H. Pacejka, Tyre and Vehicle Dynamics, 2006.

G. Rill, Vehicle Dynamics, Lecture notes, 2006.

K. Kondé, A. Rosu, I. Lebon, F. Brardo, O. Devésa et al., Etude du comportement en roulement d'un pneu d'avion, Colloque National de Calcul de Structures, pp.699-704, 2009.

K. Kondé and A. , Modélisation du roulement d'un pneumatique d'avion, 2011.

M. Carthy, J. L. Tanner, and J. A. , Temperature Distribution in a Aircraft Tire at Low Ground Speed, 1983.

J. A. Tanner, R. C. Dreher, S. M. Strubb, and E. G. Smith, Tire Tread Temperatures During Antiskid Braking and " cornering " on a Dry Runway, 1982.

J. M. Mcallen, A. M. Cuitino, and V. Sernas, Numerical Investigation of Deformation Characteristics and Heat Generation in Pneumatic Aircraft Tires, Part I. Mechanical Modelling , Part II. Thermal Modelling, Finite Element in Analysis and Design, pp.241-263, 1996.

S. K. Clark and R. N. Dogde, Heat generation in Aircraft Tires under Free Rolling Conditions, NASA Contractor Report, vol.3629, 1982.

T. G. Ebott, R. L. Hohman, J. Jeusette, and V. Et-kerchman, Tire Temperature and Rolling Resistance Prediction with Finite Element Analysis, Tire Science and Technology, vol.27, issue.1, pp.2-21, 1999.
DOI : 10.2346/1.2135974

K. V. Rao, R. K. Kumar, B. C. Bohara, and R. Mukhopadhyay, A Finite element Algorithm for the Prediction of Steady-State temperatures of Rolling Tires, Tire Science and Technology, issue.3, pp.34-195, 2006.

D. Whicker, A. L. Browne, and D. J. Segelman, Structure and Use of GMR combined Thermomechanical Tire Power Loss Model, pp.695-704, 1981.

B. Yavari, W. W. Tworzydlo, and J. M. Bass, A Thermomechanical Model to Predict the Temperature Distribution of Steady State Rolling Tires, Tire Science and Technology, vol.21, issue.3, pp.163-178, 1993.
DOI : 10.2346/1.2139527

H. T. Yuksel, An Investigation of Thermomechanical Behaviour of Pneumatic Tires by Finite Element Method, 2002.

M. A. Ersahin, Finite element analysis of cornering characteristics of rotating tires, 2003.

G. Reza and M. H. , Finite Element Analysis of Steel- Belted Radial Tyre with Tread Pattern under Contact Load, Iranian Polymer Journal, issue.8, pp.15-667, 2006.

M. Koishi, K. Kabe, and M. Shiratori, Tire Cornering Simulation Using an Explicit Finite Element Analysis Code, Tire Science and Technology, vol.26, issue.2, pp.109-119, 1997.
DOI : 10.2346/1.2135960

K. V. Rao, R. K. Kumar, B. C. Bohara, and C. P. Mouli, Dynamic Analysis Of Tyre Cornering Behavior Using Explicit Finite Element Code, Proceedings of Twenty First Southeastern Conference On Theoretical And Applied Mechanics, pp.131-140, 2002.

K. V. Rao, R. K. Kumar, B. C. Bohara, and C. P. Mouli, Transient Finite Element Analysis of Tire Dynamic Behavior, Tire Science and Technology, vol.31, issue.2, pp.31-104, 2003.
DOI : 10.2346/1.2135262

U. Nackenhorst, The ALE-formulation of bodies in rolling contact, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.39-41, pp.4299-4322, 2004.
DOI : 10.1016/j.cma.2004.01.033

H. Mokrani and B. Bourouga, Modèle de coefficient de partage du flux généréà une interface de contact electrothermique ? Approche miscroscopique en régime permanent, XXIIe Journées Internationales de Thermique ? Maroc, pp.303-306, 2005.

M. Behroozi, O. A. Olatunbosum, and W. Ding, Finite element analysis of aircraft tyre ??? Effect of model complexity on tyre performance characteristics, Materials & Design, vol.35
DOI : 10.1016/j.matdes.2011.05.055

S. Cescotto and G. Fonder, A finite element approach for large strains of nearly incompressible rubber-like materials, International Journal of Solids and Structures, vol.15, issue.8, pp.15-589, 1979.
DOI : 10.1016/0020-7683(79)90073-8

G. A. Holzapfel, ON LARGE STRAIN VISCOELASTICITY: CONTINUUM FORMULATION AND FINITE ELEMENT APPLICATIONS TO ELASTOMERIC STRUCTURES, International Journal for Numerical Methods in Engineering, vol.35, issue.22, pp.3903-3926, 1996.
DOI : 10.1016/0045-7825(82)90035-4

M. C. Boyce and E. M. Arruda, Constitutive models of rubber elasticity, Rubber Chemistry and Technology, pp.73-504, 2000.

