
HAL Id: hal-00834002
https://minesparis-psl.hal.science/hal-00834002

Submitted on 13 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ophthalmologic Image Registration Based on
Shape-Context: Application to Fundus Autofluorescence

(FAF) Images
Adnan Rashid Chaudrhy, Jean-Claude Klein, Estelle Parra-Denis

To cite this version:
Adnan Rashid Chaudrhy, Jean-Claude Klein, Estelle Parra-Denis. Ophthalmologic Image Registra-
tion Based on Shape-Context: Application to Fundus Autofluorescence (FAF) Images. Visualization,
Imaging, and Image Processing (VIIP), Sep 2008, Palma de Mallorca, Spain. pp.Medical Imaging,
track 630-055. �hal-00834002�

https://minesparis-psl.hal.science/hal-00834002
https://hal.archives-ouvertes.fr


 1

Ophthalmologic Image Registration based on shape-context: 

Application to Fundus Autofluorescence (FAF) images 
A.R. CHAUDHRY, J.C. KLEIN, E. PARRA-DENIS 

Centre de Morphologie Mathématique 

Ecole des Mines de Paris 

Abstract 
A novel registration algorithm, which was developed in order to facilitate ophthalmologic image processing, is 

presented in this paper. It has been evaluated on FAF images, which present low Signal/Noise Ratio (SNR) and 

variations in dynamic grayscale range. These characteristics complicate the registration process and cause a 

failure to area-based registration techniques[1, 2]. Our method is based on shape-context theory [3]. In the first 

step, images are enhanced by Gaussian model based histogram modification. Features are extracted in the next 

step by morphological operators, which are used to detect an approximation of vascular tree from both reference 

and floating images. Simplified medial axis of vessels is then calculated. From each image, a set of control 

points called Bifurcation Points (BPs) is extracted from the medial axis through a new fast algorithm. Radial 

histogram is formed for each BP using the medial axis. The Chi2 distance is measured between two sets of BPs 

based on radial histogram. Hungarian algorithm is applied to assign the correspondence among BPs from 

reference and floating images. The algorithmic robustness is evaluated by mutual information criteria between 

manual registration considered as Ground Truth and automatic one. 

 
Keywords:  Fundus autofluorescence, area-based registration, shape-context, histogram modification, 

bifurcation points and mutual information.   

1 Introduction 
In this paper, we present an automatic registration technique based on shape context theory [3]. The shape 

context is a feature-based method [4, 5] working on extracted features called as control points (CPs), which are 

silent, distinct and well spread all over the image [6, 7]. Examples of features are points (corners, crossing and 

high curvature points on shape), lines and regional features [8].  

In feature-based methods, similarity measure is maximized between corresponding features extracted from two 

images, the reference image and the floating image. There are three different matching settings, an intensity 

match in a closed neighborhood around the features [9], geometrical inter-distribution [10, 11] and symbolic 

description of features [12].  

The proposed method is based on extraction of variants of vessel crossing used as CPs from both reference and 

floating images with different dynamics of matching as in [6, 7, 12-14]. Similar to [9] correlation is measured 

around CPs [6]. In [14], sequential fundus images alignment could be done by using the sum of the absolute 

values of the differences (SAVD) method. Bayesian Hough transform is used and a precise affine estimate is 

computed for most likely transformations for registration [12]. In [13], the scheme described in this paper 

combined the closest interval criterion between un equal number of corresponding feature points with SVD 

algorithm to accurately register retinal images. The performance of feature based registration methods is 

dependent on the accuracy of correspondences. Recently, hybrid technique based on both area based and features 

based methods are appearing in retinal image registration [2]. Shape context method can be seen as a hybrid 

method as it deals with information at CPs containing rich information about its neighborhood.  

In the present study we applied image registration algorithms on FAF images. In fact, FAF imaging has shown to 

be useful in retinal diseases for diagnosis, documentation of disease progression, and monitoring of novel 

therapies. Moreover FAF images present important noise, low SNR and important variation on its grey scale 

range. It presents limitation to classical retinal image registration techniques used.  

Firstly, properties and acquisition of FAF image modality are presented. Secondly, the different steps of the 

proposed registration method are divided in three parts: the pre-treatment (based on contrast enhancement), and 

the pattern recognition (features detection and control points extraction, the correspondence between control 

points and estimation of alignment transformation by means of shape matching technique. Lastly, the evaluation 

of the algorithm using mutual information criteria is detailed. The Figure 1 summarizes the proposed registration 

algorithm for FAF images. 
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Figure 1 Flow chart shows the various steps of registration algorithm. 

