N

N

Introducing a Data Sliding Mechanism for Cooperative
Caching in Manycore Architectures

Safae Dahmani, Loic Cudennec, Guy Gogniat

» To cite this version:

Safae Dahmani, Loic Cudennec, Guy Gogniat. Introducing a Data Sliding Mechanism for Cooperative
Caching in Manycore Architectures. The 27th IEEE International Parallel & Distributed Processing
Symposium, May 2013, Boston, Massachusetts, United States. pp.335-344. hal-00833565

HAL Id: hal-00833565
https://hal.science/hal-00833565

Submitted on 13 Jun 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00833565
https://hal.archives-ouvertes.fr

Introducing a Data Sliding Mechanism for Cooperative Caching in Manycore
Architectures

Safae Dahmani*'T, Loic Cudennec* and Guy Gogniat'
* CEA, LIST, Embedded Real Time Systems Laboratory
Gif-sur-Yvette, France
firstname.name @ cea.fr
t Lab-STICC Laboratory
University of Bretagne Sud
Lorient, France
guy.gogniat @univ-ubs.fr

Abstract—In future micro-architectures, the increase of the
number of cores and wire network complexity is leading to
several performance degradation. These platforms are intended
to process large amount of data. One of the biggest chal-
lenges for systems scalability is actually the memory wall: the
memory latency is hardly increasing compared to technology
expectations. Recent works explore potential software and
hardware solutions mainly based on different caching schemes
for addressing off-chip access issues.

In this paper, we propose a new cooperative caching method
improving the cache miss rate for manycore micro- architec-
tures. The work is motivated by some limitations of recent
adaptive cooperative caching proposals. Elastic Cooperative
caching (ECC), is a dynamic memory partitioning mechanism
that allows sharing cache across cooperative nodes according
to the application behavior. However, it is mainly limited
with cache eviction rate in case of highly stressed neighbor-
hood. Another system, the adaptive Set-Granular Cooperative
Caching (ASCC), is based on finer set-based mechanisms for
a better adaptability. However, heavy localized cache loads
are not efficiently managed. In such a context, we propose
a cooperative caching strategy that consists in sliding data
through closer neighbors. When a cache receives a storing
request of a neighbor’s private block, it spills the least recently
used private data to a close neighbor. Thus, solicited saturated
nodes slide local blocks to their respective neighbors to always
provide free cache space. We also propose a new Priority-
based Data Replacement policy to decide efficiently which
blocks should be spilled, and a new mechanism to choose host
destination called Best Neighbor selector.

The first analytic performance evaluation shows that the
proposed cache management policies reduce by half the average
global communication rate. As frequent accesses are focused in
the neighboring zones, it efficiently improves on-Chip traffic.

Finally, our evaluation shows that cache miss rate is en-
hanced: each tile keeps the most frequently accessed data 1-
Hop close to it, instead of ejecting them Off-Chip. Proposed
techniques notably reduce the cache miss rate in case of high
solicitation of the cooperative zone, as it is shown in the
performed experiments.

Keywords-Many-cores, Tiled Micro-architectures, Memory
Hierarchy, Cooperative Caching, Cache Partitioning, Data
Sliding, Priority-Based Replacement Policy, Best Neighbor
Selector.

I. INTRODUCTION

Nowadays, multi-core processors use is very prevalent,
either in regular desktop end-products, high performance
computing systems or even in embedded computing systems
(smartphones, automotive industry). One of the trend that
can be observed since the last five years is a massively grow
of the number of cores embedded on a single chip [1]. These
systems are expected to grow up in the same way for the next
decades, leading to a generation of new massively parallel
architectures called manycores. Today, manycores made of
ten to a hundred of cores are already available [2], [3]. Up-
coming chips for 2013 are expected to embed 256 cores [4],
[5] and research projects target up to 4096 cores [6].

The manycore systems are intended to execute a set of
workloads with different memory needs. Using on-chip data
caching allows to decrease access latencies, and therefore
improves application performances. Data that are the most
often used are fetched into high speed access memory units,
close to the processing core, such as L1 caches or shared L2
caches. This avoids expensive requests to the main memory.
These mechanisms are transparent to the developer and to
the application. The resulting cache hierarchy is one of the
main issues that lead to several optimizations. As we move
down in the cache hierarchy, the memory storage capacity
grows up, as for the access latency. The way cache memories
are managed directly shapes the number of cache misses,
that is responsible of slow external memory accesses and
general performance decrease.

One way to optimize memory management relies on cache
partitioning, which refers to the sharing of low level caches
(L2/L3) between several threads that run concurrently. There
are different cache hierarchy organizations depending on
both the number of cache levels and if each level is shared
or private. For example, the Intel Tera-scale architecture [7]
relies on a distributed first-level cache that leads to different
tradeoffs in private or shared cache modes. The use of
private caches leads to small access latencies, and allows

a better scalability, which is of major importance regarding
the design of manycore architectures. The downside of this
approach is that shared data are replicated in multiple tiles,
making harder to deal with data consistency.

In the remainder of the paper, we focus on manycore
architectures with flat memory hierarchy. These manycores
are made of processing cores, each core hosting a single
private cache: no on-chip memory is shared. It can be found,
for example, in the Adapteva Epiphany IV [8] and the Intel
MIC Knights Corner [9], and can be compared to a wireless
ad-hoc network or an unstructured peer-to-peer system.

