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Development of a 2D Analytical Model for the Electromgnetic
Computation of Axial-Field Magnetic Gears

Thierry Lubin, Smail Mezani, and Abderrezak Rezzoug

Université de Lorraine, Groupe de Recherche entiechnique et Electronique de Nancy, GREEN, FoB4Bandceuvre-lés-
Nancy, France

This paper describes a two-dimensional analytical odel to predict the magnetic field distribution in axial-field magnetic gears by
using the sub-domain method. The sub-domain methodonsists in solving the partial differential equatbns linked to the Maxwell's
equations in each rectangular region (magnets, aigaps and slots) by the separation of variables meit. The proposed model is based
on a two-dimensional approximation for the magnetidield distribution (mean radius model) i.e. the poblem is solved in 2D Cartesian
coordinates. One of the main contributions of the @per concerns the analytic solution of the magnetifield in a slot open on the two
sides (space between the ferromagnetic pole-pieced)oreover, it is shown that the analytical model ad the 3D finite elements
simulations follow the same trends in the determirtzon of the optimum values for the geometrical pareneters. As the analytical model
takes less computational time than 3D numerical maa, it can be used as an effective tool for the it step of design optimization.

Index Terms— Analytical solution, axial flux, magnetic gear, nagnetic field, electromagnetic torque, axial force.

I. INTRODUCTION

equations. The sub-domains are linked by the daksi
interface conditions for the magnetic field. It Haeen shown

M AGNETIC gear can be used as power transmission systdh@t this method is very attractive in terms of ecy and
between an input and output shaft without an§:omputat|onal times. Recently, K.J. Meessen diale shown

mechanical contact. The torque between the twotstiaf that the sub-domain method can be applied for tiagysis of

transferred through magnetic field interaction lire tair-gap
regions. As the torque could be transmitted acacssparation
wall, magnetic gears are interesting solutions ikmlated

3-D cylindrical structures with slotting effect [R5
The sub-domain method was also used to predict
magnetic field in actuators with more complex getsynsuch

systems such as pumps. Moreover, they present maﬁ:ﬁ,coaxia_ll magnetic gear [17], [18] or radial-fielis motors
advantages compared to mechanical gearboxes sutbwas with semi-closed slots [19], [20]. In these cadhs,slots are

acoustic noise, low vibrations,
(contactless system with no lubrication), and iehéoverload
protection (pull-out torque) [1]-[8].

In order to analyze the performances of an axiajmatic
gear, an accurate knowledge of the magnetic figttibution
in the air-gap regions is required. The magnetieldfi
distribution can be evaluated by analytical methaats
numerical methods. Numerical methods, like finiteneent
analysis (FEA), present the advantage of taking atdcount
the real geometry of the magnetic gear as welhasragnetic
saturation of the iron parts. On the other handlyical
methods, which are based on some simplifying assangp
(simplified geometry, linear characteristic for tieaterial,
simple boundary conditions), generally require mueks
computational time than FEA and can be effectiwdstor the
first step of design optimization.

Among the analytical methods, the sub-domain metexi
been extensively developed these last years toy st
slotting effect in electrical machine and actua{8ig16]. The
sub-domain method consists in dividing the wholendim of
the studied device into elementary rectangular daubains
(air-gap, magnets, and slots). The exact solutibnthe
magnetic field in each sub-domain is obtained Hyisg the
partial differential equations (PDE) issued frora Maxwell's
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reduced maintenan@Pen on two sides (tooth-tips for PMs motors), leetite

problem to solve becomes much more complicated akiad-

field actuators or motors, this difficult problesidts open on
two sides) is rarely treated in the literature [Hdwever, this
"2-sides" opening part is essential to create dhgue in axial-
field magnetic gears as shown in Fig. 1 and Figl'terefore,
it is important to predict the magnetic field iretblots with a
good accuracy.

In [22], a general 2D formulation using Fourier lgas has
been developed to study a wide range of electactlators in
three different 2D coordinate systems (Cartesiadarpand
cylindrical). As indicated in [22], open slots owa sides
introduce different spatial frequencies in thedisblution in
the domains adjacent to these two sides (air-gdphce, a
special attention must be given to treat this moblvia an
analytical way (this is the case for the studiedjnedic gear as
shown in Fig.3). The authors in [22] promote the af an
extra boundary condition by setting the divergemdethe
magnetic field to zero around each ferromagneticlo(teeth)
in order to calculate some Fourier coefficients.witl be
shown in this paper that this is not necessaryaasa$ the
mathematical problem is well posed.

The purpose of this paper is to present a 2D dnalyt
model of an axial-field magnetic gear based orstiiedomain
method. At our best knowledge, the performancesligien
of an axial field magnetic gear has never been donan
analytical way. As indicated previously, a speeténtion is



given in this paper to the solution of the magnégdtd in a

slot open on two sides and situated between tweratgions
(air-gaps) as shown in Fig. 4. The developed aicalymodel

is then used to analyze the performances (torquke aaial

force) of the gear. In order to study the limitstioé proposed
2-D model, the results are compared with thoseiddafrom

3-D finite element simulations. A parametric stuidy also

presented to show the effectiveness of the proposete!.
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Fig. 1. Geometry of the studied axial-field magngear
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Fig. 2. Exploded view of the gear: (a) high-speadr with p, = 2; (b) low-
speed rotor withp = 7; (c) ferromagnetic pole-pieces wifh= 9.

