work in the literature typically ensures the correctness of mobile robot proto-
cols via ad hoc handwritten proofs, which, in the case of asynchronous execution models, are
both cumbersome and error-prone.

In this paper, we propose the first formal model and general verification (by model-checking)
methodology for mobile robot protocols operating in a discrete space (that is, the set of possible
robot positions is finite). Our contribution is threefold. First, we formally model using synchro-
nized automata a network of mobile robots operating under various synchrony (or asynchrony)
assumptions. Then, we use this formal model as input model for the DiVinE model-checker
and prove the equivalence of the two models. Third, we verify using DiVinE two known proto-
cols for variants of the ring exploration in an asynchronous setting (exploration with stop and
perpetual exclusive exploration).

The exploration with stop we verify was manually proved correct only when the number
of robots is k > 17, and n (the ring size) and k are co-prime. As the necessity of this bound
was not proved in the original paper, our methodology demonstrates that for several instances
of k and n not covered in the original paper, the algorithm remains correct. In the case of the
perpetual exclusive exploration protocol, our methodology exhibits a counter-example in the
completely asynchronous setting where safety is violated, which is used to correct the original
protocol.

1

1 Introduction

The variety of tasks that can be performed by autonomous robots and their complexity are both
increasing [1]. Many applications envision groups of mobile robots self-organizing and cooperating
toward the resolution of common objectives, in the absence of any central coordinating authority.

A recent trend was to shift from the classical continuous setting where robots evolve in a con-
tinuous two-dimensional Euclidian space, to a discrete one where space is partitioned into a finite
number of locations. The discretization process is motivated by practical aspects with respect to the
unreliability of sensing devices used by the robots as well as inaccuracy of their motorization [2].
This discrete space is conveniently represented by a graph, where nodes represent locations, and
edges represent the possibility for a robot to move from one location to the other. While the discrete
setting permits to simplify robot models by reasoning on finite structures, it significantly increases
the number of symmetric configurations when the underlying graph is also symmetric (e.g. a ring)
and thus the complexity of proving the correctness of protocols [3, 4, 5].

We consider a distributed system of k mobile robots that have limited capabilities: they are
identical and anonymous (they execute the same algorithm and they cannot be distinguished using
their appearance), they are oblivious (they have no memory of their past actions) and they have
neither a common sense of direction, nor a common handedness (chirality). Furthermore robots
do not communicate in an explicit way. However they have the ability to sense the environment
and see the position of the other robots. Robots operate in three phase cycles: Look, Compute
and Move. During the Look phase robots take a snapshot of the graph together with other robots’
positions. The collected information is used in the Compute phase in which robots decide to move
or to stay idle. In the Move phase, robots may move to one of their adjacent nodes computed in
the previous phase. In the original model introduced by Suzuki & Yamashita [6] (that described
two variants [1]: FSYNC, for fully synchronous, and SSYNC, for semi-synchronous), an arbitrary
non-empty subset of robots execute the three phases synchronously and atomically. This model was
later generalized by Flocchini et al. [7] to handle full asynchrony and remove atomicity contraints
(this model is called ASYNC [1], for asynchronous, in the sequel). One of the key differences
between the FSYNC, SSYNC, and ASYNC models in the discrete setting is that the ASYNC model
allows a robot to compute and move based on an outdated view of the system. It is notorious that
handwritten proofs for protocols operating in the ASYNC model are hard to write and read, due to
many instances of case-based reasoning that is both cumbersome and error-prone.

Model-checking [8, 9] is an appealing tool for verifying safety and liveness properties of finite
systems, and has been successfully used for the verification of various distributed systems [10, 11,
12, 13, 14, 15, 16, 17] ranging from classical shared memory (consensus, transactional memory)
to population protocols. To our knowledge, in the context of mobile robots operating in discrete
space, only two previous attempts, by Devismes et al. [18] and by Bonnet et al. [19], investigate
the possibility of automating verification of mobile robots protocols. The first paper uses LUSTRE
to describe and model-check the problem of exploration with stop of a 3 grid by 3 robots in the
SSYNC model, and to show by exhaustive searching that no such protocol can exist. The second
paper considers the perpetual exclusive exploration by k robots of n-sized rings, and mechanically

2

generates all unambiguous protocols for k and n in the SSYNC model (that is, all protocols that
do not have symmetric configurations). Those two works differ from our proposal in several ways.
First, they are restricted to the simpler SSYNC model rather than the more general and more com-
plex ASYNC model. Second, they are either specific to a hardcoded topology (e.g., a 3 grid [18])
that prevents easy reuse in more generic situations, or make additional assumptions about config-
urations and protocols to be verified (e.g. unambiguous protocols [19]) that prevent combinatorial
explosion but forbid reuse for proof-challenging protocols, which would most benefit from auto-
matic verification.

In this paper, we propose the first formal model and general verification (by model-checking)
methodology for mobile robot protocols operating in a discrete space. Our contribution is threefold.
First, we formally model using synchronized automata a network of mobile robots operating under
various synchrony (or asynchrony) assumptions (namely, FSYNC, SSYNC, and ASYNC). We use
linear temporal logic (a.k.a. LTL in the sequel) to specify the mobile robots tasks and permit good
expressivity and versatility. Then, we use this formal model as input model for the DiVinE model-
checker and prove the equivalence of the two models. Third, we verify using DiVinE two known
protocols for variants of the ring exploration in an asynchronous setting (exploration with stop [20]
and perpetual exclusive exploration [21]).

The exploration with stop protocol [20] we verify was manually proved correct only when the
number of robots is k > 17, and n (the ring size) and k are co-prime. As the necessity of this bound
was not proved in the original paper, our methodology demonstrates that for several instances of k
and n not covered in the original paper, the algorithm remains correct. In the case of the perpetual
exclusive exploration protocol [21], our methodology exhibits a counter-example in the completely
asynchronous setting where safety is violated, which is used to correct the original protocol and we
later verify the correction.

2 Model-checking background

We first recall the definitions of finite automata, synchronized products and LTL specifications.

Definition 2.1 (automaton) A finite automaton is a tuple M = (S,s0,Act,T) where S is a finite
set of states, s0 ∈ S is the initial state, Act is a finite set of actions and T ⊆ S×Act×S is a finite set
of transitions.

A transition (s,a,s′), written s a−→ s′, represents a transition of the automaton from state s to state s′

by executing the action a. An execution of M is a sequence of transitions (s0,a1,s1)(s1,a2,s2) . . .

written s0
a1−→ s1

a2−→ . . . , beginning in the initial state s0.
The next definition introduces the product of automata.

Definition 2.2 (product of automata) Let M1 = (S1,s01,Act1,T1) and M2 = (S2,s02,Act2,T2) be
two finite automata, let− be a new symbol which represents an absence of action, and let f : (Act1∪
{−})× (Act2∪{−})→ Act be a partial synchronization function, where f (−,−) is undefined.

The product M = (S,s0,Act,T) = M1⊗ f M2 is defined as follows:

3

• S = S1×S2 is the cartesian product of S1 and S2, with initial state s0 = (s01,s02),
• the set T of transitions contains transition (s1,s2)

c−→ (s′1,s
′
2) iff

– s1
a−→ s′1 ∈ T1, s2

b−→ s′2 ∈ T2, and c = f (a,b)
– or s1

a−→ s′1 ∈ T1, s′2 = s2, and c = f (a,−)
– or s′1 = s1, s2

b−→ s′2 ∈ T2, and c = f (−,b)

This definition can be easily extended to a set of n automata M1, . . . , Mn.

LTL is a specification language on infinite behaviors (that can be always obtained by adding
self-loops on the deadlock states of a model). Given a set P of atomic propositions, LTL formulae
are defined by the following grammar:

ϕ ::= p | ϕ1∨ϕ2 | ¬ϕ | Xϕ | ϕ1Uϕ2

where p ∈ P , ∨ is the boolean disjunction and X and U are temporal operators described below.
The formulae are interpreted over executions of automata, using a labeling function L mapping
each state to a set of atomic propositions that hold in this state.