In such a context, the cooperative cache policy [10], [11]
has been proposed to efficiently manage data over large-scale
architectures with no shared memory. Cooperative caching
consists in taking benefits of some unused memory blocks
in the neighborhood’s private caches. According to adopted
cache organization strategy (ie: LRU), mostly used data are
kept as long as possible in cooperative areas.

This virtually increases the size of the private cache in
order to avoid off-chip evictions. Cooperative caching differs
from distributed shared memory (DSM) in a sense it does
not offer a global address space.

A particular class of high performance applications, once
deployed on a manycore architecture, is able to locally
saturate the chip with numerous reads and writes. This is
particularly true regarding image processing applications
that use convolution filters, streaming-based processing, or
the deployment of multiple applications with on-chip locality
constraints in order to minimize inter-process communica-
tions. In this scenario, private caches attached to core that
run the application are heavily solicited. Therefore, data may
have to be evicted out of the chip, even using a cooperative
cache: the saturated neighborhood can not be of any help.

In order to deal with this situation, we propose a data
sliding mechanism that offers some improvement over the
regular cooperative cache system. This mechanism lets a
core A use the private cache of its neighbor B, even if B
is saturated. In order to host this data, core B chooses one
of its own data to be stored on another neighbor C. The
mechanism ensures that the data are not evicted off-chip,
and always located close to the owner core for performance
reasons.

Our contribution has been analytically evaluated using
synthetic codes coming from industry-grade image process-
ing applications and a trace-based simulator that shows the
benefits of the sliding mechanism, by drastically decreasing
the number of data eviction.

Our paper is organized as follows: Section II presents a
survey of works related to cooperative caching strategies,
from which we motivate our contribution. In Section III
we describe the Data Sliding mechanism, and the two
cache replacement and neighbor selection policies. A first
performance evaluation is discussed in section IV, wherein
we do a global analysis of the results compared to both

the baseline cooperative mechanism and the adaptive Elastic
Caching strategy described later. The last section is for
conclusion and future perspectives.

II. RELATED WORK
A. Cooperative Caching

Memory issues induced by concurrent accesses, large
piece of data and dataflow processing are increasing in
conjunction with the number of integrated cores on a single
die. Data caching issues in large scale systems are also con-
sidered in several other areas such as mobile networks and
web servers. In these contexts, several contributions [12],
[13], [14], [15] regarding cache level organizations have
been proposed in order to enhance cache miss rate and
access latency.

In a small history of microprocessors, the first architec-
tures were based on fully private caches. Shared caches
were proposed to reduce the main memory access rate [16].
In order to benefit from both designs, hybrid caching was
proposed to support heterogeneous workloads [17]. This
leads to different utility-based and power-aware optimiza-
tions through several cache split strategies [18], [19]. Hy-
brid cache organization improves the local hit rate, taking
benefit from the fully private cache approach, and keeps
the overall miss rate as within the shared cache hierarchy.
With the growing number of processing elements in many-
core architectures, it appears to be quite difficult, or even
impossible, to provide physical shared memories among a
large number of cores (although 3D stacking may have the
leverage to design such systems in the future). This is why
distributed caching algorithms are deployed over manycore
architectures.

One of the major approach emerging in this context is
based on private cache aggregation [10], [13], [20]. Cooper-
ative caching has been proposed to enhance access latency
and reduce cache miss rate. Under heavy load conditions,
available cooperative caches provide unused sets of blocks
to neighbors that are short of space [12], [14]. This way,
data are kept close to the requesting nodes.

In spite of the increasing number of nodes, data caching
capacity is more limited because of different physical and
technological constraints. It is even more crucial to effi-
ciently choose which data to remove and which data to keep
close to the processing element. Typical cache management
strategies for optimizing data eviction are called replacement
policies. These policies play a significant role in reducing
cache miss rate and data access time.

For example, energy aware platforms like mobile net-
working and storage file systems consider that communi-
cations are the major source of power consumption. Thus,
a good replacement policy allows reducing general traffic
by conserving cached data as long as possible. In order
to ensure this, some replacement policies were previously
proposed [15], [21]-[23]. They are classified following the

parameters used to take the replacement decision. A few
examples of parameters are: access cost, access pattern,
spatial and temporal dependencies. For instance, traditional
Least Frequently Used policy assumes that most frequently
accessed data will be the most probably called in next
accesses.

The next generation of on-chip systems has to support
a broad spectrum of applications with different memory
requirements, while the on-chip storage capacity is lower
and the cost of off-chip misses becomes more and more
significant. Cooperative caching seems to be a relevant
approach and the induced cache partitioning issues lead
to important optimization tracks. Thus, it is necessary to
have the best tradeoff for optimizing private and shared data
caching according to different workloads.

B. Adaptive Cache Partitioning

Many static and dynamic approaches have been presented
to improve cache resources allocation in cooperative zones.
In order to avoid strong cache contention, most current
works propose a time-based sharing partitioning system.
It particularly considers multiple applications utilities to
unfairly allocate cache resources [20].

One of the main goals is to set the frontier between
private cache and shared cache by limiting underused space.
Elastic Cooperative Caching (ECC) [24] has been proposed
as an adaptive memory hierarchy that consists in creating a
hybrid cache which dynamically re-adjusts local and shared
zones according to cached data reuse in each side. The
ECC provides an autonomous way to control data spilling in
cooperative area to avoid contention and power consumption
at the level of cache coherency unit. In addition, cache
elasticity allows to get both advantages of private cache in
terms of access latency and those of shared cache approach
with cache miss rate reduction.