Il. MAGNETIC GEAR STRUCTURE AND ASSUMPTIONS

A. Structure of the Magnetic Gear

The magnetic gear structure is shown in Fig. 1 and
exploded view is given in Fig. 2. As shown in Fj.an axial

magnetic gear consists of a high speed rotor pyjtole-pairs

(pnh = 2), a low speed rotor witpy pole-pairs f = 7), andQ
ferromagnetic pole-pieces placed between the tarsdQ =

9). The Q ferromagnetic pole-pieces modulate the magnetic
field created by thep, pole-pairs rotor (prime mover). The
resultant magnetic field interacts with thepole-pairs rotor to
transmit the torque to the load. From [1], the gedio G,
between the low speed rot® and the high speed rotofk,
(the ferromagnetic pole-pieces are kept stationargjven by

Ph-Q__R
Ph Pn

Q,=G,Q with G = :—g 1)

The negative polarity for the gear ratio indicattest the low
and high speed rotors contra-rotate.

B. Modeling Assumptions

Because of the three-dimensional nature of the etagn
field distribution in axial magnetic gear, rigorocsmputation
of the torque requires a full three-dimensional Iysis.
However, the 3D analytical determination of the netg field
in such structure is very difficult due to the mese of the
pole-pieces as shown in Fig. 1. In order to simgplifie
analysis, the 3D problem of Fig. 1 is reduced &Daproblem
by unrolling the axial magnetic gear at the meatiusof the
magnetsR;,, =(R1+Ry)/2. Fig. 3 shows the resulting 2D model
which makes the axial magnetic gear equivalent fnear
magnetic gear with an infinite length in the peigiealar
direction. The hypothesis adopted here suggestashef the
2D Cartesian coordinatey, ) in whichy = R¢ as indicated
in Fig. 3. In order to facilitate the analytical dading, we
adopt the following assumptions:

(1) The ferromagnetic parts (back iron and polegsg are
considered as perfect (i.e. infinite permeability), they are
considered as boundary condition for the studiedblem
(homogeneous Neumann boundary condition).

(2) The permanent magnets are axially magnetizeati wi
relative recoil permeabilitys, =1.

Since the soft-magnetic material is consideregerdect
(the field distribution is not calculated inside tlerromagnetic
parts), we have to considered five regions as shiowig. 3:
the PMs regions (I and 1V), the air-gap regionsafitl Ill) and
theQ slots regions (regioriswith 1 <i < Q).

A magnetic vector potential formulation is used eh¢o
describe the problem. The governing partial diffied
equations in each region are given by

O%A= - g% M in Regions | and IV (PMs) @
024 0 in Region Il, lll and (air-gagand slots
with
Br
M=M,e, =+—g¢, 3

0
whereM is the magnetization vector aid the remanence of
the magnets.



As shown in Fig. 3, the geometrical parameters hef t
magnetic gear are:

coupling. From [23], only few changes on the boumda
conditions and periodicity will be necessary her@btain the

- for the high speed rotor: the magnets thickrzgsthe air gap solution of the magnetic vector potential in thesgions.

length @>-z), the pole-arc to pole-pitch ratio of the Pkl

- for the low speed rotor: the magnets thicknesz.j, the air
gap length %-z), the pole-arc to pole-pitch ratio of the PMs
o1

- for the ferromagnetic pole-pieces: the slots ler{gtz,) and
the slots opening angj@

The angular position of theth slot is defined as

@:_ﬁ+%7+90 with 1<i<Q @)

where 6,is the initial angular position of the ferromagueti
pole-pieces.

Soft-iron yoke : 1 — oc

0

Fig. 3. 2-D model of the axial-type magnetic gedrthe mean radius
Rm =(R1*+R2)/2 forph, = 2,p = 7 andQ = 9.
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Fig. 4. i-th slot sub-domain with its boundary conditions.

We now develop the exact solution of the magnéicl fin
each region. As explained before, we focus morécodarly
on the solution of the magnetic field inside thetslas shown
in Fig. 4. This is the main difficulty to solve. &hmagnetic
field solutions in the air-gap and the magnet regibave been
developed in [23] for the modeling of an axial mebm

MAGNETIC FIELD CALCULATION

A. Magnetic Vector Potential in the i-th Slot Region

Thei-th slot region with its boundary conditions is simoin
Fig. 4. In this region, we have to solve the Laplaguation
(no source term in the slot). Using the Cartesiaordinates
(v,2) and replaciny by R.¢, one obtains

{

The mean radiuRk, has been explicitly put in (5) so the
solutions will show its influence on the gear periances. We
have supposed infinite permeability for the ferrgmetic
pole-pieces, therefore the tangential component thod
magnetic field at the sides of the slot is null. terms of
magnetic vector potential, we obtain homogeneousnidan
boundary conditions

2,725 3
8<0<q+p

2 2
ia_A+a_A:0 for

R 06% 07 ©)

9A
065

L

= (6)
069261

=0 and

The continuity of the magnetic vector potentialviestn the
i-th slot and the air-gap regions | and Il leads to
A(6.2)= A (6,3) and A(6,z)= A (6,2) (7)
whereA, (6,z) andA, (0,z) are the magnetic vector potentials in
the air-gap regions.
In the method of separating variables, we writeghleition
of (5) under the form
A(6.2=9(04(2 (8)
which is a product of two functions, each dependinty on
one of the variableg and z By inserting (8) into (5) and

introducing the classical separation constntve obtain two
ordinary linear differential equations

@ +10 =0 ©)
z'-(11R)z =0 (10)

From the boundary conditions (6), it follows that
@(4)=0 and @(4+p) =0 (11)

We have to find the values of the parameteior which
non-trivial solutions of (9) satisfying the boungaronditions
(11) exist [26]. The eigenvalues of the problem (@)) are



Ay =0 (12)