Let M = (S,s0,Act,T) be an automaton and let L : S→ 2P be the labeling function. For an
execution e : s0

a1−→ s1
a2−→ s2

a3−→ . . . of M and a LTL formula ϕ, we note e, i � ϕ when formula ϕ is
satisfied at position i of e. The satisfaction relation is defined inductively by:

e, i � p iff p ∈ L(si)
¬ negation: e, i � ¬ϕ iff e, i 2 ϕ

∨ disjunction: e, i � ϕ1∨ϕ2 iff e, i � ϕ1 or e, i � ϕ2
X next: e, i � Xϕ iff e, i+1 � ϕ

U until: e, i � ϕ1Uϕ2 iff ∃ j ≥ i | e, j � ϕ2 and ∀i≤ k < j, e,k � ϕ1

Moreover two temporal operators ♦ and � are defined from until by: ♦ϕ = trueUϕ and �ϕ =
¬♦¬ϕ. The formula ♦ϕ states that ϕ will be true eventually in the future, and �ϕ is satisfied iff ϕ

holds forever from now on.
Temporal and boolean operators can be nested. For instance ♦�ϕ expresses that from some

position in the future ϕ always holds, and �♦ϕ states that ϕ is satisfied infinitely often.

Definition 2.3 An automaton M (with labeling L) satisfies ϕ if for each execution e of M, e,0 � ϕ.

Given an automaton M that represents all possible behaviors of a system and an LTL formula ϕ

describing a requirement on the system, LTL model-checking answers the question whether M |=ϕ.
When the answer is negative, a counter-example can be exhibited.

For our verification purpose, we opt for two model-checkers: DiVinE [22] and ITS-tools [23].
We choose these model-checkers for their ability to deal with large models and formulae, by using
parallel computation for the first one or a symbolic approach for the second one. Moreover they
provide several metrics such as the number of states and transitions and they can work on the same
input files.

4

3 Formal model for Mobile Robots Protocols

This section develops the formal modeling we propose for the robots (Section 3.1), the schedulers
(Section 3.2), and the system resulting from their composition (Section 3.3). Furthermore, we
prove equivalence between the model and its implementation (Section 3.4).

3.1 Robot modeling

The robots execute the same algorithm and have identical behavior [1], hence they can be described
by the same automaton. Figure 1 shows a finite automaton modeling a robot’s behavior. Recall that
robots operate in Look, Compute, and Move cycles.

Ready
to look

Ready to
compute

Ready
to move

Look Compute

Move

Figure 1: An automaton for the robot behavior

To start a cycle, a robot must take a snapshot of its environment, which is represented by the
Look transition. Then, it must compute its future location, represented by the Compute transition.
Finally the robot has to move according to its previous computation, this effective movement is
represented by the Move transition.

The ”Ready to move” state is divided into as many parts as there are possible movements
according to the algorithm to be verified.

Note that the original Look-Compute-Move model abstracts the precise time constraints (like
the computational power or the locomotion speed of robots) and keep only sequences of instanta-
neous actions, assuming that each robot completes each cycle in finite time. Therefore, the model
can be reduced by combining the Look and Compute phases to obtain the LC phase.

3.2 Scheduler modeling

The scheduler organizes robot movements to obtain possible behaviors with respect to FSYNC,
SSYNC or ASYNC models. Like the robots, the scheduler is modeled by a finite automaton.
For each variant of the execution model, there is one scheduler model. By synchronizing one of
these schedulers with robot automata, we obtain an automaton that represents the global behavior
of robots in the chosen model. We now describe these scheduler models for a set Rob of robots.
Unlike robots which have the same behavior regardless of the model, the scheduler is parameterized
by the model and the number of robots.

In the sequel we denote by LCi (respectively Movei), the LC (resp. Move) phase of ith robot.

5

And for a subset Sched ⊆ Rob, we denote by ∏
i∈Sched

LCi (respectively ∏
i∈Sched

Movei) the synchro-

nized transitions.
The FSYNC model expects that all robots are scheduled for execution at every phase, and

operates synchronously. The SSYNC model expects that an arbitrary non-empty subset of robots
is scheduled for execution at every phase, and operate synchronously. In the SSYNC case, the
automaton consists of a cycle, where a set ”Sched” is first chosen, then the LC and Move phases
are synchronized for this set. The automaton for SSYNC is described in Figure 2a.

The ”Sched chosen” state is divided into 2k states, where k is the number of robots in order to
represent all possible sets of Sched⊆ Rob.

In the FSYNC variant, each phase of all robots must be synchronized. In each global cycle, we
have Sched = Rob, thus all robots are always scheduled and synchronized on every phase. Hence
all global cycles are identical.

Move
Done

Sched
chosen

LC Done
Choose Sched

∏
i∈Sched

LCi

∏
i∈Sched

Movei

(a) SSYNC model

Act Done
Sched
chosen

Choose Sched

∏
i∈Sched

Acti

(b) ASYNC model

Figure 2: The Schedulers automata

The ASYNC model is totally asynchronous. Any finite delay may elapse between LC and Move
phases: A robot can move according to an outdated observation, and any set Sched ⊆ Rob can be
scheduled.

The automaton in Figure 2b represents the corresponding scheduler. In each phase a set Sched
is chosen, and all robots in this set are allowed to act: the action Acti is either LCi or Movei

depending on the current state of the ith robot.

3.3 System modeling

A configuration of the system describes the positions of robots on the graph, we denote by Pos the
set of such positions. In a graph of n nodes with k robots there are

(n
k

)
possible configurations, thus

the total number of states is multiplied by
(n

k

)
. Furthermore, the number of transitions depends on

the number of states and on the number of possible movements. Thus to represent the system as an
automaton every Movei transition must be divided according to the shape of the graph.

The model of the system is an automaton M = (S,s0,A,T) obtained by the synchronized prod-
uct defined above (section 2), with A = ∏

i∈Rob
Ai, where Ai = {LCi,Movei,−} for each robot i. From

this definition, states are of the form s = (s1, . . . ,sk,c) where si is the local state of robot i, and

6

c : Rob→ Pos is the configuration, a mapping associating each robot i with its position c(i) ∈ Pos
in the graph. The initial state is s0 = (s10 , . . . ,sk0 ,c0) where si0 is the initial local state of robot i,
and c0 is the initial configuration.

A transition of the system is labeled by a tuple a = (a1, . . . ,ak), where ai ∈ Ai for all 1≤ i≤ k
and (s1, . . . ,sk,c)

a−→ (s′1, . . . ,s
′
k,c
′) iff for all i, si

ai−→ s′i and c′ is obtained from c by updating the
positions of all robots i such that ai = Movei. To represent the scheduling, we denote by ∏

i∈Sched
Acti

the action (a1, . . . ,ak) such that ai =− if i /∈ Sched and ai ∈ {LCi,Movei} otherwise.

3.4 DVE Implementation

We implement our case study using DVE, the original DiVinE modeling language, which is also
interpreted by ITS-tools. A DVE system is composed of processes, that are automata where transi-
tions can be guarded by a ”condition” (guard) that determines if the transition can be fired.

In general, algorithms in FSYNC, SSYNC, or ASYNC models are described as a set of guarded
actions. Guards are boolean expressions added to the actions of robots to constrain their behavior.
An action can be taken only if its guard is evaluated to true. The transcription of these algorithms
in DVE is trivial. A guard of the robots algorithm is a guard on a LC transition. Transitions have
so-called ”effects” which are assignments to local or global variables. These correspond to the
actions of a guarded-action algorithm. When two transitions can be fired, one of them is chosen
nondeterministically.

Although DiVinE language has a tremendous expressive power, we had to deal with an impor-
tant restriction. The DVE language cannot synchronize more than two automata. Therefore, we
implement synchronized actions using a sequential order where look actions (LCi) are executed
first, and the move actions (Movei) afterward.

More formally, we obtain the following system: M′ = (S′,S0,A,T ′) where S′ is defined sim-
ilarly to S, with the addition of a labeling of states (explained below), to indicate if the state is a
transient or a steady state. The transition relation is defined as follows. We note âi the tuple of
actions where only robot i takes action ai ∈ Ai: âi = (−, . . . ,−,ai,−, . . . ,−). By convention, âi = ε

(the empty word) if ai = −, with s ε−→ s′ iff s′ = s. An action a = ∏
i∈Sched

Acti is executed as the se-

quence of actions b̂1, . . . , b̂k, ĉ1, . . . , ĉk where bi = LCi if Acti = LCi and − otherwise, and similarly,
ci = Movei if Acti = Movei and − otherwise. Hence the single transition s a−→ s′ is replaced by a
sequence of transitions, where all intermediate states are labeled as transient, while s and s′ are
steady states.

