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Abstract

Sklar [1] introduced the notion of copula, solving the problem studied by Fréchet [2]
and others on the determination of a joint distribution function when the one dimensional
marginal cumulative distributions are prescribed. The same problem also arises in the con-
text of image (the internal density distribution of some physical or biological quantity inside a
section of the body) reconstruction in X-ray computated tomography when only two orthog-
onal projections are given. The two problems are mathematically equivalent when restricted
to distributions with bounded support, we propose to study the solutions which maximize
Shannon [3], Tsallis-Havrda-Charvát [4, 5] or the Rényi [6] entropies by rescaling. The case
of Shannon and Tsallis or Rényi with index q = 2 admits analytic solutions which curiously
give new copula families. In this paper, we give a theorem and its corollary using the well-
known uniform transformation yielding a method for constructing new family of copulas.
We also give the expression of some dependence concepts and then provide many examples
of this method in practice.

Keywords: Copula, Entropy, Joint density estimation, Shannon, Rényi and Tsallis.
PACS: 02.30.Gp,02.50.Cw, 02.50.Sk

1 Introduction

The problem of computed tomography (CT) is to reconstruct an image f(x1, x2) which rep-
resents the distribution of material density in a section of a body from radiographies, called
mathematically projections or line integrals, at different angles around it. The mathematical
model relating the projections to the images is the Radon transform [7].

When the number of projections are limited the problem is ill-posed. Here, we consider the
particular case where we have only two projections (horizontally f1(x1) and vertically f2(x2)):
the mathematical inverse problem is then finding f(x1, x2) from the knowledge of f1(x1) and
f2(x2), where f1(x1) and f2(x2) are obtained from f(x1, x2) by integrating over x1 and x2
respectively.

The inverse problem of determining f(x1, x2) from its marginals has infinite number of
solutions in the form f(x1, x2) = f1(x1)f2(x2)c(x1, x2) where c(x1, x2) is called copula density
([8, 9, 10, 11]).
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There are many families of copulas which differ in the detail of the dependence they represent.
A family will typically have several parameters which relate to the strength and form of these
dependencies. Looking for a unique solution f(x1, x2), then is equivalent to looking for a unique
copula c(x1, x2). To well pose the problem, we proposed the use of entropies as regularizers and
consequently denote these as maximum entropy copulas.

To position the novelty of our approach and the main results of this paper we report here
the main results of those papers that are related closely to our paper. The kind of information
that one has in hands can be incorporated in the model of reconstruction in tomography as
a constraint optimization problem in the form of different types of entropies which are seen
as a measure of disorder, or more precisely unpredictability. In [12, 13], relative entropy is
minimized with uniform marginals and a given rank correlation, giving a numerical algorithm
for the computation of the resulting distribution. Recently in [14], the authors found a multi-
dimensional checkerboard copula of maximum Shannon’s entropy to match an observed set of
grade correlation coefficients. The problem was formulated as the maximization of a concave
function, then reformulated as an unconstrained minimization, and then solved numerically
using a Newton iteration. This does not, however, give closed form multivariate copulas.

In this paper, we consider the cases where we can compute a closed form solution. This is
really the novelty of our approach. In particular by considering the Rényi or Tsallis entropy with
index q = 2 and particular expressions for the marginals we obtained new families of copula.
There have been many approaches to construct new families of copulas (see for example [11]
and references therein): the closest expression we found (to our knowledge) is the copula family
obtained in [15], where the author describes a method of constructing a multivariate distribution
with given marginals. However, the construction and final result are different.

To be more explicit we summarize the method in [15] as follows :
Find a function f1(u, v) such that

∫ 1

0

∫ 1

0
f1(u, v) du dv = 0 and

∫ 1

0
f1(u, v) du = 0,

∫ 1

0
f1(u, v) dv = 0, (1)

then compute any function f whose integrals, defined by
∫ 1

0

∫ 1

0
f(u, v) du dv = ∆

∫ 1

0
f(u, v) dv = f1(u), and

∫ 1

0
f(u, v) du = f2(v), (2)

exist and are finite, giving

f1(u, v) = f(u, v)− f1(u)− f2(v) + ∆. (3)