..... (13)

kT 2
A :(FJ with k =123,

Note that, in this problem, the eigenvalue zerstsxbecause
of the Neumann boundary conditions (6).
The eigenfunctions corresponding Ag and A, are given

by

Bo(6) =1 (14)
Bk () = CO{— ©@-4 )] (15)
For Ao andAy, the general solutions of (10) are
Zio(2) = &+ 2 (16)
_km, _km,
Zi ()= Aelfn + & (17)

where a), b, A., and B, are integration constants. Themagnetization). Moreover,

general solution of (5) is written in terms of iife series

AB,2)=d+tz

(o] _knz MZ

S| Ae B 4 @ FP km _gi] (18)
;[Ake :} Jco 5 6-6)

Considering the interface conditions (7),
solution of the magnetic vector potential in tkta slot domain
can be rewritten as

AB,2=d+8§z
/4 kT
[ s mﬁ(z—g)j+_ sﬁmug)} .
;aks [';,;(zz—%)J : 65&(5« 2] st 9))
(19)

where a, and b, are new integration constants. The

integration constants can be determined using aidfoseries
expansion of air-gap magnetic vector potentia|94, z,) and

A, (8, ) over thei" slot interval B, 4+ /1.

8+p
ao+tiozz——j A 2) @ (20)
qop
drthz=2 [ A6 2@ (21)
P

the genera

9+ﬁ
=2 j A6, zz)co{%’ @—a)]de (22)
9+/3

== j Ay (6, 3)co —(e e>] (23)

The expressions of constant,, b}, a, and b, are
developedn the appendix.
The termb},zwhich appears in the general solutions (19) is of
great importance. Indeed, neglecting this term resalt in a
wrong evaluation of the other Fourier coefficielitee the
appendix) and therefore in the prediction of theynetic gear
performances. This term corresponds to a nonzeem value
for the tangential component of the flux densigA(/0z),
even without source term in the slots (as showFig 7b).
This result is different from the one given in [2&here it is
indicated that the tangential component of the flarsity in a
slot open on two sides has an extra constant unkr{oalled
By in [22]) only if a source term with a dc componeést
present in the slot (current density or tangential
compared to [22], we have

supplementary integration constarﬁgl to determine. This

supplementary constant has no impact on the flusitleand
therefore on the torque value (we have to derividite
magnetic vector potential to compute the flux dignand this

constant disappears). However, the constaa'gs) (in each

slot) can be used to compute the back-EMF if caiésplaced
around the ferromagnetic pole-pieces to extractpuut
Flectrical power as it has been proposed rece?ly [

B. Magnetic Vector Potential in the Magnet Regions
In the magnets region (region I), we have to sdle
following equation
16A 6A _ Mo OM, for 0<z< 3z
R? 067 o7 R, 08 0<@<2m
where/y is the permeability of the vacuum al is the axial
magnetization of the magnets.

The distribution of axial magnetizatidvi, can be expressed
in Fourier’s series [23] and replaced in (24)

M, (6) = ZM 2sin((2-1p,(6-3,))
n=1

(24)

(25)

. S
(2n-Dryy

n

s((Zh 1)—(1a'h)j withn= 1,2,3,4

(26)

whered;, is the initial phase angle of the high speed rotor

The general solution for the magnetic vector padénin
region | can be obtained by using the same proeedsirthe
one developed in [23]. However, in [23] the solnotivas
given for a magnetic coupling where the solutioespnts a
spatial periodicity in the-direction (Z/p) which is not the
case for the magnetic gear studied here. Therdfoeesolution
in the magnet region (region | of Fig. 3) is giu®n



o ch{n zj
A6,2=)] 4, F:“ + K cos(13,, )| co$ rd)
e
A (27)
n
chl —z
+i | [Rm j+Kh : g
Ch . n singdy, ) sifing)
n=1 hl —
’ [Rn %J
with
Kh = ﬂn@co{nz—;(l—%ﬂ forn=jp, ; j=13,5,.
0 otherwise
(28)

o +K| sm(ncz)——j Ay (6.7)sin(B)d  (34)

The expressions of constaray’ and ¢’ are givenin the
appendix.

C. Magnetic Vector Potential in the Air-Gap Regions

For the air-gap region (region Il), we have to sobhe
Laplace equation

(35)

z < z<
=0 for |A=*= %
0<sf<2m

To find the general solution for the magnetic vecto
potential in the air-gap region, we follow the samethod as

The integration constants, and c, are determined using a the one developed in [23]. However, as for the reagegions,

Fourier series expansion &, (8, z) over the interval [0, 2]

2ir
I L h _2
a) + Ki cos(,)=— l A 6.3)cos(0 )b (29)

2
ch + K sin(d) = [ A, (6,3)sin(O)d8  (30)
m
0
The expressions of constansy and ¢, are givenin the

appendix.

The same method is used to find the solution inoredvV
(low speed rotor PMs). This leads to the followaxpression
for the magnetic vector potential

Av(az>:i %VM
& Ch[Rr;(a- %)]

+ K, cos(rd; )| cog rd)

! h sin; ) sifing)
n=1 Ch(n( z- 25)]
Rn
(31)
with
n= m |
0 otherwise
(32)

Integration constants)Y and ¢
using a Fourier series expansion &, (6,z) over the
interval [0, 271

2
A + K cospd) )= ! Ay ©.7)cos( )b (33)

in (31) are determined

the solution presents no spatial periodicity in éheirection
and in addition, the interface condition at= z is more

difficult because of the existence of the slotskewn in Fig.
3.