The following theorem states that our implementation is equivalent to the abstract ASYNC
model (see Figure 2b).

Theorem 3.1 The DiVinE implementation is equivalent to the abstract ASYNC model.

Proof: Let M be the abstract ASYNC model and M′ the model obtained from M as described
above. Let Exec(M) and Exec(M′) be respectively the set of executions of M and M′. We denote

7

by cf (e) the sequence of configurations (c component) in e ∈ Exec(M) and by cfs(e′) the sequence
of configurations of the steady states in e′ ∈ Exec(M′). This notation is extended to the set of
executions of M and M′ by cf (Exec(M)) = {cf (e),e ∈M} and cfs(Exec(M′)) = {cfs(e),e ∈M′}.
We say that two executions e ∈ Exec(M) and e′ ∈ Exec(M′) are equivalent if cfs(e′) = cf (e). Since
M represents the most “global” behavior and contains all possible executions of the system, we
clearly have cfs(Exec(M′))⊆ cf (Exec(M)). To obtain the converse inclusion, we must prove that
for each execution e ∈ Exec(M) we can find an execution e′ ∈ Exec(M′) such that e and e′ are
equivalent.

Let e ∈ Exec(M). With any transition t : s a−→ s′ in e, with a = (a1, . . . ,ak), we associate the

execution et in M′ defined above by s b̂1−→ s1 . . .
b̂k−→ sk

ĉ1−→ s′1 . . .
ĉk−→ s′k, with all look actions before all

move actions. Note that for each i, b̂i and ĉi are either ε or belong to {â1, . . . , âk}. We now define
the execution e′ ∈M′ by replacing all transitions t in e by et . We must now prove that e and e′ are
equivalent.

For this, we show that each transition t : s a−→ s′ is equivalent to et by examining the ordering
of actions. We say that two actions âi and â j commute, written âi ∼ â j if for any system state r,

if r ai−→ r1
a j−→ r′, there exists r′1 such that r

a j−→ r′1
ai−→ r′ and vice-versa (the commutativity property

is symmetric). This expresses the fact that the state reached is independent of the order of actions
âi and â j. Clearly, any two LC actions commute since they only modify the local state of the
robot to which they belong, and only depend on the current configuration which is not updated by
LCi. Similarly, any two Move actions on different robots i and j commute, since they successively
update the positions of robots i and j in c. Moreover, from the definition of M, all actions âi being
simultaneous, the LC actions must observe the initial configuration c in the initial steady state s.
Therefore, since all LC actions appear before the move actions in et , this (sequential) execution is
equivalent to the (simultaneous) version t. Combining all transitions in e′, we obtain that e′ and e
are equivalent, which concludes the proof.

4 Formal verification of Mobile Robots Protocols

Among the protocols designed for discrete settings we choose as case studies the ring exploration
with stop and perpetual exclusive ring exploration. For each class of exploration we choose a
representative protocol. In both cases we follow the same verification methodology: we first specify
the problem in LTL, then translate the protocol in the DiVinE language and verify it. In order to
ensure the progress of the protocols, an implicit fairness assumption states that all robots must be

infinitely often scheduled, which is express in LTL by:
k∧

i=1
�♦

(
Movei

)
∧

k∧
i=1

�♦
(
LCi

)
.

Notation 4.1 Let G be a ring of n vertexes denoted V1, . . .Vn. In the sequel we use the following
notations: R[Vj] denotes the robot on vertex Vj, and NbR[Vj] the number of robots on vertex Vj.

8

4.1 Ring exploration with stop

Flocchini et al. first defined [20] the problem of n-ring exploration with stop and proved that the
exploration with stop is deterministically impossible when the number of robots k divides n. The
authors also proposed a deterministic algorithm to solve exploration with stop using at least 17
robots provided that n and k are co-prime.

Ring exploration with stop specification. For any ring and any initial configuration where
robots are located on different vertices, an algorithm solves the exploration with stop problem
if within finite time and regardless of the initial placement of the robots, it guarantees the following
two properties: (i) exploration: Each node of the ring is visited by at least one robot, and (ii) end-
ing: Eventually, the robots must be in a configuration in which they all remain idle (their Movei

action is idle). Note that this last property requires robots to ”remember” how much of the ring has
been explored (i.e., these oblivious robots must be able to distinguish between various stages of the
exploration process).

These two properties can be express in LTL as follows: the exploration property can be defined

by:
n∧

j=1
♦
(
nbR[Vj] > 0). The exploration terminates when all robots remain idle forever which is

expressed by the ending property:
k∧

i=1
♦�

(
¬Ri.Front ∧¬Ri.Back), where Ri.Front (respectively

Ri.Back) denotes the state of the ith robot when it is ready to move to the Front (resp. to the Back),
Front/Back being the possible directions of motion in a ring shaped graph.

Definition 4.1 An algorithm satisfies the ring exploration with stop specification if from all initial
configurations the algorithm verifies: Fairness → (exploration ∧ ending).

Verification Results. The algorithm [20] is composed of three phases: Set-Up, Tower-Creation,
and Exploration. In the first phase, from an (arbitrary) initial configuration without tower (a node
where more than one robot are simultanesously present), robots gather and occupy a set of consec-
utive nodes,or two sets of the same size. Once they are gathered the Tower-Creation begins: the
aim of this phase is to create configurations with tower(s), from which the exploration is feasible.
The aim of the last phase is to explore the ring. The formalization of the algorithm is proposed in
the appendix. Note that the original paper only presents an informal description of the algorithm.

Our verification proves that the algorithm is correct for all tested instances of k and n that satisfy
contraints edicted in the original paper (i.e n, k are co-prime and n,k ≥ 17). We also verify that
the algorithm is correct in these settings even for some cases when n and k are not coprime as long
as the initial configuration is not periodic (i.e there is at most one symmetry axis in the ring). The
verification results up to n = 23 are presented in the Appendix.

Interestingly, our methodology also permits to refine the correctness bounds of the algorithm
for n,k < 17 as follows. When k is even the algorithm works as long as n < k+ dk/2e and k ≥ 10.
When k is odd the algorithm works for any k≥ 5. Note that the original algorithm provides no rule
for these situations.

9

4.2 Perpetual Ring Exploration

In the sequel we recall the perpetual exclusive ring exploration problem, and propose the verifica-
tion results for the Min-Algorithm [21].

Perpetual Ring Exploration specification. For any ring and any initial configuration where
robots are located on different nodes of the ring, an algorithm solves the perpetual exclusive explo-
ration problem if it guarantees these two properties: (i) exclusivity: No two robots visit the same
node or traverse the same edge at the same time, and (ii) liveness: Each robot visits each node
infinitely often. Note that the first property implies that there is never more than one robot on any
vertex and that two robots never traverse the same edge at the same time in opposite directions.

The above properties can be express in LTL as follows: the exclusivity property is expressed by

the conjunction of the no collision and the no switch properties. no collision:
n∧

j=1
�
(

NbR[Vj]< 2
)

.

no switch:
n∧

j=1

k∧
i=1

k∧
i′=1
¬ ♦

(
R[Vj] = Ri ∧ R[Vj+1] = Ri′ ∧ Ri.Front ∧ Ri′ .Back

)
.

In order to express that each robot visits all vertices infinitely often, we use the live property:
n∧

j=1

k∧
i=1

�♦
(
R[Vj] = Ri

)
. This property needs the fairness assumption describe above. Hence the

Liveness property can be expressed by: Liveness : Fairness→ live.