Another adaptive cache partitioning proposal is the Adap-
tive Set-Granular Cooperative Caching [25]. This proposal
is also based on data migration from high utility caches
to underused ones. The Set-Granular Cooperative Caching
proposes spilling techniques that allow measuring the stress
level of each set in a set-associative cache. Depending on
measured stress degree of sets the system decides the spilled
ones and those that will receive them.

In a situation of a global short of storage capacity,
where all cooperative caches are full, none of the presented
adaptive mechanisms can afford the ability to spread out
cooperative zone, while keeping data 1-Hop close to the
requesting cores.

The Data Sliding approach handles efficiently stressed co-
operative neighborhood with data migration through neigh-
bor’s cooperative zones. In response to storing requests,
each saturated node should push only one time local private
blocks to his least stressed neighbor, so that it could store
spilled data from most stressed requesting neighbors. Finally,

local data migration is stopped when reaching a cache free
cooperative area.

Our proposal is based on two main policies: Priority-
based replacement policy and Best Neighbor Selector. These
mechanisms allow each node to decide efficiently the block
to be replaced and the best host cache (Best Neighbor) to
receive it.

III. CONTRIBUTION: DATA COOPERATIVE SLIDING
MECHANISM FOR HIGHLY STRESSED ZONES

A. Proposed Data Sliding protocol

The manycore processors provide the ability of running
several parallel applications in the same time. One of
the biggest challenges in such highly parallel architectures
is to adapt the memory resource allocation to different
application workloads. Previous studies of adaptive cache
partitioning [24] have classified the applications in four
categories regarding the amount of shared data and working
set; saturating utility, low utility, shared high utility and
private high utility. In our paper,we focus on private high
utility applications (e.g: Swim) with a high data reuse
amount. These applications are characterized by important
private cache requirements.

Different combinations of these kind of applications pro-
vide effective issues of managing concurrent accesses to
cache hierarchy, especially in cooperative neighboring cache
schemes. Cores with short cache solicitations benefit from
the extension of storage space through shared zones. This
creates highly stressed spots in cooperative zones. To be able
to provide an adaptive cooperative policy, it is important
that storage space can be distributed efficiently between
cooperative nodes. In fact, in the case of highly stressed
neighborhood, adaptive cooperative caching mechanisms can
not manage data storage considering the memory needs of
all the cooperative nodes.

The elastic cooperative cache hierarchy provides balanced
cache partitioning between local cache space and shared
unused space. However, the cyclic adaptive aspect of this
mechanism depends on the running application behavior
as well as the neighbor’s one. Therefore, when both ap-
plications are private high utility, the partitioning unit will
try to dynamically adjust the size of each zone. As cyclic
cache partitioning decision is based on concurrent private
and shared access hits, more blocks will be replaced in both
zones and then evicted off-chip.

In this paper, we propose a new cache spilling mechanism
which allows stressed neighborhoods to keep frequently
accessed data on-chip, near the owning tiles. The sliding
mechanism allows the migration of private blocks between
neighbors in a highly stressed context, as seen in figure 1.a.
As far as we know, this is not allowed in existing cache
cooperative systems. When a tile sends a private block
to a neighbor cache, this one replaces the least recently
used private block by the new received one. In order to

NN
NN
A
OOELL
NN

a. Close neighbors

[]]
LA]

b. Data sliding through neighbors

[]
[]
[]
[]

Figure 1. Data propagation through neighbors

avoid the eviction of the data, the host node sends the
replaced private block to his nearest neighbor. Thereby,
every neighbor receiving spilled data pushes local blocks to
his cooperative neighboring zone in order to release cache
space for incoming shared blocks. This process is recursively
repeated until the sliding propagates to a non saturated
area, or to what has been defined as the edge of the chip.
In the latter case, private data is evicted out of the chip.
However, this worst case may not occur in large manycore
architectures, where temporary cool areas still exist.

To simplify our approach, cached blocks are 1-chance
forwarded, which means that a block that has been moved
to a neighbor can not be moved again (except to move back
to the owner). This is not a limitation, and we can imagine
switching to a N-chance forwarding system, as long as it
remains more efficient than getting the data from external
memory. Thus, each node keeps its private data one-hop
close (figure 1.b), instead of migrating them to the opposite
side of the chip or even evicting them off-chip.

B. Functional Description of Data Sliding Mechanism

According to our approach, the cache functional state
is either in AVAILABLE or SLIDING mode. The
SLIDING mode is activated when the whole neighborhood
is highly stressed. When a cache is saturated (ie: cache
occupancy is higher than THSAT), data sliding is not
automatically activated. Only highly competitive accesses to
saturated caches allows data neighbor-to-neighbor sliding.

In order to get information about both core and neighbor-
hood workloads, we define two main types of counters, that
are managed on each core:

o The Local Hit Counter (LHC) is incremented accord-
ing to local accesses,

o The Neighbor Hit Counter (/N HC) is associated to each
neighbor and is incremented according to each shared
data accesses from the neighbor.

Comparing neighboring access to local access amounts
lets the system evaluate the memory needs of both sides. A
tile is defined as stressed when the distance between LHC'
and Y NHC is lower than a given threshold THSLD.