Therefore, atz = z, we have to consider the following
interface condition (continuity of the tangentiahgmetic field
at the interface between the ferromagnetic polegaeand the
air-gap and zero value for the tangential magnéittd
elsewhere i.e. infinite permeability of the ferragnatic pole-
pieces)

0
al %
0z

LG

0 elsewhere

(36)

whereA (r,8) is the magnetic vector potential in théh slot

given by (19).
The continuity of the tangential component of thegmetic
field at z= z gives

oA
0z

_oA

37
ol 37)

=3

After some calculus, the general solution of thegnetic
vector potential in the air-gap can be written as

A (6.2)=
i || RnCh(F:n(z_ é)]+ | Re C'EF:n( i 12)]
S R e I T
slan i) o 42

NEET T

co( 1Y)

sin(né)

n=1

(38)



The integration constants), b', ¢ and d) are
determined as follows (Fourier series expansion)

al = - I aiZl cos(d)dé (39)

B! :%Tizzjﬁ%—? . cos(d )dg (40)

c! :%:faaiz lem(n@)d@ (41)

[ _%Tiz::ajﬂ%—A - sin(ng)d@ (42)

The expressions of these constants are developebein

appendix.
As explained in [26], the Neumann problem (35),)(86d
(37) is well defined only if

(43)

2”6A1
ol

H:Tf(é’) de
0

4

The treatment of (43) gives an additional constra@iween
the coefficientsh) defined in (19)

Q
D B =0
i=1

The axial and tangential components of the magrfltic
density in air-gap region Il can be deduced frongmedic
vector potential (38) by

(44)

__10A

By, = =%
Rﬂ 06

e =", (45)

The same procedure is followed to obtain the smhutn
region Il (air-gap near low speed rotor). Thisdeao the
following expression for the magnetic vector poignt

fenlis] o dacd
NS
R TN

(46)

with
Q 4+8
] 2 aA
a, =— — cos(nd )}dé 47
ZHiZ:l: !I 0Z |-,
2
1l 2 aAV
=— cos(nd )dg 48
by ZHQGZM ) (48)
Q G6+8
2 nl
ol == —  sin(m9)dé 49
, m;iwpé() (49)
2
d" = j ! sinmne)de (50)
2 5 0z 2
The expressions of the constar$ , b)' , ¢ and d)'

are givenn the appendix.

D. Electromagnetic Torque and Axial Force Expressions

The electromagnetic torque and the axial forceiagpbn
the high speed rotor are obtained using the clalsbexwell
stress tensor. The integration line can arbitrdrédyany closed
line in the air-gap region i.ez=¢ D[ z, 22] By considering
the 2D approximation of the magnetic field disttibn, we
obtain the following relations for the torque artk taxial
force.

3 2

T, = RZS#O ! 10(8.0)B,,(6,0) B (51)
2rr

"R (B0.0-8,0.0)d0 6
0

4#0

Substituting (45) into (51) and (52), the analytica
expression for the torque and the axial force camltained
directly from the constant integrations

(53)

(- R)
:Tg(wnxn*'Ynm

R - R

Fy =

where the coefficientd\,, X, Y, and Z, are given in the
appendix.

Similar expressions can be obtained for the elawgnmetic
torque and the axial force applied on the low speéat.



IV. ANALYTICAL RESULTS AND COMPARISON WITH FINITE
ELEMENT SIMULATIONS

In order to validate the 2D analytical model andvehits
limits, we compared the results obtained with theppsed
model and those obtained with 3D finite elementutirtions

(COMSOL® Multiphysics software). The numerical model has

been performed with the same assumptions as tHgtianh

model (iron parts with a relative permeability= 1000 and

axially magnetized magnets wigh = 1). For the analytical
model, we have limited the infinite series solusidyy using a
finite number of harmonic termd andK as indicated in Table
I. A number of 50 harmonic terms is sufficient teegict the

magnetic field distribution with a good accuracy.

For the simulations, we have considered the gedraét
parameters given in Table |. These parameters havéeen
optimized. The aim of this paper is to show theaadages and
limitations of the proposed model. However, thduiefice of
some geometrical parameters (i.e. magnets and pietes
thicknesses) on the magnetic gear performancesbkags
investigated here to show the effectiveness ofptaposed
model.

A. Flux Density Distribution

Fig. 5 and Fig. 6 respectively show the flux densit

distributions (axial and tangential componentsiha middle
of the high-speed air-gap regian£ 8 mm and low-speed air-
gap region £ = 20 mn). The phase angleg§, and § of the
high-speed and low-speed rotors are fixed to ZEhe. initial
position of the ferromagnetic pole-pieces is fixex 6o=-
7/(2Q) that corresponds to the pull-out torque position.
From Fig. 5 and Fig. 6, the effects of the ferrgnetic
pole-pieces on the magnetic field distribution le tair-gap
regions are very clear. The magnetic field is mathd by the
presence of the ferromagnetic pole-pieces. As thgnetic
flux density is calculated at mean radidg we can observe
good agreements between 3D FEM results and thdasénetd

with the 2D analytical model.
TABLE |
PARAMETERS OF THE STUDIED AXIAL FIELD MAGNETIC GEAR

Symbol Quantity value

Ry Inner radius of the magnets 30 mm

Ry Outer radius of the magnets 70 mm

z Magnets thickness (high-speed rotor) 7 mm

Zrz Air-gap length (near the high speed rotor) 2 mm

32 Length of the ferromagnetic pole-pieces 10 mm

73 Air-gap length (near the low-speed rotor) 2 mm

Z52y Magnet thickness (low-speed rotor) 7 mm

B Remanence of the magnets 1.25T

on Pole-arc to pole-pitch ratio of high-speed PMs 1

o Pole-arc to pole-pitch ratio of low-speed PMs 1

Ph Pole-pairs number of high speed rotor 2

p Pole-pairs number of low speed rotor 7

Q Number of ferromagnetic pole-pieces 9

B Slot opening WQ rad

K Number of harmonics used for magnetic field50
calculation in the air-gap and PMs domains