Verification results. The Min-Algorithm aims at ensuring that three robots exclusively and per-
petually explore any ring of size n≥ 10 where n is not a multiple of k. This algorithm is based on a
classification of configurations. A closed class of configurations, called legitimate configurations,
ensure that after execution of n rounds, all robots have explored the entire ring. When started in a
non-legitimate configuration, the protocol ensures convergence towards a legitimate configuration.
The algorithm is correct iff from any configuration, it converges to a legitimate configuration. The
protocol for the legitimate phase (respectively the convergence phase) is provided in the Appendix
(as Table 7, resp. Table 8). The results we obtain with this algorithm, for the smallest possible ring
of size 10, are presented in Table 1.

nb States nb Transitions Memory (kB) Model Verification
256 315 737 810 248 668 FSYNC ok
407 175 881 437 248 840 SSYNC ok

3 429 715 13 218 742 1 269 432 ASYNC collision

Table 1: Model-checking of Min-Algorithm in the three models for the smallest ring

In order to show factors of state space explosion, we outline the number of states, transitions,
the memory used, and the time spend. More importantly, our results show that the algorithm does
not satisfy the exclusivity property in the ASYNC model. A counter-example is given by our tools

10

(and presented as Figure 3 in the Appendix). This counter example allowed the original authors to
propose a correct version of their algorithm (that we reproduce in the Appendix). We have verified
this new algorithm and Table 2 summarizes the results.

n nb States nb Transitions Memory (kB) Time
10 1 581 961 6 090 209 1 416 880 6min 45s
11 1 926 385 7 421 315 1 568 748 9min 09s
13 2 716 637 10 476 317 2 252 600 20min 46s
14 3 162 409 12 307 905 2 560 724 26min 54s
16 4 155 385 16 041 365 2 772 188 36min 22s

Table 2: Model-checking of the patched Min-Algorithm

5 Conclusion

We demonstrated the feasibility and usefulness of general formal verification through model check-
ing of mobile robot protocols evolving in a discrete space. Our methodology permits not only to
find and correct bugs in the protocols (which is especially useful in the more challenging execution
models such as ASYNC), but also relieve protocol designers from the burden of manually check-
ing small instances of the problem to be solved, thus permitting them to concentrate on abstract
configurations where some global invariants hold. We would like to mention two open issues that
are currently under investigation:

1. While our method is parameterized by both k and n, it does not permit to verify whether a
protocol is valid for every k and n satisfying a particular predicate. Adapting recent advances
in parameterized model checking [24] would be a nice way to obtain such results.

2. Our approach aids in the design of mobile robot protocols by permitting to find bugs and
loopholes in the overall logic. Going one step further and generating the protocol automati-
cally from the problem would permit to get solutions that are correct by design. We believe
that controller synthesis [25] can be extended to obtain such guarantees.

11

References

[1] P. Flocchini, G. Prencipe, and N. Santoro. Distributed Computing by Oblivious Mobile
Robots. Morgan & Claypool Publishers, 2012.

[2] A. Clerentin, M. Delafosse, L. Delahoche, B. Marhic, and A. Jolly-Desodt. Uncertainty and
imprecision modeling for the mobile robot localization problem. Auton. Robots, pages 267–
283, 2008.

[3] G. D’Angelo, G. Di Stefano, and A. Navarra. Gathering of six robots on anonymous sym-
metric rings. In Structural Information and Communication Complexity, pages 174–185.
Springer Berlin Heidelberg, 2011.

[4] S. Kamei, A. Lamani, F. Ooshita, and S. Tixeuil. Asynchronous mobile robot gathering from
symmetric configurations without global multiplicity detection. In Structural Information and
Communication Complexity, pages 150–161. Springer Berlin Heidelberg, 2011.

[5] A. Lamani, S. Kamei, F. Ooshita, and S. Tixeuil. Gathering an even number of robots in a
symmetric ring without global multiplicity detection. In Mathematical Foundations of Com-
puter Science, pages 542,553. Springer Berlin Heidelberg, 2012.

[6] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of geometric
patterns. SIAM Journal on Computing, pages 1347–1363, 1999.

[7] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of asynchronous robots
with limited visibility. Theoretical Computer Science, pages 147–168, 2005.

[8] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[9] C. Baier and J. P. Katoen. Principles of model checking. MIT press, 2008.

[10] L. Lamport and S. Merz. Specifying and verifying fault-tolerant systems. In Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, pages 41–76. Springer Berlin Heidelberg,
1994.

[11] Sandeep S. Kulkarni, Borzoo Bonakdarpour, and Ali Ebnenasir. Mechanical verification of
automatic synthesis of fault-tolerant programs. In Logic Based Program Synthesis and Trans-
formation, pages 36–52. Springer Berlin Heidelberg, 2004.

[12] R. Guerraoui, T. A. Henzinger, and V. Singh. Model checking transactional memories. Dis-
tributed Computing, pages 129–145, 2010.

[13] I. Chatzigiannakis, O. Michail, and P. G. Spirakis. Algorithmic verification of population pro-
tocols. In Stabilization, Safety, and Security of Distributed Systems, pages 221–235. Springer
Berlin Heidelberg, 2010.

12

[14] J. Clément, C. Delporte-Gallet, H. Fauconnier, and M. Sighireanu. Guidelines for the veri-
fication of population protocols. In Distributed Computing Systems, pages 215–224. IEEE,
2011.

[15] B. Charron-Bost, H. Debrat, and S. Merz. Formal verification of consensus algorithms tol-
erating malicious faults. In Stabilization, Safety, and Security of Distributed Systems, pages
120–134. Springer Berlin Heidelberg, 2011.

[16] T. Lu, S. Merz, and C. Weidenbach. Towards verification of the pastry protocol using tla+.
In Formal Techniques for Distributed Systems, pages 244–258. Springer Berlin Heidelberg,
2011.

[17] T. Tsuchiya and A. Schiper. Verification of consensus algorithms using satisfiability solving.
Distributed Computing, pages 341–358, 2011.

[18] S. Devismes, A. Lamani, F. Petit, P. Raymond, and S. Tixeuil. Optimal grid exploration by
asynchronous oblivious robots. In Stabilization, Safety, and Security in Distributed Systems,
pages 64–76. Springer Berlin Heidelberg, 2012.

[19] F. Bonnet, X. Défago, F. Petit, M. Potop-Butucaru, and S. Tixeuil. Brief announcement:
Discovering and assessing fine-grained metrics in robot networks protocols. In Stabiliza-
tion, Safety, and Security of Distributed Systems, pages 282–284. Springer Berlin Heidelberg,
2012.

[20] P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. Computing without communicating: Ring
exploration by asynchronous oblivious robots. In Principles of Distributed Systems, pages
105–118. Springer Berlin Heidelberg, 2007.

[21] L. Blin, A. Milani, M. Potop-Butucaru, and S. Tixeuil. Exclusive perpetual ring exploration
without chirality. Distributed Computing, pages 312–327, 2010.

[22] J. Barnat, L. Brim, M. Češka, and P. Ročkai. DiVinE: Parallel Distributed Model Checker
(Tool paper). In Parallel and Distributed Methods in Verification and High Performance
Computational Systems Biology, pages 4–7. IEEE, 2010.

[23] M. Colange, S. Baarir, F. Kordon, and Y. Thierry-Mieg. Towards Distributed Software Model-
Checking using Decision Diagrams. In Computer Aided Verification, page to appear. Springer
Verlag, 2013.

[24] E.A. Emerson and K.S. Namjoshi. Automatic verification of parameterized synchronous
systems. In Computer Aided Verification, pages 87–98. Springer Berlin Heidelberg, 1996.

[25] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event processes.
In Analysis and Optimization of Systems. Springer Berlin Heidelberg, 1984.

13

A Ring exploration with Stop

In the following we propose the formalisation of the algorithm for ring exploration with stop of
[20]. This algorithm has been further translated and verified in the DiVinE language. The algorithm
allows a set of k identical robots to explore a ring shape graph of n nodes: u0,u1, ...,un−1. Nodes
are anonymous (i.e identical) and the ring is unoriented. Initially there is at most one robot in each
node, thus k < n . Moreover n and k must be co-prime.

In the following we recall the notations and the definitions used in [20] in order to describe the
algorithm. It should be noted that in the original version the algorithm is proposed in a verbose
mode. In order to translate the algorithm in the DiVinE language we did a pre-processing phase
that consists in expressing the rules of the algorithm in terms of guarded actions.

Let di(t) denote the multiplicity at node i at time t. It permits to detect the presence of towers
(multiple robots on one node). Let δ+ j(t) denote the sequence δ+ j(t) :< d j(t)d j+1(t)...d j+n−1(t)>
and let δ− j(t) denote the sequence δ− j(t) :< d j(t)d j−1(t)...d j−(n−1)(t) >. The unordered pair of
sequences δ+ j(t) and δ− j(t) describes the configuration of the system at time t viewed from node
u j. Let ∆+(t) = δ+ j(t) : 0≤ j < n and ∆−(t) = δ− j(t) : 0≤ j < n. We will denote by δmax(t) the
lexicographically maximum sequence in ∆+(t)∪∆−(t). It follows [20] that there is at most one
maximal sequence in each of ∆+(t) and ∆−(t). A configuration is said to be symmetric if the
maximal sequences in ∆+(t) and ∆−(t) are equal, and asymmetric otherwise. Let δmax ri(t) be the
maximal observation for the ith robot, and δmin ri(t) be his minimal observation.

