Imperfect interfaces as asymptotic models of thin curved elastic adhesive interphases

Raffaella Rizzoni 1 Frédéric Lebon 2
2 M&S - Matériaux et Structures
LMA - Laboratoire de Mécanique et d'Acoustique [Marseille]
Abstract : We obtain a limit model for a thin curved anisotropic interphase adherent to two elastic media. Our method is based on asymptotic expansions and energy minimization procedures. The model of perfect interface is obtained at the first order, while an imperfect interface model is obtained at the next order. The conditions of imperfect contact, given in a parallel orthogonal curvilinear coordinate system, involve the interphase material properties, the first order displacement and traction vectors, and their derivatives. An example of implementation of the imperfect interface condition is given for a composite sphere assemblage. ©2013 Elsevier Ltd. All rights reserved
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00833562
Contributeur : Frédéric Lebon <>
Soumis le : jeudi 13 juin 2013 - 09:29:35
Dernière modification le : vendredi 11 mars 2016 - 01:02:08

Identifiants

Collections

Citation

Raffaella Rizzoni, Frédéric Lebon. Imperfect interfaces as asymptotic models of thin curved elastic adhesive interphases. Mechanics Research Communications, Elsevier, 2013, 51, pp.39- 50. <10.1016/j.mechrescom.2013.04.008>. <hal-00833562>

Partager

Métriques

Consultations de la notice

81