N Number of harmonics used for magnetic field50

calculation in the slot domains
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Using (19), the axial and tangential componentthefflux
density in the T slots regioni€1; z=14mm and 20°9 <40°)
are calculated and plotted in Fig. 7. In accordanitk the
boundary conditions (6) used in the analytical nhodee can
observe in Fig. 7a that the axial component offlilne density
is equal to zero at the iron boundariésZ0° and 40¥. It can
be seen that the proposed analytical model carigbribe flux
density in the slot regions (at the mean radiugh wi good
precision. The difference between 2D analyticaldmions
and 3D FE simulations is less than 5% for the aaahponent
and is about 15% for the tangential component. ege as
discussed in the introduction and in sub-sectidrA]lthe
tangential component of the flux density presentgean value
of around 0.2T which corresponds to a nonzero vidughe

coefficient b given in (19).

B. Torque and Axial Force

Fig. 8a shows the static torque on the high-spetat with
the ferromagnetic pole-pieces and the low-speedr rixed
(60=9=0°). The phase angle of the high-speed ratovaries
from 0° to 90° (i.e. 180f,). The same operation is done for
the low-speed rotor withd varying from 0° to 25.7° (i.e.
180°fy) and the result is given in Fig. 8b. As expecteditifis
type of device [23], the 2D analytical model givieigher
torque values when compared to the 3D FE simulstilircan
be seen in Fig. 8 that the error on the pull-otque prediction
is about 30%. For the high-speed rotor, the torgakie
obtained with the analytical model is about 13 Nheweas the
3D FE simulations give 10 Nm. For the low-speedothe
torque values are about 46 Nm (analytical modet) 3% Nm
(3D FEM). These differences are due to the 3-Dctdfevhich
are neglected in the proposed analytical model. d¥da
observe in Fig. 8a important torque ripples ontlgh speed
rotor. This is due to low order harmonics in thexfldensity
distribution in the high speed air-gap. This effeetn be
reduced by properly choosing andQ for a given gear ratio
[1]. We can observe that the gear ratio is the sdone
analytical and FE result$s{ = 46/13~ 35/10 = 3.5) and, as
expected, is equal Ww/pn (1).

To show the influence of the number of harmonianter
used in the analytical computation, Fig. 9a and. Rb
respectively give the maximum torque (low speeanoand
the computation time vs. the number of harmonimgerWe
consider the same number of harmonic terms for all
subdomains (N=K). For the studied example, oneateerve
that a number of 30 harmonic terms is sufficienptedict the
torque with a good precision. With this choice,.R9 shows
that the analytical computation takes about OMibereas the
linear 3D FEM simulation, with a magnetic scalamfalation,
lasts 40s. The analytical computations being madhef, the
presented model can advantageously be used inlimipeey
design of axial magnetic gears.

Fig. 10 shows the variation of the axial force rgton the
high-speed and low-speed rotors as a function sgaetively
angular displacemen@, and g. As shown in Fig. 10, the two



rotors are attracted by the ferromagnetic poleqsggve have 16 ‘ \

a positive axial force for the high speed rotor andegative Analytical
axial force for the low speed rotor). The maximaick on 14 \/\ --=--3D FEM ]
both rotors are obtained faf, = 4 = 6, = 0°. The error 12 /\ /A

between analytical predictions and FE simulatioms tbe /\/

maximal axial force is less important for the higgeed rotor € 10 77 NG

(less than 5%) than for the low speed rotor (ali&ob). % 8 o j g \‘\,/\

C. Influence of Magnet and Pole-Pieces Thicknesses E / /," \\\

The magnets thicknesses (high-speed and low-spee)y P 6 /,’ i \ \
as well as the ferromagnetic pole-pieces thicknesge a 4 A I," \‘\\
significant influence on the performances of axi@gnetic //’ \
gears. ol X

We first study the effect of the pole-pieces thiess (z— z) / ‘\\
on the torque value (low-speed rotor). The. otﬁemmrical 00 10 20 30 40 50 60 70 80 90
parameters don’t change and are the ones indigateable . Angle (mech. degrees)

The pole-pieces thickness varies from 4mm to 20fig. 11 @)

shows the torque as a function of the pole-pieb&kness. 50 ‘ :
The torque has been computed #pr0.75*90°f, (i.e. 9.64°). 45 Analytical ||
At this position, one can observe from Fig. 11 tha¢ / \ --+-- 3D FEM
maximal torque value is obtained for a pole-pidiekness of 40 /

12 mm. As mentioned previously, Fig. 11 also shived the 35 P

analytical model predicts torque values 30% highan the R 20 / re M \

3D-FEM computations. However, it is important tatenthat = // S \

the analytical and the numerical computations feltbe same g 25 i *;

trend and they give the same result for the optinvaloe of g 20 / e \\

the pole-pieces thickness. = ,"I \\

We now study the effect of the magnets thicknegkes 15 / \\\
speed and high speed rotors) on the torque. Wihéixtotal 10—/ ‘\
thickness of the magnets+£zs-z;) =14 mm. We define the /’ \
ratio between the magnets thickness of the higledspetor ‘\
and the total thickness of the magnets as 00 3 6 9 12 15 18 21 024 o7

K, = Z (55) Angle (mech. degrees)
2+(%- 2) (b)

Fig. 8. (a) Torque exerted on the high-speed sotersush, (4 = 0; & = 0);

. . (b) Torque exerted on the low-speed rotor vers(é, = 0; & = 0).
For the parametric studif, varies from 0.2 to 0.8 and the

other geometrical parameters are the ones givehabie I.
Fig. 12 shows the torque as a functiorkgfobtained with the 50
analytical model and with 3D finite element simidas. Once
again, we can observe that the analytical and thmerical

computations follow the same trend and give theesagsult % 45 -
for the optimum value oK, (K, = 0.6). For the studied §
example, this result shows that, the thicknesd@high-speed g’
magnets must be higher (8.4 mm) than the thickeéshe G 40
low-speed magnets (5.6mmjhis parametric study has not @
been investigated further, nevertheless, for a rgivetal =
magnets volume, the torque transmission capabiliGé an S
axial field magnetic gear are better when the lsigeed rotor g 35
[51]

magnet volume is higher than the low-speed rotogmaa
volume (ie. K, > 0.5).