Definition A.1 (interdistance) Let d be the minimum distance between all pairs of distinct robots
in the configuration. d is called the interdistance.

Definition A.2 (neighbor) Two robots are neighbors if in a least one direction there is no robot
between them.

Definition A.3 (block) A block is a maximal set of robots (at least 2) , forming a line, where
neighbors are separated by d free nodes.

Definition A.4 (border robot) A robot r is the border of a block if it is one of the extremal robot
of this block.

Definition A.5 (leading block) A block b is said leading if it is a block for which one border is a
robot whose view is maximal.

Definition A.6 (isolated robot) A robot is isolated if he is not part of a block.

The algorithm is divided in three phases, the Set-Up phase, the Tower-Creation phase and the
Exploration phase. We will formally describe each phase of the algorithm as it can be done by each
robot. The first phase is the Set-Up phase. It is described in subsection A.1, it permits to gather all
robots in one group or two groups of the same size, this last configuration is called no-towers-final.

14

In the second phase, the goal is to create one or two towers per block according to the arity of the
blocks. This phase is described in subsection A.2. The last phase permits the exploration of the
ring, and is described in subsection A.3.

Notation A.1 In the following we will denote by B the set of blocks, R the set of robots, and T the
set of towers. For our purpose we define ri the current robot. Moreover the algorithm uses the
predicates: neighbor(r1,r2) to express that robots r1,r2 are neighbors, border(r,b) to express that
the robot b is a border of the block b, leading(b) in order to express that b is a leading block, and
isolated(r) to express that r is an isolated robot.

Robots have no chirality, thus we describe the Compute transition according to the current
view of the robots. Each view is described by δ+ and δ−, the compute movement can be described
similarily as the view by µ+ or µ−. When a robot executes a µ+(respectively µ−) it moves in the
same direction as the δ+(resp.δ−) view. We define also the µ= movement as a movement which
can be either a µ+ or a µ− movement.

A.1 The Set-Up Phase

The Set-Up phase is the first phase of the algorithm. It is assumed that all initial configurations
do not contain any tower. There are four types of configurations that form a partition of all possi-
ble configurations without tower. Type B, C, D when there is no isolated robot, and A otherwise.
Configurations of type D are the Set-Up final configurations. Configurations of type C are config-
urations that contain one block or two blocks of the same size. Configurations of type B are all the
remaining configurations, where there is no isolated robot.

We describe the protocol that robots execute for each type of configuration. All configurations
in this phase share the following predicate:

• Set-Up(): |T |= 0

A.1.1 Type A Configurations

Notation dans Type A:
• S = maxsizeb(Neighbor(r,b)∧ Isolated(r))
• Move(r,b) = µ− if dist+(r,b)> dist−(r,b) and µ+ otherwise

Predicates in Type A:
• Type A() : Set-Up() ∧d ≥ 0∧∃r ∈ R, Isolated(r)
• Close-to-S(r,b) : Isolated(r)∧Neighbor(r,b)∧b.size = S

Sets in Type A:
• Closest-to-S = {r,mindist(r,b)(close-to-S(r,b))}

15

Action in Type A:
AA: TypeA()∧∃b, ri ∈ closest-to-S→Move(ri,b)

A.1.2 Type C and D Configurations

Notation in Type C D :
• Move(r) : µ− if δ+ri > δ−ri and µ+ otherwise

predicates in Type C and D Configurations :
• Type CD() : Set-Up()∧∀b ∈ B, Leading(b)
• Type C() : d ≥ 2 ∧ Type CD()
• Type D() : d = 1 ∧ Type CD()

Action in Type C configurations:
AC: TypeC()∧ Leading(ri)→Move(ri)

Action in Type D Configurations:
AD: TypeD()→ exploration()

A.1.3 Type B Configurations

Notations in Type B:
• δmax(r): max(δ+r(t),δ−r(t))

Predicates in Type B:
• Type B() : Set-Up()∧ 6 ∃r ∈ R, Isolated(r)∧ d ≥ 1∧∃b, ¬Leading(b)

A.1.4 Type B2 Configurations

Notations in Type B2 :
• s: minb.size(b)
• S: : maxb1.size (Neighbor(b1,b2)∧b2.size = s)
• dist: mindistance(b1,b2)(Neighbor(b1,b2)∧b2.size = s∧b1.size = S)
• Largest-view(T): maxδmax(r ∈ T)
• Move(r,b) : µ− if dist+(r,b)> dist−(r,b) and µ+ otherwise

Sets in Type B2 Configurations :
• T : {r, border(r,b1)∧b1.size = s∧Neighbor(r,b2)∧b2.size = S∧distance(b1,b2) = dist}

Predicates in Type B2 Configurations:
• Type B2(): Type B() ∧∃b1,b2 ∈ B, b1.size≥ b2.size

16

Actions in Type B2 Configurations:
AB2: Type B2()∧ri ∈T ∧δmax(ri)=Largest-view(T)∧∃b, (Neighbor(ri,b)∧b2.size = S∧distance(ri,b)=

dist)→Move(ri,b)

A.1.5 Type B1 Configurations

Notations in Type B1 Configurations:
• Between(b1,b2) = (x,y) A pair of integers x, y where x and y are the number of blocks

between b1 and b2 in the two directions.
• Move Outside(r,b) : µ− if δ+r > δ−r and µ+ otherwise

Sets in Type B1 Configurations:
• L : {r,Leader(r)}
• SymR: {(r1,r2)}, symmetric(r1,r2)∧∃b ∈ B border(r1,b).

The set of pairs of symmetric robots among the robots at the border of a block.
• SymB: {(b1,b2)}, symmetric(b1,b2)∧ Between(b1,b2)≥ (3,3)

The set of pairs of symmetric blocks separated by at least three blocks in each side.
• Closest-Pairs(Set-of-Pairs): {(r1,r2)}, distance(r1,r2)=mindistance(Set-of-Pairs)∧¬Neighbor(r1,r2).

The set of closest pair among the pair of Set-of-pairs such that this robots are not neighbors.
• Smallest-view(Block-Set): {r1} such that ∀b∈Block-Set ∃r1,r2, Border(r1,b)∧Border(r2,b)∧

δminr1
(t)< δ

minr2 (t)

Predicates in Type B1 Configurations:

• Type B1(): Type B()∧∀b1,b2 ∈ Bb1.size =b2.size
• symmetricRobots(r1,r2): δmaxr1(t) = δ

maxr2 (t) and r1, 6= r2
• symmetricBlocks(b1,b2): ∃r1,r2, border(r1,b1)∧border(r2,b2)∧ symmetric(r1,r2)∧b1.size=

b2.size

Actions in Type B1 Configurations:

AB11: Type B1()∧|L |= 1∧Learder(r)∧∃b, Border(r,b)→Move Outside(r,b)
AB121: Type B1()∧|L |= 2∧b.size =2∧∃bborder(r,b)∧r∈ Smallest-viewSymB→Move Outside(r,b)
AB122: Type B1()∧|L |= 2∧b.size 6= 2∧ri ∈Closest-Pairs(SymR)∧border(ri,b)→Move Outside(ri,b)

A.2 The Tower-Creation Phase

The Set-Up phase final configurations are of the form: one block of odd size, or one block of even
size, or two blocks of odd size, or two blocks of even size. From these configurations towers are
made during the TowerCreation phase. The rules executed in this phase are of he form view

p−→
view, where view represents the view of the current robot, and p the number of robots that move

17

synchronously. Moreover a view is a sequence of F,R, where Fy represents y free consecutive
nodes and Rx represents x consecutive nodes occupied by one robot. A tower is represented by the
symbol T .