2 FAF images acquisition and characteristics  
The FAF images of the retina are obtained with an angiograph equipped with a scanning laser of 488 nm 

wavelength (Scanning Laser Ophthalmoscope (SLO)). The autofluorescence is emitted by the presence of a 

pigment (lipofuscin) in retinal pigment epithelium, which is a good indicator of the retinal activity. Field of view 

is 30°, which almost encompasses the posterior pole of retina. During the patient examination, a sequence of 

FAF images is acquired. Each sequence is 3-10 seconds in length with sampling rate of 18 frame/sec. Individual 

images are monochrome and digitized with pixel resolution of 768 768× . The SNR of individual FAF images is 

very low and variation of dynamic grayscale range is introduced by manual image acquisition process. To obtain 

an exploitable image it is necessary to register several images of the sequence and to calculate their average. This 

is the main application of the proposed algorithm. 

3 Proposed image registration method 

3.1 Pre-treatment: Contrast Enhancement 
As mention before, FAF images show variation in dynamic greyscale range during image acquisition process. 

This variation is common between successive examinations of patients on the same SLO. Thus, there is a need to 

standardize the contrast that improves the efficiency of higher level image processing algorithm. Linear Contrast 

Stretch (LCS) and Histogram Equalization (HE) are the two basic contrast enhancement methods [15].  

LCS requires iterative changes to greyscale range form image to image. In the same manner, the effect of HE is 

harsh by amplification of noise. It is common observation in FAF images that although dynamic range varies it 

shows a similar histogram shape i.e. distribution of grey values. 

 

  
a) Raw FAF image   b) Contrast enhancement of  (a) 
Figure 2 Histogram modification under Gaussian model 
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Considering the natural shape of FAF image histogram, A Gaussian model of histogram distribution over 255 

grey scales is calculated by 

2( )
22( ) exp

x m

N
G x σσ

−−
=  

Where, m is the mean, N the number of pixels and 0, ..., 255x = . Mean and standard deviation gives two degrees 

of freedom for Gaussian model of histogram distribution. The details of histogram modification is available in 

[15]. 

FAF images with better contrast usually have a mean of approximately 115 and standard deviation of about 72 

and these values are used for contrast enhancement. The result is standardization of dynamic grayscale range and 

better contrasted images. Modified FAF images have blood vessels, papilla, macula and lesions more visible than 

in original images. Furthermore images are more pleasant in appearance Figure 2 (b).  

3.2 Pattern recognition: Feature detection and extraction of control points 
Segmented blood vessels play an important role in many medical applications for diagnosis and registration of 

patient images taken at different examinations. Including these well known applications, they also help in 

detection of other anatomical structure and lesions. Naturally, segmentation methods depend on image modality, 

application domain and they exploit the properties of vascular structure in a modality. Vessel segmentation 

algorithms are categorized into a wide variety of techniques as in review [16] particularly for retinal blood 

vessels extraction, match filter [17], neural networks [18] and mathematical morphology [12, 19] based methods 

are proposed. In FAF images, blood vessels are the most distinctive feature of retinal image, also exhibits 

characteristics of diameter less than 15 pixels in image size of 768 768× , elongated shape, darker than 

background as monochrome modality, tortuosity, piecewise linear and appear as a tree like structure originating 

from papilla. Furthermore, vascular structure is encompassing whole of fundus, thus making it suitable choice 

for search of control points [7, 11, 12]. 

3.2.1 Vessels Extraction 
In the light of above mention properties of vessels in FAF images, we present a fast and robust technique for 

vascular tree extraction. The algorithm is based on mathematical morphological operators [20, 21]. Histogram 

modified image still has low SNR. Image is filtered with a Gaussian filter (5x5) to remove small noise peaks, 

causing discontinuity in blood vessels extraction. Black details are enhanced by successive morphological 

erosion with hexagonal structuring elements [21]. Excessive noise is attenuated and small black details are 

removed while preserving the crucial vascular tree. When the size of Gaussian filter increases (more than 5x5), 

we observe a discontinuity between vessels, while increasing the size of erosion will displace the vessels 

contour. A black top-hat is applied to enhance the contrast of large and elongated structure with a structuring 

element of size greater than the diameter of the largest vessel. Binary image is obtained by thresholding black 

top-hat image with thresholdλ . The threshold value is selected automatically, by first order statistical property 

of top-hat i.e. mean grey scale. An area-thresholding of small size is applied to remove small elongated noise 

particles. Whole filling and closing is applied to remove small holes and discontinuities in extracted blood 

vessels.  The Figure 3 shows the steps of feature extraction algorithm. 