We have shown through these two examples that t g
analytical model is suitable in the determinatidnoptimum 0 20 40 60 80 100

: P ; Number of harmonics

geometrical parameters values that maximise thguéorThis @
is of great benefit in any optimisation study sitiee analytical
computation is very quick.
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D. 3-D Effects on the Flux Density Distribution

To show the influence of the 3-D effects which are
neglected in the proposed 2D analytical model, fioe
density distributions (3D FE) along the radial atinater
(betweenR; andR,) are plotted in Figs. 13 and 14 (the gear
develops its pull out torque).

In each figure, the value of the flux density at¢ ttmean
radiusr=R,,=0.05m also corresponds to the one obtained using
the 2D analytical model.

Fig. 13 shows the flux density distributions (axihd
tangential components) along a radial coordinateatd
behind a ferromagnetic pole-piece in the middlehaf high-
speed and the low-speed airgaps. As expected, itfie h
permeability of the ferromagnetic pole-pieces letds very
low tangential component (maximal value of 8mT ig.A.3.a)
so the axial component is predominant (Fig. 13Thjs axial
component is relatively constant alon@and its value is not
too far from the 2D one, except when approachiegetkternal
radiusR,=0.07m. Indeed, betweer0.065m and=0.07m, the
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values of the flux density rapidly decreases frdm to -0.6T -0.2 1 ‘
in the low-speed airgap and from -0.9T to -0.4TtHa high- ——high speed airgap
speed airgap. This is mainly due to the fact thay mon- 04l low speed airgap
magnetic material (air) subsists wheii,. )
Fig. 14 shows the flux density distributions (axiahd E
tangential components) along a radial coordinateatgd 2-06
between two ferromagnetic pole-pieces in the miduflehe g 2D model /,
high-speed and the low-speed airgaps. Unlike tleeqaling 3 08 f .5
. . > =V 4
curves, the tangential components of the flux dgntike E u—.,,____h“__'/ _// !
higher values and have large variations alofgarticularly in RV /
the low-speed air gap, Fig. 14.a). B =~
Concerning the axial components (Fig. 14.b), thaiues
are lower than the ones obtained in Fig.13.b, laumain 1
practically constant along r. These values areecloghe ones '(%03 0.04 0.05 0.06 0.07
obtained with the 2D analytical model. A low deceas Radial coordinate (m)
noticed while approaching the external rad®ss0.07m. (b)

Further Investigations have been conducted at at"‘Ver:ig. 13. Flux density distribution along a radiaboedinate behind a

orthoradial positions and lead to the same obdenatas ferromagnetic pole-piece a) tangential componemiigl component.
above viz.:

1- along the radial coordinate, the tangential filensity 0.5 : ' :
evaluated by 3D FEM, has large variations whichnoarbe M —high speed airgap
predicted by the 2D analytical model, 0.4 ML ~~ low speed airgap

2- compared to the 3D FE computations, the 2D &caly N T x‘
model predicts with a good accuracy both the higd Bw = / "‘\H_\_
speed airgap axial flux densities which only exhilittle 203 ; s
variations along the radial coordinate e 2D model N

At least for the studied gear, observation no Istibries the 0.2 ™
main reason of the relatively high difference betwehe 5 ' | \ AN
torque predictions (see Fig.8) of the analytical @bdel and % \.\
the exact 3D FE model. Indeed, the torque is preduxy the 0.1 \\
interaction of the axial and tangential componeritthe flux
density. In another hand, observatidgh2njustifies the lower
error in the evaluation of the axial forces (seq.Hd). c?_os 0.04 0.05 0.06 0.07
Obviously, the presence of the ferromagnetic malteijpole- Radial coordinate (m)
pieces and yokes) makes the axial force mainly g on (a)
the square of the axial flux density which is aetely 04
predicted by the 2D analytical model. ) ;

[v=a 1—,.--"""""“\! ----------- ‘J' ------------------ "'\\
0.08 ‘ ‘ 02 s 4
—— high speed airgap e ;
0.0 [l 777 low speed airgap | | Eot W— —— high speed airgap |
j ? ° 2D model | ____. Io?v spFe):ed airgglpp
E 0.04 8
z \ x 02 /
% 0.02 2D m\odezl : o L’_"
© \\ -0.4
3 o NN W
TR \_\I:_gr-.ﬁ-—-— .
Lo pmmmem 06
] i e ' 003 0.04 0.05 0.06 0.07
0.02 ﬁ e Radial coordinate (m)
-0.04 ®)
0.03 o.cl):?adial cc?c;(r)(finate (rr(?).OG 0.07 Fig. 14. Flux density distribution along a radiabocdinate between

ferromagnetic pole-pieces a) tangential compongakial component.

@



V. CONCLUSION

In this paper, we have developed a two-dimensional

analytical model to predict the magnetic field dizttion and

the electromagnetic torque for axial-field magnegars. The
proposed model is based on an exact 2D solutiothef
magnetic field at the mean radius. A special atterttas been
given to the solution of the magnetic field in atsbpen on
two sides.