(0)INIT

(2)
Cache_occupancy >= THSAT
(=1
distance(LHC, sum{NHC))<= THSLD

4)
distance(LHC, sum{NHC)) = THSLD

(3)
Cache_occupancy >= THSAT
(19
distance(LHC, sum{NHC))== TH5LD

Figure 2. State machine of Data Sliding mechanism

Then, the system switches on SLIDING mode. When
the previous condition is no more satisfied it returns to
AV AILABLE mode and all counters are reset (see fig-
ure 2).

For performance reasons, a dedicated free block is chosen
on each core in order to satisfy every sliding request without
waiting for the end of the propagation. The least recently
used private block is thereafter chosen to be slided onto
another neighbor and the resulting free block is locked to
satisfy the next sliding request.

The figure 3 presents different steps of cache replace-
ment policy with sliding blocks through 3 neighbors. Three
neighbors N1, N2 and N3, are represented along with their
private caches (fig. 3.1) . A data @aq is stored on the N1
floating free block (fig. 3.2) . The least frequently used data
@b on N1 is thereafter elected to be slided on neighbor
N2 (fig. 3.3). The resulting block is being the new floating
free block (fig. 3.4) . Finally, the sliding process stops for
neighbor N3 offers enough free space.

C. Data Replacement Policy

Once a core receives a sliding request from one of its
neighbors, a block of its own has to be slided. This block
is chosen in regard of the data replacement policy. Re-
placement policy presented in Elastic Cooperative Caching
strategy [24] doesn’t consider memory needs of cooperative
neighbors. It only relies on current partitioning scheme and
replaces data in the appropriate area. In highly solicited
neighborhood, this strategy can lead to under-used cache
space in an area whereas the other one is in lack of storage
space. It is mostly because the partitioning scheme doesn’t
reflect memory needs of the whole cooperative neighbors.
We therefore propose to get rid of the cache partitioning
scheme, while introducing labels to the data that indicate if
it is private or shared. This way, the proposed replacement
policy can either choose to replace private or shared blocks
according to data access frequency of both the core and its
cooperative neighborhood.

According to counters values, the private or shared last
recently used data is replaced as following:

@a E!;!i Free ~ T | Floating
— — free block
G : Occupied
1 I
N1 | | @b N1 @a

LFU

|
v | v e

2. Storing incoming block in
1. Block storage request dedicated free block

;| ;!
N1| @a lJ N1| @a IJ
1 1
LFU v
|
a1 N 3 | e VR)
—
: [

3. Sliding Data to free
cache neighbor

4, Creating new free reception blocks
from released cache space

Figure 3. Data Replacement Strategy

1) LHC > > NHC": The local core needs are greater
than the overall neighbor needs. Therefore, the shared
LRU is replaced,

2) LHC < Y, NHC': The overall neighbor needs are
greater than the local core. Therefore, the private LRU
is replaced,

3) LHC ~ Y NHC: Both sides are running under high
mutual solicitation. This condition is raised when the
distance between LHC and > NHC is smaller than
a given threshold. In this case, we choose to replace
the private LRU. Our sliding protocol is activated and
the local data is migrated to a neighbor. If it appears
that this neighbor is also stressed, it replaces its local
block with the new one and sends the old block to
its own neighboring. Thereby, hot spots are managed
with less off-chip evictions.

Through this counter-based priority replacement policy,
frequently accessed blocks are maintained as long as possi-
ble close to their owner nodes. In a highly stressed context,
shared blocks have always the priority. Only private data are
evicted to neighbors. Sliding data are propagated across the
chip until reaching a free cooperative cache. Therefor, global
cache workload is shared evenly between stressed and free
zones through the chip.

D. Best Neighbor Selector

The second important mechanism in this data spilling
strategy is to efficiently choose the destination neighbor.
We propose a neighbor selection policy based on the NHC
counters introduced in section III-C. Unlike a simple Round
Robin strategy, used in previous works, that evenly bal-
ances data over the neighborhood, we propose to select

the neighbor which has a smaller hit counter. The NHC
information is therefore used to choose the neighbor with
the less workload. In a highly stressed neighborhood, a large
number of cache blocks may move to neighbors, taking
advantage of the highly connected network-on-chip mesh.

The best neighbor definition depends on the associated
N HC counter. This counter somehow mirrors the neighbor
cache needs. Indeed, stressed neighbors send more requests
to their cooperative zone, mechanically increasing their
associated N HC'. Blocks are sent to the least stressed nodes,
which leads to a non-uniform distribution of requests. In this
approach, available nodes are the most solicited in order
to avoid blocks eviction. Thus, it enhances cooperation,
avoiding hot spots by considering host node availability in
blocks distribution.

Furthermore, the best neighbor selection is based on
status information collected in a passive manner. The NHC
counters are updated thanks to each neighbor request, not
using an active polling of the neighbors. Active polling (i.e.
heartbeat) would give more accurate real-time information,
but would also increase the number of control messages
handled by the network on chip, decreasing the application
performances. This approach, close to the piggybacking
practice, gives to each core a local view of the chip status,
which is something very familiar to large-scale distributed
systems such as peer-to-peer and wireless ad-hoc networks,
where a global view would be practically impossible to
build.