18

To
w

er
-C

re
at

io
n

Ph
as

e:
R

1 0
::

(R
a,

F x
,R

a)
→

(R
a−

1,
F x
,R

a,
F 1
)

K
od

d
an

d
2a

+
1
=

K

R
2 0

::
(R

a−
1,

F x
,R

a)
1 −→

(R
a−

2,
F x
,R

a−
2,

T
,F

2)
K

ev
en

an
d

2a
=

K
2 −→

(R
a−

2F
x,

R
a−

2,
T
,F

2)
R

2 1
::

(R
a−

1,
F x
,R

a−
2,

T
,F

1)
→

(R
a−

2,
F

x,
R

a−
2,

T
,F

2)
K

ev
en

an
d

2a
=

K

R
3 0

::
(R

a,
F x
,R

K
/2
,F

y,
R

a)
1 −→

(R
a−

1,
F x
,R

K
/2
,F

y,
R

a,
F 1
)

K
ev

en
,2

a
+

1
=

K
an

d
y
<

x
2 −→

(R
a
−

1,
F x
,R

a−
1,

T
,F

1,
R

a,
F y
,R

a,
F 1
)

R
3 1

::
(R

a,
F x
,R

a−
1,

T
,F

1,
R

a,
F y
,R

a)
→

(R
a−

1,
F x
,R

a−
1,

T
,F

1,
R

a,
F y
,R

a,
F 1
)

R
4 0

::
(R

a,
F x
,R

K
/2
,F

y,
R

a+
1)

1 −→
(R

a−
1,

F x
,R

k/
2,

F y
,R

a+
1,

F 1
)

K
ev

en
an

d
k/

2
=

2a
+

2
2 −→

2 1
:(

R
a−

1,
F x
,R

k/
2,

F y
,R

a−
1,

T
,F

2)
2 −→

2 2
:(

R
a−

1,
F x
,R

a−
1,

T
,F

1,
R

a+
1,

F y
,R

a+
1,

F 1
)

2 −→
2 3

:(
R

a−
1,

F x
,R

a+
1,

F 1
,T
,R

a−
1,

F y
,R

a+
1,

F 1
)

3 −→
3 1

:(
R

a−
1,

F x
,R

a−
1,

T
,F

2,
T
,R

a−
1,

F y
,R

a
+

1,
F 1
)

3 −→
3 2

:(
R

a−
1,

F x
,R

a+
1,

F 1
,T
,R

a−
1,

F y
,R

a
−

1,
T
,F

2)
3 −→

3 3
:(

R
a−

1,
F x
,R

a−
1,

T
,F

1,
R

a+
1,

F y
,R

a
−

1,
T
,F

2)
4 −→

4 0
:(

R
a−

1,
F x
,R

a−
1,

T
,F

2,
T
,R

a−
1,

F y
,R

a−
1,

T
,F

2)

R
4 1

1:
:

(R
a,

F x
,R

K
/2
,F

y,
R

a−
1,

T
,F

1)
1 −→

(2
1)

2 −→
(3

2
or

3 3
)

3 −→
(R

a−
1,

F x
,R

a−
1,

T
,F

2,
T
,R

a−
1,

F y
,R

a−
1,

T
,F

2)
)

R
4 1

2:
:

(R
a,

F x
,R

a−
1,

T
,F

1,
R

a−
1,

F y
,R

a+
1)

1 −→
(2

2)
2 −→

(3
1

or
3 3
)

3 −→
(R

a−
1,

F x
,R

a−
1,

T
,F

2,
T
,R

a−
1,

F y
,R

a−
1,

T
,F

2)
)

R
4 1

3:
:

(R
a,

F x
,R

a+
1,

F 1
,T
,R

a−
1,

F y
,R

a+
1)

1 −→
(2

3)
2 −→

(3
2

or
3 1
)

3 −→
(4

0)

R
4 2

1:
:

(R
a,

F x
,R

a−
1,

T
,F

2,
T
,R

a−
1,

F y
,R

a+
1)

1 −→
(3

1)
2 −→

(4
0)

R
4 2

2:
:

(R
a,

F x
,R

a+
1,

F 1
,T
,R

a−
1,

F y
,R

a−
1,

T
,F

1)
1 −→

(3
2)

2 −→
(4

0)

R
4 2

1:
:

(R
a,

F x
,R

a−
1,

T
,F

1,
R

a+
1,

F y
,R

a−
1,

T
,F

1)
1 −→

(3
3)

2 −→
(4

0)
R

4 3
::

(R
a,

F x
,R

a−
1,

T
,F

2,
T
,R

a−
1,

F y
,R

a−
1T

,F
1)
→

(4
0)

Ta
bl

e
3:

R
ul

es
of

th
e

To
w

er
C

re
at

io
n

ph
as

e

A.3 The Exploration Phase

The exploration phase is the last phase of the algorithm. It starts when all towers of the preceding
phase are created, and is described by the two tables below.

20

E
xp

lo
ra

tio
n

Ph
as

e:
E

1 0
::

(F
x,

R
a,

F 1
,T
,R

a−
2,

F y
)
→

K
od

d,
2a

+
1
=

K
(F

x−
1,

R
a,

F 1
,T
,R

a−
2,

F y
+

1)
x
≥

1

E
2 0

::
(F

x,
R

1,
F y
,R

a−
3,

T
,F

2,
T
,R

a−
3,

F z
)

1 −→
K

ev
en

,2
a
=

K
(F

x−
1,

R
1,

F y
,R

a−
3,

T
,F

2,
T
,R

a−
3,

F z
+

1)
x
>

0,
z
<
(N
−

K
+

2)
/2

2 −→
(F

x−
2,

R
1,

F y
+

1,
R

a−
3,

T
,F

2,
T
,R

a−
3,

F z
+

1)
x
>

0,
z
<
(x
+

y+
z)
/2

an
d

y
<
(x
+

y+
z)
/2

E
3 0

1:
:

(F
g,

R
1,

F b
,R

a−
2,

T
,F

1,
B

a−
1,

F c
,R

1,
F d
,R

1,
F e
,R

a−
1,

F 1
,T
,R

a−
2,

F
f)

1 −→
K

ev
en

,2
a
+

1
=

K
/

2a
nd

d
≥

0
∧

g
≥

0
(F

g−
1,

R
1,

F b
,R

a−
2,

T
,F

1,
B

a−
1,

F c
,R

1,
F d
,R

1,
F e
,R

a−
1,

F 1
,T
,R

a−
2,

F
f+

1)
f
<
(

f+
g
+

b)
/2

2 −→
(F

g−
2,

R
1,

F b
+

1,
R

a−
2,

T
,F

1,
B

a−
1,

F c
,R

1,
F d
,R

1,
F e
,R

a−
1,

F 1
,T
,R

a−
2,

F
f+

1)
f
<
(

f+
g
+

b)
/2
∧

b
<
(

f+
g
+

b)
/2

2 −→
(F

g−
1,

R
1,

F b
,R

a−
2,

T
,F

1,
B

a−
1,

F c
+

1,
R

1,
F d
−

1,
R

1,
F e
,R

a−
1,

F 1
,T
,R

a−
2,

F
f+

1)
(

f
<
(

f+
g
+

b)
/2
)
∧
(e

<
(e
+

d
+

c)
/2
)

2 −→
(F

g−
1,

R
1,

F b
,R

a−
2,

T
,F

1,
B

a−
1,

F c
,R

1,
F d
−

1,
R

1,
F e

+
1,

R
a−

1,
F 1
,T
,R

a−
2,

F
f+

1)
(

f
<
(

f+
g
+

b)
/2

)
∧
(c

<
(e
+

d
+

c)
/2
)

3 −→
(F

g−
2,

R
1,

F b
+

1,
R

a−
2,

T
,F

1,
B

a−
1,

F c
+

1,
R

1,
F d
−

1,
R

1,
F e
,R

a−
1,

F 1
,T
,R

a−
2,

F
f+

1)
(

f
<
(

f+
g
+

b)
/2
∧

b
<
(

f+
g
+

b)
/2
)
∧
(c

<
(e
+

d
+

c)
/2
)

3 −→
(F

g−
2,

R
1,

F b
+

1,
R

a−
2,

T
,F

1,
B

a−
1,

F c
,R

1,
F d
−

1,
R

1,
F e

+
1,

R
a−

1,
F 1
,T
,R

a−
2,

F
f+

1)
(

f
<
(

f+
g
+

b)
/2
∧

b
<
(

f+
g
+

b)
/2
)
∧
(e

<
(e
+

d
+

c)
/2
)