We have shown that the flux density distributiorthe air-
gap and slot regions (at the mean radius) compuwitdthe
analytical model is in close agreement with the ob&ined

using 3D FEM. The proposed 2D analytical model show
some lack of accuracy compared to 3D finite-element

simulations for the torque prediction. It over-ggttes the

12

- for km=ng
tkoni) :E(cosms?i)+%T(sinn(¢9i +2,8)—sin(n6?|))j
(A7)
g(k,n,i) :ﬁ[sin(ne)—i(cosn(e +2,6’)—cos(19))]
2 2k ! !

(A.8)
The development of (A.3) and (A.4) gives the foliogv
functions

r(n,i) = %(sin(né’i +np) -sin(ng)) (A.9)

s(ni) :%(— cosh8 +nB) +coshd))  (A.10)

maximum torque value of about 30% (for the studied

example). However, we have shown that the analyticalel
can be used to determine rapidly the optimal valtighe
ferromagnetic pole-pieces and magnets thicknesshwhe
other geometrical parameters are given. Indeedydnametric
studies show that the analytical and the 3D FE Isitimns
follow the same trends in evaluating the electromatig
torque.

The proposed analytical model has lower computation

time than 3D FE simulations. Hence, it can be uasdan
effective tool for parametric studies or for thesfistep of the
design optimization of axial-field magnetic gears.

APPENDIX

For the determination of the integration constawts,have
to calculate integrals of the form
8+p

f(k,n,i)= j COSM)COE% 6-9 Sde (A1)
8
8+p
g(k,ni)= j sin(rﬂ)co{k—ﬂ -4 ﬂde (A.2)
8 B
8+p
r(n,i) = I coshd 1o (A.3)
8
8+p
s(ni)= j sin(rg)dg (A.4)

4

The development of (A.1) and (A.2) gives the foliogv

functions that will be used in the expressionshefintegration
coefficients

- for krr#ng
. —nB2|(-)*sinn(B+86)-sin(nd)
f (k,n,i) = ( g ) (A.5)
dhon iy = (D con(+8) -coshr)) o

k?m* -n?p?

The solution for the integration constants can éerinined
by solving a linear system of equations (Crameystesn)
which can be written in matrix form as

[M](x)=(9)
where (X ) is the unknown vector defined as
()=(a & 4 & & B '8 b '3 p.

....r',”a Irl]lb ”r!.C Illnd IVna IVn éT

(A.12)

The matrix M] and the source vectoB)(are developed in
(A.54). In the following developmentsN represents the
number of harmonic terms used in air-gap and magueons
(regionsl, I, Il andIV) andK the number of harmonic terms
used in the slot regions (regiosQ is the number of slotsy
and lg in (A.54) are respectively the identity matriceE o
dimension N and, andlkg is the identity matrix of dimension
KxQ. The dimension ofX) is then equal to I¥+2Q+2KQ.

To solve the linear system (A.11), a numerical matr
inversion is required for the calculation of th&kmown vector.
This can be done by using mathematical softwaretl@ideor
Maple).

« Expressions of the constara$, b/ : The development of
(29) and (30) gives
a, +Kj cos(dy, )=

(A.11)

Al %Mﬂﬂ Rn n 1 (A.13)
sh[Rm(%‘ é)j sﬁRn( z- 13]
ch + K sin(na,,) =
¢! &M I S (A.14)
’ Sh[é]n(%- é)] " SGF:“( 7- B]



Equation (A.13) and (A.14) can be rewritten in wecand
matrix form as indicated in lines 1 and 2 of (A.5¢jere

(S)n = Ky cos(y,)

(S)n = Kisin(ng,,)
n
- (a7 3%
Mm-ﬁiﬁi—ﬁ
" [n(é— %)]
Ry
My =

Sh[F:ﬂ( 3- 4)}

(A.15)
(A.16)

(A.17)

(A.18)

13

Q
M@=y r(rl‘T") (A.24)
i=1
krmr
Q K Ch( (- Zs)}
Mo =D, K PRy f(k,ni) (A.25)
iR Sh[ KT (5 - %)]
BRy,
M® = S i K ! f(k,ni) (A.26)
NxKQ N,

Mo Mo+ M(lko in line 6 of (A.54) have respectively

where NxN (in M) indicates the matrix dimensionsthe same form asv ,(fx)Q M,(fx)KQ, M,(VGX)KQ by replacingr(n,i)

(rowsxcolumns).
« Expressions of the coefficient! , b , ch
development of (39) to (42) gives

n n
¢=¢—%—4

Rn Ry
" Lth[i ]
Cn d“Rn R 3
Q i
| - bO H
bn—Z;r(n,l)

a
= PRy h[k” _ ]
s ﬁan(é 2)
N I ! (ki
+ , Nl
i=1 k=1 'BRmsh(k”(% é)J
BRy
Q Wi
dr'1'=;%8(nb
kmr
Q K Ch[ ( %)]
et ok )
i=1 k=1 Rm Sh[ﬂ( % %)j
BRy
$3 K L (kn
gk ni
=1 k=1 ’BR”‘sh(k”(%—é)J
BRy

and d, : The

(A.19)

(A.20)

(A.21)

(A.22)

(A.19) to (A.22) can be rewritten in vector and rxatorm as

indicated in lines 3, 4 and 5 of (A.54) where

n n
2= n( )

(A.23)

by s(n,i) andf(k,n,i) by g(k,n,i).