Skeletonization transformation is applied to extract the medial axis of vascular structure. The category of 

skeletonization utilized here is defined by thinning approaches Zhang and Sue [22]. Motivations for the 

skeletonization is the need to simplify the shape of an object (approximate vessels extracted) in order to find BPs 

for the matching algorithm. There exist small undesirable branches and bubbles, which are removed by an 

efficient skeletal branch filtering algorithm. This refined medial axis of vascular structure is used to extract the 

BPs explained in the next section. 

3.2.2 Bifurcation points 
The BPs are the points, where two or more vessels intersect. They appear as a big vessel subdivided into smaller 

branches and also by crossing of arteries over veins. A new method of calculating BPs is proposed based on the 

counting of the distinct branches associated with a pixel rather than just analyzing the neighboring pixels. If there 

exist more than two branches then the point is termed as BP as shown in Figure 4 (a). The BPs are easily 

determined from the skeleton. This detection is not sensible to the noise present in FAF image.  
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(a). Original image 

 
(b) Black top-hat  

 
(c) Thresholding 

 
(d) Area-opening  

 
(e) Vessels skeleton  

 
(f) Refinement of vessels 

skeleton 

Figure 3. Steps of vessels detection. 

3.3 Shape context  
Shape matching is an approach to exploit the similarity between two shapes. In the context of shape matching, a 

state of art work has been realized in [3] and various shape matching techniques are reviewed in [23]. In this 

section, we propose to utilize frame work of shape matching [3] by calculating the shape descriptors around each 

BP in two successive images of the FAF sequence, giving us a set  {  ,  ......,  }
1, 2

CP cp cp cp
m

= included in 

 {  ,  ......,  }
1, 2

P p p p
n

=  with 
2 ,   cp p

l i
∈{ . As the full vessel contour relative descriptor will be rich and 

matching will be easy but computationally expensive, thus we experimented with the BPs and concluded that 

discriminative descriptors extracted around the BPs are robust. For a point pi on the shape, we find the course 

histogram
ih of the relative coordinates of the m points in a zone. The zone is described by log distance.  

( ) ( ){ }# q p :ih q p bin kii
= ≠ − ∈  

The histogram hi defines the shape around control point cp
k

in a zone. We use bins that are uniform in log-polar 

space, making it more sensitive to near points rather than far away points. Let us consider a point
ip on the first 

shape and a point 
iq on the second shape. Let C C(p ,q )

ij i i
= denotes the cost of matching these two points. As 

shape contexts are distributions represented as histograms, it is natural to use the Chi 2 statistic test: 

2
( ) ( )1

( , )
2 ( ) ( )1

K h k h ki j
C C p q

ij i i h k h ki jk

⎡ ⎤⎣ ⎦−= = ∑ +=  

Where ( )h k
i

and ( )h k
j

denoted the K-bin normalized histogram at 
ip  and

iq , respectively. 

Given the set of costs
ijC  between the pairs of control points pi , on the first shape and q

i
on the second shape, 

we want to minimize the total cost of matching. Subject to the constraint that matching is one to one i.e. ɩ is a 

permutation. This is an instance of the square assignment problem, which can be solved in O(N3) using the 

Hungarian method [24].  
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a). Radial Histogram over BP 

 
b) Radial histogram  

Figure 4 Shape based discriminant features around a bifurcation point. 

 

In our experiment the radial histogram is divided into 12 distance bins and 12 angular bins thus forming a 

descriptor of 144 bins and a radial size of 100 pixels, which has sufficient discriminatory information for correct 

correspondence, as shown in Figure 4. The result of correspondence includes false matches, which are refined by 

statistical analysis of motion vectors based on median and BPs rejected in cost analysis but falling within 

acceptable motion are reintroduced. 