Then, using the joint distribution f(u, v) and its marginals f1(u) and f2(v), the author obtains
the following copula density family :

c(u, v) = 1 + θf 1(u, v) (4)

for a suitable parameter θ which is introduced if the constraint of positivity in equation (4) is not

satisfied but f1 is bounded. In general 1 +
n
∑

i=1

f1i is a density when the f1i fulfill the conditions

(1). This method allows to generate all polynomial copula [16].
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The approach we propose is different. We instead consider the probability density function
f(x1, x2) and its marginals f1(x1) and f2(x2):







































∫ 1

0
f(x1, x2) dy = f1(x1), ∀x1

∫ 1

0
f(x1, x2) dx = f2(x2), ∀x2

∫ 1

0

∫ 1

0
f(x1, x2) dx1 dx2 = 1,

f(x1, x2) > 0,

(5)

and determine a unique solution for f(x1, x2). But as this problem is ill posed we regularize it by
looking for the unique solution (if it exists) that maximizes an entropy. As we have showed before
[17] when the Shannon entropy is used we obtained f1(x1, x2) = f1(x1)f2(x2) which corresponds
to uniform copula. When using the Rényi’s or Tsallis entropy when q = 2 we obtained new
families.

This paper finalizes our main results and is structured as follows:
First, we give the definition of distributions with bounded support. Then we state our theorem
for constructing new n-dimensional maximum entropy distributions given only its univariate
marginals, and a new constructive way to generate new copula by using Sklar’s theorem. In
the bivariate case, we give expression of some dependence concepts such as the Kendall’s tau
(τ) coefficient, the Spearman’s rho (ρ) and the Gini’s gamma (γC) [11, 18, 19]. Finally some
examples of family of copulas are given using tractable closed form expressions of the inverse
cumulative distributions such as the standard Kumaraswamy distribution and the two-sided
power distributions. To our knowledge, the examples of family of copula we derived are different
in their statistical properties from all known families of copula and they are new.

2 Preliminaries

We refer to the book by A.W. Marshall [20] for the definition of distribution with bounded
support :

Definition 2.1 Distributions that have support contained in a known finite interval can be
translated using scale and location parameters so that the support of the distribution is contained
in the interval I = [0, 1], but in no closed subinterval of I. More precisely, these are distributions
F of nonnegative random variables T that can take values arbitrarily close to 0 and 1, but have
the property that P {0 ≤ T ≤ 1} = 1. Such distributions are identified by the conditions

F (0−) = 0, 0 < F (t) < 1 for 0 < t < 1, and F (1) = 1. (6)

F (0−) holds for the left one-sided limit at 0.

Letting f(x1, x2) be the joint probability density function (pdf) on [0, 1]2.We consider two mea-
sures of entropy, namely:
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(i) Tsallis-Havrda-Charvat’s entropy [4, 5]

H =
1

1− q

(

1−
∫ 1

0

∫ 1

0
f q(x1, x2) dx1 dx2

)

, q > 0 and q 6= 1 (7)

(ii) Rényi entropy [6]

R =
1

1− q
ln

(
∫ 1

0

∫ 1

0
f q(x1, x2) dx1 dx2

)

, q > 0 and q 6= 1. (8)

Note that they are related,

R =
1

1− q
ln [(q − 1)H + 1] , H =

1

1− q

[

1− e(1−q)R
]

,

so that R and H achieve the same maxima ∀q.

3 Main Results

The following are the main results of this paper.

Theorem 3.1 Let Fi, i = 1, . . . , n be absolutely continuous one dimensional marginal cu-
mulative distribution functions (cdf’s) with domain I of an absolutely continuous n-dimensional
cumulative distribution F with domain In. If F maximizes Tsallis’ entropy (or the Rényi’s en-
tropy by rescaling) when the entropy index equals 2, then F is given by

F (x1, . . . , xn) =

n
∑

i=1

Fi(xi)

n
∏

j=1
j 6=i

xj + (1− n)

n
∏

i=1

xi. (9)

The proof in the bivariate case and the extension to the multivariate case is straightforward
and can be found in [17].

Combining Theorem 3.1 with the inversion method (See corollary 2.3.7 in [11], p. 22), we
deduce the following corollary which gives a new method of constructing a family of copulas.