In manycore architectures, some of the cache coherence
features can be handled and accelerated by dedicated hard-
ware. Our cache mechanisms require a single Cooperative
Caching Unit (CCU). This unit is in charge of 1) labeling
every stored block in the cache and 2) enforcing both data
replacement and neighbor selection policies. If we compare
to the Elastic Caching system, our solution reduces the meta-
data traffic since both blocks eviction and allocation are only
based on local counter comparisons, without any complex
synchronization or distributed consensus between cores.

IV. PERFORMANCE EVALUATION
A. Test Procedure Description

In order to evaluate the benefits of the sliding mechanism,
data replacement and neighbor selection policies, we have
made some preliminary experiments that compare the be-
havior of the contribution with two cache coherency proto-
cols: the Baseline protocol [26] and the Elastic Cooperative
Caching protocol (as presented in section II).

The Baseline protocol is a regular protocol widely used
in multi-core architectures. One of the most famous flavor
is the 4-state home-based MESI protocol (which stands for
modified, exclusive, shared and invalid). In a home-based
protocol, each piece of data is under the responsibility of a
dedicated core, the home-node, in charge of granting access
and managing the data consistency state. Data addresses are

usually mapped to home-nodes using a round-robin or a hash
function. Each time a core requests to read or write a data,
it has to contact the associated home-node to get access to
an up to date version of the data. This procedure is costly
and most likely means that there are concurrent accesses on
the data between cores, or that the data is not cached on
the chip and has to be fetched from external memory. The
Baseline protocol does not implement any cooperative strat-
egy between caches. Both Elastic Cooperative Caching and
Sliding protocols can be built upon the Baseline protocol,
as a transparent extension that virtually enlarges the private
local cache on each node.

The goal of these experiments is to show that there is a
real benefit to 1) use cooperative strategies by comparing
the Baseline protocol with the ECC protocol and 2) use a
sliding mechanism to keep data on-chip by comparing the
ECC protocol with our contribution.

All the experiments are based on an analytical simulation
that calculates, for each physical link of the network on
chip, the number of messages induced by the application
accesses. This experimental protocol is based on an ana-
Iytical approach and does not take into account the timing
of events. We used several synthetic applications, as well
as some image processing pieces of code taken from an
industry-grade application. We ran these codes under the
supervision of the PinTools [27] instrumentation software.
Pintools allow to analyze the application behavior at the
instruction level. In our experimental process we used a
modified version of the pinatrace [28] plugin to generate a
specific cache access trace with an additional core id field.

The format of the output file contains six information
fields per access:

1) Instruction address

2) Access type: read or write

3) Mapped data address

4) Data size

5) Prefetched instruction indicator

6) Core id

Here is an example of a cache trace generated by the
modified Pinatrace tool:

0xb5d79c80: W 0x8057284 4 0 3
0xb5d79c60: W 0x8057274 4 0 3
0xb5d78cb7: R 0x8057280 4 0 1
O0xb5d78ce9: R 0x8057274 4 0 1

For each access, we simulate the behavior of the under-
lying cache coherency protocol and we deduce, for each
physical link of the network on chip, the type and the
number of messages that are transferred. We consider a 4x4
core array connected thanks to a mesh topology wherein
every tile is connected to 4 neighbors. This NoC topology is
used in some current manycore architecture such as Tilera
Gx (6 overlapped meshes of 4-port routers). Requests are
routed through a point to point communication mode. In
this context, the distance between two cores is determined

Figure 4. Access pattern for the global traffic evaluation

by the Manhattan distance. Different types of messages
are distinguished depending on the request subject and
destination. In order to compare the cache protocols by
highlighting the cooperative ability, we focus on two groups
of requests:

o Messages to Home Node: all messages whose des-
tination is a Home Node (Read, Write, Invalidation,
Downgrade)

« Messages to Neighbor: requests sent to neighbors to
read and write shared data.

The cost of each request depends on the number of nodes
that messages go through before reaching the destination.
Hence, a 1-hop communication leads to a lower access cost
in term of latency and power energy than requests to remote
nodes across the chip. Requests to access data in a neighbor
shared cache are always 1-hop far, whereas reaching the
home-node and fetching the data from another node or from
external memory usually take a greater number of hops.
In order to evaluate the protocols, we used the following
performance metrics:

« Network load: message distribution across the chip and
average point to point message count,

o« Hop counts: the number of hops between source
(requester) and destination or Home Node.

In the remainder of this section, we present three main
experiments evaluating the global traffic on the chip, the
neighbor selection policy and the replacement policy.

B. First Performance Evaluation Results

1) Global traffic evaluation: In this first test, we analyze
the traffic induced by an important workload and a highly
stressed neighborhood. In such a context, nodes mutually
request additional memory storage support from neighbor
caches. To induce this behavior, we used a synthetic appli-
cation that alternates accesses between the central node and
its four neighbors, as shown in figure 4.

Figures 5 and 7 respectively show the number of messages
triggered by the Baseline and the Elastic protocols. The X
and Y axis represent a flat view of the chip, made of a 4x4
core array. The Z axis represent the number of messages
that goes through these coordinates.

The upper yellow shapes indicate the maximum number of
messages observed on the chip, and the downer blue shapes

Number of messages
20

18 t
16 +
14 t
1z
10

4X4 Tiled Chip

Figure 5. Traffic with Baseline Protocol

Number of messages

16
14 L
12
10

Figure 6. Traffic with Sliding Data Caching

indicate that there were no communications. In both Baseline
and ECC figures there is a yellow peak corresponding to the
highly stressed core and a surrounding medium red shape
corresponding to the stressed neighborhood.