3 −→
(F

g−
1,

R
1,

F b
,R

a−
2,

T
,F

1,
B

a−
1,

F c
+

1,
R

1,
F d
−

2,
R

1,
F e

+
1,

R
a−

1,
F 1
,T
,R

a−
2,

F
f+

1)
(e

<
(e
+

d
+

c)
/

2
∧

c
<
(e
+

d
+

c)
/2
)
∧
(

f
<
(

f+
g
+

b)
/2
)

4 −→
4 0

:(
F g
−

2,
R

1,
F b

+
1,

R
a−

2,
T
,F

1,
B

a−
1,

F c
+

1,
R

1,
F d
−

2,
R

1,
F e

+
1,

R
a−

1,
F 1
,T
,R

a−
2,

F
f+

1)
(

f
<
(

f+
g
+

b)
/2
∧

b
<
(

f+
g
+

b)
/

2)
∧
(e

<
(e
+

d
+

c)
/2
∧

c
<
(e
+

d
+

c)
/2

))

E
3 0

2:
:

(F
d
,B

1,
F e
,R

a−
1,

F 1
,T
,R

a−
2,

F
f,

R
1,

F g
,R

1,
F b
,R

a−
2,

T
,F

1,
B

a−
1,

F c
)

1 −→
K

ev
en

,2
a
+

1
=

K
/2

an
d

d
≥

0
∧

g
≥

0
(F

d−
1,

B
1,

F e
,R

a−
1,

F 1
,T
,R

a−
2,

F
f,

R
1,

F g
,R

1,
F b
,R

a−
2,

T
,F

1,
B

a−
1,

F c
+

1)
c
<
(c
+

d
+

e)
/2

2 −→
(F

d−
2,

B
1,

F e
+

1,
R

a−
1,

F 1
,T
,R

a−
2,

F
f,

R
1,

F g
,R

1,
F b
,R

a−
2,

T
,F

1,
B

a−
1,

F c
+

1)
e
<
(e
+

d
+

c)
/2
∧

c
<
(e
+

d
+

c)
/2

2 −→
(F

d−
1,

B
1,

F e
,R

a−
1,

F 1
,T
,R

a−
2,

F
f,

R
1,

F g
−

1,
R

1,
F b

+
1,

R
a−

2,
T
,F

1,
B

a−
1,

F c
+

1)
(b

<
(

f+
g
+

b)
/2
)
∧
(c

<
(e
+

d
+

c)
/

2)
2 −→

(F
d−

1,
B

1,
F e
,R

a−
1,

F 1
,T
,R

a−
2,

F
f+

1,
R

1,
F g
−

1,
R

1,
F b
,R

a−
2,

T
,F

1,
B

a−
1,

F c
+

1)
(

f
<
(

f+
g
+

b)
/2
)
∧
(c

<
(e
+

d
+

c)
/

2)
3 −→

(F
d−

2,
B

1,
F e

+
1,

R
a−

1,
F 1
,T
,R

a−
2,

F
f+

1,
R

1,
F g
−

1,
R

1,
F b
,R

a−
2,

T
,F

1,
B

a−
1,

F c
+

1)
(e

<
(e
+

d
+

c)
/

2
∧

c
<
(e
+

d
+

c)
/

2)
∧
(

f
<
(

f+
g
+

b)
/

2)
3 −→

(F
d−

2,
B

1,
F e

+
1,

R
a−

1,
F 1
,T
,R

a−
2,

F
f,

R
1,

F g
−

1,
R

1,
F b

+
1,

R
a−

2,
T
,F

1,
B

a−
1,

F c
+

1)
(e

<
(e
+

d
+

c)
/

2
∧

c
<
(e
+

d
+

c)
/

2)
∧
(b

<
(

f+
g
+

b)
/

2)
3 −→

(F
d−

1,
B

1,
F e
,R

a−
1,

F 1
,T
,R

a−
2,

F
f+

1,
R

1,
F g
−

2,
R

1,
F b

+
1,

R
a−

2,
T
,F

1,
B

a−
1,

F c
+

1)
(

f
<
(

f+
g
+

b)
/

2
∧

b
<
(

f+
g
+

b)
/

2)
∧
(c

<
(e
+

d
+

c)
/2

)
4 −→

(4
0)

(
f
<
(

f+
g
+

b)
/2
∧

b
<
(

f+
g
+

b)
/2

)
∧
(e

<
(e
+

d
+

c)
/2
∧

c
<
(e
+

d
+

c)
/2

))

Ta
bl

e
4:

Fi
rs

tr
ul

es
of

th
e

E
xp

lo
ra

tio
n

ph
as

e

E
xp

lo
ra

tio
n

Ph
as

e:
C

on
tin

ua
tio

n
E

3 0
3:

:
(F

g,
R

1,
F b
,R

a−
2,

T
,F

1,
B

a−
1,

F c
,T
,F

e,
R

a−
1,

F 1
,T
,R

a−
2,

F
f)

1 −→
K

ev
en

,2
a
+

1
=

K
/2

an
d

g
≥

0
(F

g−
1,

R
1,

F b
,R

a−
2,

T
,F

1,
B

a−
1,

F c
,T
,F

e,
R

a−
1,

F 1
,T
,R

a−
2,

F
f+

1)
f
<
(

f+
g
+

b)
/2

2 −→
(F

g−
2,

R
1,

F b
+

1,
R

a−
2,

T
,F

1,
B

a−
1,

F c
,T
,F

e,
R

a−
1,

F 1
,T
,R

a−
2,

F
f+

1)
f
<
(

f+
g
+

b)
/

2
∧

b
<
(

f+
g
+

b)
/

2

E
3 0

4:
:

(F
d
,B

1,
F e
,R

a−
1,

F 1
,T
,R

a−
2,

F
f,

T
,F

b,
R

a−
2,

T
,F

1,
B

a−
1,

F c
)

1 −→
K

ev
en

,2
a
+

1
=

K
/

2
(F

d−
1,

B
1,

F e
,R

a−
1,

F 1
,T
,R

a−
2,

F
f,

T
,F

b,
R

a−
2,

T
,F

1,
B

a−
1,

F c
+

1)
c
<
(c
+

d
+

e)
/

2
2 −→

(F
d−

2,
B

1,
F e

+
1,

R
a−

1,
F 1
,T
,R

a−
2,

F
f,

T
,F

b,
R

a−
2,

T
,F

1,
B

a−
1,

F c
+

1)
e
<
(e
+

d
+

c)
/

2
∧

c
<
(e
+

d
+

c)
/

2

E
4 0

1:
:

(F
g,

R
1,

F b
,R

a−
2,

T
,F

1,
B

a−
1,

F c
,R

1,
F d
,R

1,
F e
,R

a−
1,

F 1
,T
,R

a−
2,

F
f)