« Expression of the coefficientsy,, b)), a, andh.: The
treatment of (20) to (23) yields to the followirigdar relations
a+hz =

ch—(z -

i +4 [é(z @J i
Z( R‘;sh[;m(la— %)] 3; SEF;( z- 1?])“” I)
Z‘ i Rn 1 o RnCh[F?m(zz_ %)])S(n )

=P (Rm(a— é)] e SEF:n( z- 3]
(A.27)

which can be rewritten in vector and matrix formiradicated
in line 7 of (A.54) where

M = ZR”‘ : 1 f(ni) (A.28)
=n8 [ n
S[Rm(% 3)
n
C[(Zz‘§)
MER ZR’“—r(n,i) (A.29)
[Rm(% 7)

Matrices MS2 . MS2 in line 7 of (A.54) have respectively

the same form asv &% and MSX by replacingr(n;i) by
s(n,i).
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& +thas -
[n(é-é)] [n(é-é)]
Z(a#' By i > B o T tn)
= F{ )J SE”( 7 32)] -l Sf(”(%— 4)} SE”( - 32)]
R 2 Rn Ry Ru
Ch[(%-a)] (n (%-4)]
+ZN:(CJ1” Ro_ LR ! R ! )(n) +ZN:( i . st 21 gkn)
= nﬁsh(n(%— %)j e SE”( - 33] A ( (3~ %)j e SE”( = 32)]
Rn Rn Ra Ru
(A.30) (A.36)
which can be rewritten in vector and matrix formiradicated which can be rewritten in vector and matrix formiradicated
in line 8 of (A.54) where in line 10 of (A.54) as
(z- 4)] N Ch(n(%- 4)}
MER = Z Rm (Rm r(n,i) (A31) MG, :ZZnR; F:']“ f(k,n,i) (A.37)
n=1 shh N (z-
[Rm(% 21)] (Rm(zs 4)]
N
MER = Z R;;;r(n,i) (A32) MG, :22:;" - ! f(k,n,i) (A.38)
[ (z- %)J = Sh{( z- %)J
Rn Rn
ME2 ME in line 8 of (A.54) have respectively the sameM &)\ and M) in line 10 of (A.54) have respectively the
form asM&, and M&3), by replacing (n.i) by s(n.i). same form asM@)y and M) by replacingf(k,n,i) by
a(k,n,i).
a = « Expressions of the coefficients , b' , ¢!' andd,': The
(n J development of (47) to (50) gives
Z(a,k' g 2B i
I’],B I{ ] En ] bn” :drY lth l( _ ) (A39)
Rm Ra R, (R, 47 % '
n
[(Zz‘%)] mo_av N rne_
Z( | ZF;m L e 2 R Yok ) A =& Mg (2 3) (A.40)
( (z- é)J E (2 1?]
Rn Rn o
(A.33) TR s Y
which can be rewritten in vector and matrix formiradicated & = Z_;; r(n.i)
in line 9 of (A.54) as o K'_ y
[ 1 .
e KU Bt e ymu) R
" Sh[Rm( 3-32) BRy
kmr
n Q K ch (%~ Zz)]
o S (z) o .
M2, =S 2R LB f(k,ni) TR D 2y st flen)
oy ”,3 n i=1 k=1 sh 7(23_ %)
ﬁ( 3 1) BRy

M Gy and MG in line 9 of (A.54) have respectively the

same form asM {3,y and M3 by replacingf(k,n,i) by

a(k,n,i). It is worth noting that the vectc(raL)KQin line 9 of

(A.54) is of dimensiolK xQ and takes into account teslots.



Q i
@S ans
>y ek
+ & gk n (A.42)
Sl Sh[k"(zz—%)]
BR,
K

a(k ni

(A.39) to (A.42) can be rewritten in vector and rixatorm as
indicated in lines 11, 12, 13 and 14 of (A.54) véher
Q

M i = Z&”') (A.43)
i=1
en -y i k 1 floni)  (A4d)
M ko = N, .
e i=1 k:lﬁRm Sh[k]T( é - %)]
BRy,
kmr
Q K Ch[(%— %)j
Mo =D k AR f(k,ni) (A.45)
i=1 k:l'BRm sh[kﬂ( z- %)j
BRy,
MG = th[%(a - 75)] (A.46)
MG MGiko  MZko i line 13 of (A54) have

respectively the same form a3, MGo. M Gokg by
replacingr(n,i) by s(n,i) andf(k,n,i) by g(k,n;i).

« Expressions of the coefficients’ , b’ : The development
of (33) and (34) gives

a +Kpcoso) )=

Il F\)m 1 (

" T—sh(n( ) n—s(
R, 5— 4

Y + K} sin(ng,) =

I} F\)m 1

) Tsh[;;(zs- 21)]

Equation (A.47) and (A.48) can be rewritten in wecand
matrix form as indicated lines 15 and 16 of (A.BAere

15

(Sis)n = Kycos(m) ) (A.49)
(Sie)n = Kpsin(ry) (A.50)
M =P 1 (A52)
" Sh[n( z- 3)
Rn
Ch[n( z- 3)
M =Bo AR ) (A.51)
" Sh[n( z- 3)
Rn

* Moreover, we must add to these equations the soppitary
constraint given by (44). The last line in (A.54y@sponds to
(44).

» Expression of the coefficien®,, X, Y, andZ, given in the
torque and axial force equations (53) and (54)

e sh[F?m(%‘ %)J 56%( & lﬂ
"o sh[Rnﬂ((‘ Zz)] Ld S'Er:ﬂ(z ] ;)]
sh[F;(%- é)] 36;( £ l;] (A.53)
. Ch[F;(Z_ZZ)]wn' C*[,;ﬂ(i- )]
n_ansh[RrL(%_ %)j sr{é'n(zz—@j
- ch(F?m(Z‘ Zz)) 4 C’{F;(Z ] )J
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