Using cooperative caching has two major advantages.
First, it slightly reduces the overall number of messages by
keeping more data on-chip. Second, traffic peak outskirts are
cooler using the cooperative protocol than the baseline one.
This is due to the massive reduction of home-node requests
that cross the entire chip in the case of the baseline protocol.
Only the immediate surroundings remain hot, due to the
cooperative caching activity.

Afterwards, we compare the Elastic Cooperative protocol
with our Sliding mechanism (see figure 6). The number of
exchanged messages is approximately the same for both the
Elastic Caching mechanism and the Sliding Data Caching.
However, we notice that the traffic area is reduced with the
proposed Sliding mechanism. Communications are basically
concentrated in the near neighborhood.

Remote requests to Home Nodes reflect a high cache
miss rate. Thanks to cooperative caching, traffic area is
remarkably reduced. This is due to the reduction of the
average communications with Home Nodes which means

Number of messages
rZ

16 |
14
12
10

s o

4X4 Tiled Chip

Figure 7. Traffic with Elastic Caching

Figure 8. Access pattern for the best neighbor selection policy

that there are less cache misses.

The Sliding Caching mechanism allows every cooperative
node to push local private data to its neighboring perimeter
for storing shared blocks. On one side, less blocks have
to be evicted off-chip which reduces cache miss rate and
then requests to Home nodes. On the other side, each node
maintains frequently accessed data at only 1-Hop close. This
approach promotes neighbor-to-neighbor communications,
which explain traffic concentration on the cooperative zone.

Remote requests to Home Nodes are multi-Hop, point-to-
point communications, where closer requests (1-Hop com-
munication) enhance access cost to data and reduce the
global network load through the chip.

2) Best Neighbor strategy evaluation: In this experimen-
tation, we evaluate the best neighbor selection policy for
cooperative caching compared to the regular round-robin
policy. As for the previous experimentation, we set a highly
stressed central node. We also saturate the North and West
neighbors while the South and East ones remain free (see
figure 8 for this scenario). In both protocols, the central node
workload triggers cooperative process with its neighboring.

In the Elastic approach, the data repartition is based on
a Round-Robin algorithm. This allows to equally distribute
data caching in a circular order on the neighboring. The best
neighbor strategy defines the destination node according to
the memory load of each neighbor, as reflected by the local
neighbor hit counters (N HC).

Figure 9 and 10 respectively show the traffic standing

Number of messages

o e s o
oo NRm

4X4 Tiled Chip

Figure 9. Traffic to neighbors using the Round Robin policy

Number of messages
1.4
12 ¢

1t
08
06
0.4
0.2 t

rZ

01

&
4X4 Tiled Chip

Figure 10. Traffic to neighbors using the Best Neighbor policy

between neighbors in order to remotely access to data in a
shared cache.

As the Best Neighbor policy considers the memory needs
of the selected destination node, evicted blocks from the
central stressed neighbor are stored in free cache neighbors.
Whereas, the Round-Robin policy penalizes private data of
North and West nodes, which increases the cache miss rate
and consequently the Home-Node accesses. North and West
nodes replace their private data with shared blocks from
central node.

3) Priority Based Replacement Policy: The third perfor-
mance test evaluates the cache partitioning policy based
on the shared and private blocks priority. The experiment
consists in saturating all neighboring caches, and multiply-
ing redundant data accesses across the neighborhood. This
scenario generates alternated accesses to shared and private
areas of cooperative caches.

The Elastic Cooperative approach updates its cache parti-
tioning every IV cycles, which doesn’t satisfy the application
needs in presence of a very heavy data flow. In fact,
concurrent accesses to private and shared zones generate a
strong oscillation between both areas. Our proposed cache
replacement policy is not time dependent, but rather event-
driven. At every storing request, the local and neighbors

25
Number of messages
25 20
15
20
10
15 p 5
10 + 0
5 4
X
44 Tiled Chip
0
Figure 11. Traffic using the cyclic elastic partitioning policy
10
Mumber of messages]
10 5 8
B
B
4
3
2
1
0

4X4 Tiled Chip

S MWk~ ®m O
T =TT

=

Figure 12.

Traffic using the priority replacement policy

counters are compared. The decision about the block to be
replaced is based on the access frequency to both private
and shared blocks.

Figures 11 and 12 respectively show the traffic induced
by both regular cyclic elastic partitioning policy and the
priority replacement policy. Using the priority replacement
strategy, the maximum number of messages is divided by
two, drastically reducing the hot spot.

The decrease of requests to Home Nodes is due to the low
data eviction rate. So, the average miss rate is lower when
using priority based data replacement.

As a conclusion we can observe that proposed techniques
based on comparing locally managed counters allow to
reduce data off-chip evictions based on the consideration of
both private and shared data access rates. Obviously, priority
is given to frequently accessed blocks. Data with less priority
is migrated to neighboring caches in case of highly stressed
context and evicted off-chip otherwise.

Both Best Neighbor policy for destination nodes and
priority replacement strategy for evicted blocks grant a
robust behavior in the framework of the adaptive sliding
mechanism, in the context of highly stressed neighborhood.

