Morphological-based adaptive segmentation and quantification of cell assays in high content screening

Abstract : In fluorescence-labelled cell assays for high content screening applications, image processing software is necessary to have automatic algorithms for segmenting the cells individually and for quantifying their intensities, size/shape parameters, etc. Mathematical morphology is a non-linear image processing technique which is proven to be a very powerful tool in biomedical microscopy image analysis. This paper presents a morphological methodology based on connected filters, watershed transformation and granulometries for segmenting cells of different size, contrast, etc. In particular, the performance of the algorithms is illustrated with cell images from a toxicity assay in three-labels (Hoechst, EGFP, Phalloi'din) on nanodrops cell-on-chip format.
Type de document :
Communication dans un congrès
5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008, May 2008, Paris, France. IEEE, pp.360-363, 2008, 〈10.1109/ISBI.2008.4541007〉
Liste complète des métadonnées

https://hal-mines-paristech.archives-ouvertes.fr/hal-00833818
Contributeur : Bibliothèque Mines Paristech <>
Soumis le : jeudi 13 juin 2013 - 15:32:27
Dernière modification le : vendredi 27 octobre 2017 - 17:36:02

Identifiants

Collections

Citation

Jesus Angulo, Béatrice Schaack. Morphological-based adaptive segmentation and quantification of cell assays in high content screening. 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008, May 2008, Paris, France. IEEE, pp.360-363, 2008, 〈10.1109/ISBI.2008.4541007〉. 〈hal-00833818〉

Partager

Métriques

Consultations de la notice

63