                                                                                                                                  

3.4 Modeling transformation 
In the previous section, we had a finite set of point correspondences between two images of FAF sequence. One 

can proceed to estimate a plane transformation 2 2
T = →{ { that can be used to map points from floating image 

to reference image. The motivation is to look for a correct transformation that can account for eye movements, 

and for small rotational and translational changes introduced by movement on the chin holder during the FAF 

image acquisition process. In literature, transformation model of different dimensions are available, estimation of 

a suitable translation transform in [25, 26], rigid body transformation in [27], an affine model which accounts for 

scale and shear as in [28, 29] or complicated transformations based on thin-plate splines [30] or polynomial 

transforms [31].  

 

In our application, a global affine transformation model is applied and found to be accommodating within the 6 

degree of freedom. Considering, we have a set of homogenous points { }3
, ,........1 2P p p pm= from reference 

image to { }3
, ,........1 2Q q q qm=  in floating image, then 

3 1 3 3 3 1P A Q=× × ×                           
0 1 2

= 3 4 5

0 0 11 1

p m m m qx x

p m m m qy y

⎛ ⎞ ⎛ ⎞⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
 

3 3A × , is the affine matrix mapping, point qi  on to pi .Forward transform is calculated by matrix multiplying 

3Q m× with pseudo-inverse of
3

P
m× . 

1: 3 3 3 3
fforward transform A Q Pm m

−=× × ×  

and backward transformation matrix 
rA  is given, 

: ( )3 3 3 3
r fbackward transform A inv A=× ×  

In [32], evaluation of different interpolation techniques under registration methods are presented. We have 

selected bilinear interpolation to estimate values on the discrete reference grid from the { transformed image 

space. 

4 Results and evaluation 
The registration method is trailed over normal FAF image sequences with Heidelberg Angiograph 2. The 

algorithm was tested on 45 FAF images. A method to measure the accuracy of image registration is to use a 

measurement _Q MI  based on the Mutual information (MI) [5, 28] between the reference image and the 

transformed floating image and on the MI obtained for a ground truth registration of images of  same modality. 

For example, if we want to register two FAF images, we compare experimental result ( )( ),MI A T B  to the result 
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obtained by a ground truth image matching performed for reference images of the same modality 

( )*,MI AF T AF⎛ ⎞⎜ ⎟⎝ ⎠  and we normalize the result: 

( )( ) ( )
( )

*, - ,
_ ( , ( ))

*,

MI A T B MI AF T AF
Q MI A T B

AF MI AF T AF

⎛ ⎞⎜ ⎟⎝ ⎠
⎛ ⎞⎜ ⎟⎝ ⎠

=  

_ ( , ( ))Q MI A T B  represents the relative deviation between the ground truth registration and the one obtained by 

automatic registration algorithms. We consider that _Q MI  gives a good result if its value lies between 5%± . 

In fact, many publications show that the value of MI is strongly related to the accuracy of the applied 

transformation. The well registered the images are, the more important value of MI is measured, around the good 

transformation MI shows a sharp increasing pick.  

On Figure 5, we present the result of the mean of two images extracted from a FAF sequence. The right hand 

image correspond to an unregistered image otherwise the left hand image correspond to our registration result. 

We applied the bi-dimensional distribution of voxel intensity values (or scattered plot histogram) for 

unregistered and registered images. We noticed MI increases when images are registered. For a non-perfect 

registration, the value of MI is almost the same that for unregistered images (0.14 in the present case) and the 

value suddenly increases when we approach the best registration (up to 0.3160). The final result of the 

registration performed is presented in Figure 5(b). 

 

 
a) Unregistered 

 
b)  Registered 

Figure 5 Mean of the two images presented on FAF image pair.  

5 Conclusion 
The registration algorithm presented deals with the noisiest of the image modality acquired with SLO. The main 

objective of the experiment is to develop efficient registration technique independent of specific image 

characteristics in retinal images. In the method, FAF dynamic grayscale range is standardized with Gaussian 

histogram modal and extra noise is filtered. Method is based on efficient retinal blood vessels detection 

algorithm and fast algorithm is proposed for extraction of BPs. Vessels shape is explored to define a 

discriminatory feature around BPs to form a radial histogram. The affine model of transformation is used, which 

accommodates for temporal changes. The discontinuity of image wrap is improved with bilinear interpolation. 

The intra-modality registration is of interest as SLO is capable to acquire images in five different modalities that 

are red-free, indocyanine green (ICG), fluorescein angiography, infra-red and autofluorescence. Each of these 

modalities plays an important role in the diagnosis of retinal diseases. The registration algorithm efficiently 

works with FAF images. It is easily extendable for intra-modality registration with changes in vessels extraction 

module.  
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