R.-W. Ogden, G. Saccomandi and I. Sgura, Fitting hyperelastic models to experimental data, Computational Mechanics, pp.484-502, 2004.
DOI : 10.1007/s00466-004-0593-y

URL : http://persone.dii.unile.it/saccomandi/computationalmech.pdf

R. S. Rivlin and D. W. Saunders, Large Elastic Deformations of Isotropic Materials. VII. Experiments on the Deformation of Rubber, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.243, issue.865, pp.2243-251, 1951.
DOI : 10.1098/rsta.1951.0004

H. G. Killian, Equation of state of real networks, Polymer, vol.22, issue.2, pp.209-217, 1981.
DOI : 10.1016/0032-3861(81)90200-7

N. Korunovic, M. Trajanovic, and M. Stojkovic, Finite Element Model for Steady State Rolling Tire Analysis, Journal of the Serbian Society for Computational Mechanics, vol.1, issue.1, pp.63-79, 2007.

J. P. Navarro, Contribution à la Modélisation du Pneumatique de l'Avion, 2003.

O. A. Olatunbosum and E. O. Bolarinwa, Finite element simulation of the tyre burst test, Proceedings of the Institution of Mechanical Engineers, pp.1251-1258, 2006.

G. Yanjin, Z. Guoqun, and C. Gang, Influence of Belt Cord Angle on Radial Tire under Different Rolling States, Journal of Reinforced Plastics and Composites, vol.228, issue.6, pp.25-1059, 2006.
DOI : 10.5254/1.3538343

N. Lahellec, F. Mazerolle, and J. C. Michel, Second-order estimate of the macroscopic behavior of periodic hyperelastic composites: theory and experimental validation, Journal of the Mechanics and Physics of Solids, vol.52, issue.1, pp.27-49, 2004.
DOI : 10.1016/S0022-5096(03)00104-2

URL : https://hal.archives-ouvertes.fr/hal-00088255

H. Sakai and K. Araki, Thermal Engineering Analysis of Rubber Vulcanization and Tread Temperatures During Severe Sliding of a Tire, Tire Science and Technology, vol.27, issue.1, pp.22-47, 1999.
DOI : 10.2346/1.2135973

A. Standard, Abaqus Analysis User's Manual, Stiffness method for imposing frictional constraints, Release 6, 2010.

H. T. Yuksel and S. Karadeniz, A computation model to predict the thermomechanical behavior of automobile tires, Constitutive Models for Rubber III, 2003.

N. Smith, Understanding Parameters Influencing Tire Modeling, Formula SAE Plat- form, 2004.

S. Clark, Mechanics of pneumatic tires, U.S. Dept. of Transportation, 1981.

A. Standard, Abaqus Analysis User's Manual, Defining reinforcement, Release 6, 2010.

D. J. Benson, An efficient, accurate, simple ale method for nonlinear finite element programs, Computer Methods in Applied Mechanics and Engineering, vol.72, issue.3, pp.72-305, 1989.
DOI : 10.1016/0045-7825(89)90003-0

S. Ghosh and N. Kikuchi, An arbitrary Lagrangian-Eulerian finite element method for large deformation analysis of elastic-viscoplastic solids, Computer Methods in Applied Mechanics and Engineering, vol.86, issue.2, pp.127-188, 1991.
DOI : 10.1016/0045-7825(91)90126-Q

J. P. Ponthot and T. Belytchko, Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method, Computer Methods in Applied Mechanics and Engineering, vol.152, issue.1-2, pp.19-46, 1998.
DOI : 10.1016/S0045-7825(97)00180-1

W. K. Liu, T. Belytchko, and H. Chang, An Arbitrary Lagrangian-Eulerian Finite Element Method for, Pathdependent Materials, Computer Methods in Applied Mechanics and Engineering, pp.58-227, 1986.

T. Yamada and F. Kikuchi, An arbitrary Lagrangian-Eulerian finite element method for incompressible hyperelasticity, Computer Methods in Applied Mechanics and Engineering, vol.102, issue.2, pp.149-177, 1993.
DOI : 10.1016/0045-7825(93)90106-8

M. H. Ghoreishy, A State of the Art Review of the Finite Element Modelling of Rolling Tyres, Iranian Polymer Journal, issue.8, pp.17-571, 2008.