V. CONCLUSION

The Data Sliding strategy described in this paper, is a new
approach of Cooperative Caching intended to handle highly
stressed neighborhood. Our proposal is based on two main
mechanisms:

1) Neighborhood Counters: This mechanism allows
each core to passively monitor its neighbor stress rate
and is used for cache resource partitioning. Data to be
replaced in the cache, as well as the remote host core
are selected through a comparison between local and
shared hit counters. The use of different counters is
an efficient way to estimate the memory requirements
of each cooperative node in order to adapt the sharing
cache resource to different loads.

2) Allowing 1-Hop private data migration: Sliding
Data strategy provides a balanced data repartition-
ing across the chip when cooperative area is highly
solicited. It leads to fairly handle competitive cache
accesses between local and shared blocks. Our contri-
bution proposes to promote the received data, and push
the local blocks to the neighbor’s caches. We show
that it is an efficient way to reduce the overall cache
miss rate by keeping frequently accessed data on the
chip and replacing off chip evictions with neighboring
storage.

As for now, the data stored in a neighbor cache can not
be accessed by this neighbor. This is not only designed
by simplicity: letting a remote node access another private
data bypasses the underlying cache coherence protocol and
breaks the consistency model. However, some particular data
access patterns involving those two neighbors may benefit
from such a clearance. As a future work, we plan to study
the interactions between the cooperative sliding protocol and
the main cache consistency protocol in order to allow the
local use of neighbor’s data, while preserving a consistent
state.

Experiments presented in this paper are based on an event-
driven trace. They do not take into account any time metrics,
such as access latency and data access rate. These metrics
would give information about the absorption capacities of
access requests. That is why we plan to use a micro-
architecture simulation environment such as [29] for eval-
uating time performances of our proposed strategy. We also
aim to use a scalable cache coherent NUMA architecture
such as [30] that allows us to implement our proposal in a
highly parallel platform.

Furthermore, the evaluations are based on a synthetic
access memory trace that only reflects the behavior of some
application sub-routines. In our future analysis, we plan to
consider heterogeneous parallel applications that generate
multiple hot spots on the chip. For this, we plan to use
high utility applications, such as the distributed version of
the simulated annealing metaheuristic algorithm [31] that

recursively leads to multiple hot spots on the chip while
exploring the space of solutions.

ACKNOWLEDGMENT

We would like to thank Jean-Thomas Acquaviva and
Stephane Louise from CEA LIST for the help they pro-
vided with the cache validation simulator, and the modified
pinatrace tool during the validation phase.

REFERENCES

[1] “International technology roadmap for semiconductors, 2011
edition, system drivers.” International Technology Working
Group, 2011. http:/www.itrs.net.

[2] A. Agarwal, L. Bao, J. Brown, B. Edwards, M. Mattina,
C.-C. Miao, C. Ramey, and D. Wentzlaff, “Tile processor:
Embedded multicore for networking and multimedia,” in
Proceedings of the 19th Hot Chips Symposium, HC 2007,
(Stanford, California, USA), August 2007.

[3] J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain,
V. Erraguntla, M. Konow, M. Riepen, M. Gries, G. Droege,
T. Lund-Larsen, S. Steibl, S. Borkar, V. De, and R. Van
Der Wijngaart, “A 48-core ia-32 processor in 45 nm cmos
using on-die message-passing and dvfs for performance and
power scaling,” Solid-State Circuits, IEEE Journal of, vol. 46,
pp. 173 —183, jan. 2011.

[4] “The kalray mppa 256 manycore processor.” Kalray S.A.
http://www.kalray.eu/.

[5] L. Benini, E. Flamand, D. Fuin, and D. Melpignano, “P2012:
Building an ecosystem for a scalable, modular and high-
efficiency embedded computing accelerator,” in Design, Au-
tomation Test in Europe Conference Exhibition (DATE), 2012,
pp- 983 987, march 2012.

[6] “The tera-scale architecture project (tsar).” Bull and LIP6.
https://www-soc.lip6.fr/trac/tsar.

[7] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,
J. Tschanz, D. Finan, A. Singh, T. Jacob, S. Jain, V. Erra-
guntla, C. Roberts, Y. Hoskote, N. Borkar, and S. Borkar,
“An 80-tile sub-100-w teraflops processor in 65-nm cmos,”
Solid-State Circuits, IEEE Journal of, vol. 43, pp. 29 —41,
jan. 2008.

[8] adapteva Inc., “A 1024-core 70 gflop/w floating point
manycore microprocessor,” in Proceedings of the 15th An-
nual Workshop on High Performance Embedded Computing,
HPEC 2011, (Lexington, Massachusetts, USA), September
2011.

[9] G. Chrysos, “Intel xeon phi coprocessor (codename knights
corner),” in Proceedings of the 24th Hot Chips Symposium,
HC 2012, (Stanford, California, USA), August 2012.

[10] J. Chang and G. Sohi, “Cooperative caching for chip multi-
processors,” in Computer Architecture, 2006. ISCA’06. 33rd
International Symposium on, pp. 264-276, IEEE, 2006.

(11]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

J. Chang and G. Sohi, “Cooperative cache partitioning for
chip multiprocessors,” in Proceedings of the 21st annual
international conference on Supercomputing, pp. 242-252,
ACM, 2007.

Y. Ting and Y. Chang, “A novel cooperative caching scheme
for wireless ad hoc networks: Groupcaching,” in Networking,
Architecture, and Storage, 2007. NAS 2007. International
Conference on, pp. 62-68, IEEE, 2007.

