Adequate Inner Bound for Geometric Modeling with Compact Field Function

Florian Canezin 1 Gaël Guennebaud 2, 3, 4 Loïc Barthe 5
1 VORTEX - Visual Objects from Reality To Expression [Toulouse]
IRIT - Institut de recherche en informatique de Toulouse
4 MANAO - Melting the frontiers between Light, Shape and Matter
LaBRI - Laboratoire Bordelais de Recherche en Informatique, Inria Bordeaux - Sud-Ouest, LP2N - Laboratoire Photonique, Numérique et Nanosciences
Abstract : Recent advances in implicit surface modeling now provide highly controllable blending effects. These effects rely on the field functions of $\mathbb{R}^3 \rightarrow \mathbb{R}$ in which the implicit surfaces are defined. In these fields, there is an outside part in which blending is defined and an inside part. The implicit surface is the interface between these two parts. As recent operators often focus on blending, most efforts have been made on the outer part of field functions and little attention has been paid on the inner part. Yet, the inner fields are important as soon as difference and intersection operators are used. This makes its quality as crucial as the quality of the outside. In this paper, we analyze these shortcomings, and deduce new constraints on field functions such that differences and intersections can be seamlessly applied without introducing discontinuities or field distortions. In particular, we show how to adapt state of the art gradient-based union and blending operators to our new constraints. Our approach enables a precise control of the shape of both the inner or outer field boundaries. We also introduce a new set of asymmetric operators tailored for the modeling of fine details while preserving the integrity of the resulting fields.
Liste complète des métadonnées



https://hal.archives-ouvertes.fr/hal-00833576
Contributeur : Loïc Barthe <>
Soumis le : lundi 17 juin 2013 - 20:51:45
Dernière modification le : jeudi 15 juin 2017 - 10:20:33
Document(s) archivé(s) le : mercredi 18 septembre 2013 - 04:18:56

Fichiers

SMI2013_Canezin_et_al.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Florian Canezin, Gaël Guennebaud, Loïc Barthe. Adequate Inner Bound for Geometric Modeling with Compact Field Function. Computers and Graphics, Elsevier, 2013, 37 (6), pp.565--573. <10.1016/j.cag.2013.05.024>. <hal-00833576v2>

Partager

Métriques

Consultations de
la notice

543

Téléchargements du document

434