1 −→
K

ev
en

,2
a
+

2
=

K
/

2
(F

g−
1,

R
1,

F b
,R

a−
2,

T
,F

2,
T
,B

a−
2,

F c
,R

1,
F d
,R

1,
F e
,R

a−
2,

T
,F

2,
T
,R

a−
2,

F
f+

1)
f
<
(

f+
g
+

b)
/2

2 −→
(F

g−
2,

R
1,

F b
+

1,
R

a−
2,

T
,F

2,
T
,B

a−
2,

F c
,R

1,
F d
,R

1,
F e
,R

a−
2,

T
,F

2,
T
,R

a−
2,

F
f+

1)
f
<
(

f+
g
+

b)
/

2
∧

b
<
(

f+
g
+

b)
/

2
2 −→

(F
g−

1,
R

1,
F b
,R

a−
2,

T
,F

2,
T
,B

a−
2,

F c
+

1,
R

1,
F d
−

1,
R

1,
F e
,R

a−
2,

T
,F

2,
T
,R

a−
2,

F
f+

1)
(

f
<
(

f+
g
+

b)
/

2)
∧
(e

<
(e
+

d
+

c)
/

2)
2 −→

(F
g−

1,
R

1,
F b
,R

a−
2,

T
,F

2,
T
,B

a−
2,

F c
,R

1,
F d
−

1,
R

1,
F e

+
1,

R
a−

2,
T
,F

2,
T
,R

a−
2,

F
f+

1)
(

f
<
(

f+
g
+

b)
/

2)
∧
(c

<
(e
+

d
+

c)
/2

)
3 −→

(F
g−

2,
R

1,
F b

+
1,

R
a−

2,
T
,F

2,
T
,B

a−
2,

F c
+

1,
R

1,
F d
−

1,
R

1,
F e
,R

a−
2,

T
,F

2,
T
,R

a−
2,

F
f+

1)
(

f
<
(

f+
g
+

b)
/2
∧

b
<
(

f+
g
+

b)
/2

)
∧
(c

<
(e
+

d
+

c)
/2

)
3 −→

(F
g−

2,
R

1,
F b

+
1,

R
a−

2,
T
,F

2,
T

B
a−

2,
F c
,R

1,
F d
−

1,
R

1,
F e

+
1,

R
a−

2,
T
,F

2,
T
,R

a−
2,

F
f+

1)
(

f
<
(

f+
g
+

b)
/2
∧

b
<
(

f+
g
+

b)
/2

)
∧
(e

<
(e
+

d
+

c)
/2

)
3 −→

(F
g−

1,
R

1,
F b
,R

a−
2,

T
,F

2,
T
,B

a−
2,

F c
+

1,
R

1,
F d
−

2,
R

1,
F e

+
1,

R
a−

2,
T
,F

2,
T
,R

a−
2,

F
f+

1)
(e

<
(e
+

d
+

c)
/2
∧

c
<
(e
+

d
+

c)
/2

)
∧
(

f
<
(

f+
g
+

b)
/2

)
4 −→

(F
g−

2,
R

1,
F b

+
1,

R
a−

2,
T
,F

2,
T
,B

a−
2,

F c
+

1,
R

1,
F d
−

2,
R

1,
F e

+
1,

R
a−

2,
T
,F

2,
T
,R

a−
2,

F
f+

1)
(

f
<
(

f+
g
+

b)
/2
∧

b
<
(

f+
g
+

b)
/2
)
∧
(e

<
(e
+

d
+

c)
/2
∧

c
<
(e
+

d
+

c)
/2
))

E
4 0

2:
:

(F
g,

R
1,

F b
,R

a−
2,

T
,F

2,
T
,B

a−
1,

F c
,T
,F

e,
R

a−
1,

T
,F

2,
T
,R

a−
2,

F
f)

1 −→
K

ev
en

,2
a
+

2
=

K
/2

an
d

g
≥

0
(F

g−
1,

R
1,

F b
,R

a−
2,

T
,F

2,
T
,B

a−
2,

F c
,T
,F

e,
R

a−
2,

T
,F

2,
T
,R

a−
2,

F
f+

1)
f
<
(

f+
g
+

b)
/2

2 −→
(F

g−
2,

R
1,

F b
+

1,
R

a−
2,

T
,F

2,
T
,B

a−
2,

F c
,T
,F

e,
R

a−
2,

T
,F

2,
T
,R

a−
2,

F
f+

1)
f
<
(

f+
g
+

b)
/2
∧

b
<
(

f+
g
+

b)
/2

Ta
bl

e
5:

Se
co

nd
ru

le
s

of
th

e
E

xp
lo

ra
tio

n
ph

as
e

22

B Model-checking of the ring exploration with stop

k n nb States nb Transitions Memory (kB)
5 6 6 18 163 600
5 7 500 1 410 171 084
5 8 2 786 10 596 183 840
5 9 5 533 18 746 207 788
5 10 5 123 204 25 755 007 668 368
5 11 7 827 23 898 299 980
5 12 13 996 61 822 380 244
5 13 17 149 82 902 491 708
5 14 30 680 157 829 637 840
5 15 19 784 312 130 057 237 2 667 812
5 16 12 418 73 688 1 081 736
5 17 33 004 207 642 1 401 280
5 18 10165 66 120 1 790 644
7 8 8 24 171 396
7 9 2 764 7 576 201 096
7 10 3 022 9 220 270 676
7 11 16 471 56 390 437 876
7 12 18 347 42 448 754 680
7 13 20 272 83 706 1 352 120

10 11 11 33 190 884
10 12 1 834 4 868 460 716
10 13 7 924 23 731 756 000
10 14 8 357 27 524 2 135 944

k n nb States Time Memory (kB)
17 18 4 0:0:04 60 984
18 19 20 0:0:04 66 256
17 19 426 0:25:29 1 622 180
19 20 4 0:0:8 88 168
18 20 248 0:12:10 2 130 824
17 20 849 8:8:00 22 045 016
20 21 20 0:0:08 100 136
19 21 533 1:8:12 3 632 488
18 21 630 3:0:52 9 427 620
17 21 1 663 18:40:07 55 287 000
21 22 4 0:0:12 123 920
20 22 533 1:58:27 5 913 880
19 22 1040 8:25:22 30 243 392
18 22 1380 20:32:45 100 327 682

Table 6: Model-checking of the ring exploration with stop

23

C Perpetual Ring Exploration

In the following we detail the Min-Algorithm from [21] which ensures that three robots always
exclusively and perpetually explore any ring of size n ≥ 10 where n is not a multiple of k. This
algorithm is based on a classification of configurations:

Definition C.1 For k robots in the n-node ring, a configuration is a circular and non oriented
alternating sequence of symbols R and F, indexed by integers: Ri stands for i consecutive nodes,
each of them occupied by a robot, and Fj stands for j consecutive nodes free of robots.

A closed class of configurations is outlined. These configurations, called legitimate configu-
rations, are defined by: C0 = (R2,F2,R1,Fz), C1 = (R1,F1,R1,F2,R1,Fz) and C2 = (R2,F3,R1,Fz)
with z ∈ {0,1,2,3}. The phase occurring on these configurations is called the Legitimate phase.
When started in a legitimate configuration the protocol always moves into a legitimate configu-
ration, after the execution of n rounds, all robots have explored the ring. When started in a non-
legitimate configuration the protocol ensures the convergence towards a legitimate configuration
thanks to the convergence phase. The algorithm is correct iff from any configuration, it converges
to a legitimate configuration. The legitimate phase (respectively the convergence phase) can be
seen in Table 7 (resp. Table 8)

Legitimate Phase: z 6= {0,1,2,3,4}
RL1:: (R2,F2,R1,Fz) → (R1,F1,R1,F2,R1,Fz−1)
RL2:: (R1,F1,R1,F2,R1,Fz) → (R2,F3,R1,Fz)
RL3:: (R2,F3,R1,Fz) → (R2,F2,R1,Fz+1)

Table 7: Rules of Min-Algorithm legitimate phase

Convergence Phase: Execution starting from special configurations.
RC1:: (R2,Fy,R1,Fz) → (R2,Fmin(y,z),R1,Fmax(y,z)+1) with y 6= z 6= {1,2,3}
RC2:: (R1,Fx,R1,Fy,R1,Fy) → (R1,Fx,R1,Fy−1,R1,Fy+1) with x 6= y 6= 0
RC3:: (R1,Fx,R1,Fy,R1,Fz) → (R1,Fx−1,R1,Fy+1,R1,Fz) with x < y < z
RC4:: (R3,Fz) → (R2,F1,R1,Fz−1) when 1 robot executes

→ (R1,F1,R1,F1,R1,Fz−2) when 2 robots execute
RC5:: (R2,F1,R1,Fz) → (R2,F2,R1,Fz−1)

Table 8: Rules of Min-Algorithm convergence phase

Model-checking does not only allow to know whether a system satisfies some given properties,
it also gives a counter-example when the system fails to satisfy these properties. A counter-example
is an execution that does not satisfy the properties. The counter example given for the ASYNC
model is shown in Figure 3. Every ring represents a configuration, a change of configuration

24

RC4

RC4
RC1

RC2

RL1
RL2

RC4

RL2

Figure 3: Counter-example

occurs when a robot moves. In each configuration a computation is represented by a full arrow, and
a computation made from an outdated snapshot by a dotted arrow.

Thus a new algorithm is proposed by the authors of [21]. The legitimate phase is the same, only
the convergent phase changes, more precisely, only rule RC5 changes to avoid collisions which
arose from the previous rules, when movements computed on obsolete observations are taken into
account. The new RC5 rule is:

RC5 :: (R2,F1,R1,Fz) → (R1,F1,R1,F1,R1,Fz−1)

25