V. Holmedahl, B. Smith, and T. Yang, “Cooperative caching
of dynamic content on a distributed web server,” in High
Performance Distributed Computing, 1998. Proceedings. The
Seventh International Symposium on, pp. 243-250, IEEE,
1998.

J. Cho, S. Oh, J. Kim, H. Lee, and J. Lee, “Neighbor caching
in multi-hop wireless ad hoc networks,” Communications
Letters, IEEE, vol. 7, no. 11, pp. 525-527, 2003.

L. Yin and G. Cao, “Supporting cooperative caching in ad hoc
networks,” Mobile Computing, IEEE Transactions on, vol. 5,
no. 1, pp. 77-89, 2006.

K. Jackson and K. Langston, “Ibm s/390 storage hierar-
chy—g5 and g6 performance considerations,” IBM Journal
of Research and Development, vol. 43, no. 5.6, pp. 847-854,
1999.

L. Zhao, R. Iyer, M. Upton, and D. Newell, “Towards hybrid
last level caches for chip-multiprocessors,” ACM SIGARCH
Computer Architecture News, vol. 36, no. 2, pp. 56-63, 2008.

M. Qureshi and Y. Patt, “Utility-based cache partitioning:
A low-overhead, high-performance, runtime mechanism to
partition shared caches,” in Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture,
pp. 423-432, IEEE Computer Society, 2006.

C. Liu, A. Sivasubramaniam, and M. Kandemir, “Organizing
the last line of defense before hitting the memory wall for
cmps,” in Software, IEE Proceedings-, pp. 176—185, IEEE,
2004.

H. Dybdahl and P. Stenstrom, “An adaptive shared/private
nuca cache partitioning scheme for chip multiprocessors,” in
High Performance Computer Architecture, 2007. HPCA 2007.
IEEE 13th International Symposium on, pp. 2-12, IEEE,
2007.

P. T. Joy and K. P. Jacob, “Cache replacement policies
for cooperative caching in mobile ad hoc networks,” CoRR,
vol. abs/1208.3295, 2012.

L. Shi, Z. Liu, and L. Xu, “Bwcc: A fs-cache based cooper-
ative caching system for network storage system,” in Cluster
Computing (CLUSTER), 2012 IEEE International Conference
on, pp. 546-550, IEEE, 2012.

V. Anagnostopoulou, S. Biswas, H. Saadeldeen, A. Savage,
R. Bianchini, T. Yang, D. Franklin, and F. Chong, “Barely
alive memory servers: Keeping data active in a low-power
state,” ACM Journal on Emerging Technologies in Computing
Systems (JETC), vol. 8, no. 4, p. 31, 2012.

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

E. Herrero, J. Gonzélez, and R. Canal, “Elastic cooperative
caching: an autonomous dynamically adaptive memory hier-
archy for chip multiprocessors,” ACM SIGARCH Computer
Architecture News, vol. 38, no. 3, pp. 419-428, 2010.

D. Rolan, B. Fraguela, and R. Doallo, “Adaptive set-granular
cooperative caching,” in High Performance Computer Archi-
tecture (HPCA), 2012 IEEE 18th International Symposium
on, pp. 1-12, IEEE, 2012.

D. Culler, J. Singh, and A. Gupta, Parallel Computer Archi-
tecture: A Hardware/Software Approach. Morgan Kaufmann,
Ist ed., 1998. The Morgan Kaufmann Series in Computer
Architecture and Design.

C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. Reddi, and K. Hazelwood, “Pin: building
customized program analysis tools with dynamic instrumenta-
tion,” in ACM SIGPLAN Notices, vol. 40, pp. 190-200, ACM,
2005.

J. Marandola, S. Louise, L. Cudennec, J.-T. Acquaviva, and
D. Bader, “Enhancing Cache Coherent Architectures with
Access Patterns for Embedded Manycore Systems,” in In-
ternational Symposium on System-on-Chip 2012 (SoC 2012),
(Tampere, Finlande), Tampere University of Technology, De-
partment of Computer Systems, IEEE, Oct. 2012.

N. Ventroux, A. Guerre, T. Sassolas, L. Moutaoukil, G. Blanc,
C. Bechara, and R. David, “Sesam: An mpsoc simulation
environment for dynamic application processing,” in Proceed-
ings of the 2010 10th IEEE International Conference on Com-
puter and Information Technology, CIT ’10, (Washington,
DC, USA), pp. 1880-1886, IEEE Computer Society, 2010.

A. Greiner, “Tsar: a scalable, shared memory, many-cores ar-
chitecture with global cache coherence,” in 9th International
Forum on Embedded MPSoC and Multicore (MPSoC’09),
2009.

F. Galea and R. Sirdey, “A parallel simulated annealing
approach for the mapping of large process networks.,” in
IPDPS Workshops, pp. 1787-1792, IEEE Computer Society,
2012.

P. T. I. (ws and J. Kulick, “Multiprocessing on a chip,” 2008.

G. Almaless and F. Wajsburt, “Does shared-memory, highly
multi-threaded, single-application scale on many-cores?,”

G. Suh, L. Rudolph, and S. Devadas, “Dynamic partitioning
of shared cache memory,” The Journal of Supercomputing,
vol. 28, no. 1, pp. 7-26, 2004.

M. Qureshi, A. Jaleel, Y. Patt, S. Steely, and J. Emer,
“Adaptive insertion policies for high performance caching,”
in ACM SIGARCH Computer Architecture News, vol. 35,
pp- 381-391, ACM, 2007.

