L. Bottou, Stochastic Learning, Advanced Lectures on Machine Learning, Lecture Notes in Artif. Intel. 3176, pp.146-168, 2004.
DOI : 10.1007/978-1-4757-2440-0

Y. Cao, . Xu, . Jun, . Liu, . Tie-yan et al., Adapting ranking SVM to document retrieval, Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval , SIGIR '06, 2006.
DOI : 10.1145/1148170.1148205

O. Chapelle, Training a Support Vector Machine in the Primal, Neural Computation, vol.6, issue.5, pp.1155-1178, 2007.
DOI : 10.1198/106186005X25619

O. Chapelle and Y. Chang, Yahoo! learning to rank challenge overview, J. of Mach. Learn. Res, vol.14, pp.1-24, 2011.

O. Chapelle, . Metlzer, . Donald, . Zhang, . Ya et al., Expected reciprocal rank for graded relevance, Proceeding of the 18th ACM conference on Information and knowledge management, CIKM '09, pp.621-630, 2009.
DOI : 10.1145/1645953.1646033

W. Cheng, . Dembczynski, . Krzysztof, and E. Hüllermeier, Label Ranking Methods based on the Plackett- Luce Model, Proc. of the Intl. Conf. on Mach. Learn, pp.215-222, 2010.

W. W. Cohen, R. E. Schapire, and Y. Singer, Learning to order things, Proc. of Advances in Neural Information Processing Systems (NIPS), 1997.

D. Cossock and T. Zhang, Statistical Analysis of Bayes Optimal Subset Ranking, IEEE Transactions on Information Theory, vol.54, issue.11, pp.5140-5154, 2008.
DOI : 10.1109/TIT.2008.929939

. Dekel, . Ofer, C. D. Manning, and Y. Singer, Log-linear models for label ranking, Proc. of Advances in Neural Information Processing Systems (NIPS), 2003.

J. Duchi, L. W. Mackey, J. Michael, and I. , On the consistency of ranking algorithms, Proc. of the Intl. Conf. on Mach. Learn, pp.327-334, 2010.

Y. Freund, . Iyer, . Raj, R. E. Schapire, and Y. Singer, An efficient boosting algorithm for combining preferences, J. of Mach. Learn. Res, vol.4, pp.933-969, 2003.

R. Herbrich, . Graepel, . Thore, and K. Obermayer, Large margin rank boundaries for ordinal regression, Advances in Large Margin Classifiers, 2000.

T. Joachims, Optimizing search engines using clickthrough data, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '02, 2002.
DOI : 10.1145/775047.775067

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.3161

C. D. Manning, . Raghavan, . Prabhakar, and H. Schtze, Introduction to Information Retrieval, 2008.
DOI : 10.1017/CBO9780511809071

J. Weston and C. Watkins, Support vector machines for multi-class pattern recognition, Eur. Symp. On Art. Neural Net, pp.219-224, 1999.

. Xia, . Fen, . Liu, . Tie-yan, . Wang et al., Listwise approach to learning to rank, Proceedings of the 25th international conference on Machine learning, ICML '08, 2008.
DOI : 10.1145/1390156.1390306

Y. Yue, . Finley, . Thomas, . Radlinski, . Filip et al., A support vector method for optimizing average precision, Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR '07, 2007.
DOI : 10.1145/1277741.1277790

T. Zhang, Statistical analysis of some multi-category large margin classification methods, J. of Mach. Learn. Res, vol.5, pp.1225-1251, 2004.