Corollary 3.2 Let Fi, i = 1, . . . , n be as in Theorem 3.1, and let F
(−1)
i be quasi-inverses

(See definition 2.3.6 in [11], p. 21) of Fi. Then for any u in In,

C(u1, . . . , un) = max















n
∑

i=1

ui

n
∏

j=1
j 6=i

F
(−1)
j (uj) + (1− n)

n
∏

i=1

F
(−1)
i (ui), 0















(10)

is a copula.

Theorem 3.1 can thus be used as a constructive method for determining a joint multivariate
distribution from the only knowledge of its marginals and the Corollary 3.2 as a tool for creating
families of copula just by specifying marginals. This is what we are going to present for the
bivariate case in the next section.
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In the bivariate case,
C(u, v) = vΦ(u) + uψ(v) − Φ(u)ψ(v) (11)

where F−1
1 (u1) ≡ Φ and F−1

2 (u2) ≡ ψ, for any univariate functions Φ and ψ, the following
properties:

(1) Φ(0) = ψ(0) = 0,

(2) Φ(1) = ψ(1) = 1.

Therefore to determine the case in which C is a copula the result from [21] can be adapted. We
may also remark that in [21], the authors have proposed the following family:

C(u, v) = uv + θΦ(u)ψ(v), θ ∈ [−1, 1] (12)

where Φ, ψ are absolutely continuous distributions on [0, 1] and their derivatives are bounded
for almost every values taken in [0, 1], with the conditions

(1) Φ(0) = ψ(0) = 0,

(2) Φ(1) = ψ(1) = 0.

Family (12) generalizes many well-known copulas but are different from families of copulas (11)
we derived using our method. In particular, if θ = −1 and uv = vΦ(u) + uψ(v) the two
families coincide. But to see the differences one may compute and then compare some of their
statistical properties, for example their dependencies measures. One first remark that in our
case Φ ≡ F−1

1 (u1) and ψ ≡ F−1
2 (u2) but in (12), the functions Φ and ψ do not have these

remarkable interpretations.
Solving the following system of inequalities (See Theorem 2.2.7 in [11], p. 13) yields the

conditions on Φ and ψ, so that (11) satisfies all the properties of a copula for any v (resp. u)
in [0, 1] such that the partial derivative Cu (resp. Cv) exists, for almost all u (resp. v), and for
such u and v we have respectively :











0 6
∂C(u, v)

∂u
6 1

0 6
∂C(u, v)

∂v
6 1.

(13)

From Eq.(11):
∂C(u, v)

∂u
= Φ′(u) (v − ψ(v)) + ψ(v). (14)

Similarly
∂C(u, v)

∂v
= ψ′(v) (u− Φ(u)) + Φ(u). (15)

In particular when ψ(v) = v or Φ(u) = u, we have the independent copula C(u, v) = u v which
is a member of the family of copula (11), and also the function ψ or Φ is always in [0, 1].

In general, there are four different cases to consider in order that (11) be a copula depending
on the choice of the functions ψ and Φ :
Case 1: If ψ(v) < v ( resp. if Φ(u) < u) we have respectively :

{

0 6 Φ′(u) (v − ψ(v)) + ψ(v) 6 1

0 6 ψ′(v) (u− Φ(u)) + Φ(u) 6 1.
(16)
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Then














0 6 Φ′(u) +
ψ(v)

v − ψ(v)
6

1

v − ψ(v)

0 6 ψ′(v) +
Φ(u)

u− Φ(u)
6

1

u− Φ(u)
,

(17)

therefore














0 6 Φ′(u) +
ψ(v)

v − ψ(v)
6

1

v − ψ(v)

0 6 ψ′(v) +
Φ(u)

u− Φ(u)
6

1

u− Φ(u)
.

(18)

Finally, we have














0 6 Φ′(u) +
ψ(v)

v − ψ(v)

0 6
1− ψ(v)

v − ψ(v)
− Φ′(u)

(19)















0 6 ψ′(v) +
Φ(u)

u− Φ(u)

0 6
1− Φ(u)

u− Φ(u)
− ψ′(v).

(20)

Case 2: If ψ(v) > v (or resp. if Φ(u) > u) we have respectively:
{

0 6 Φ′(u) (v − ψ(v)) + ψ(v) 6 1

0 6 ψ′(v) (u− Φ(u)) + Φ(u) 6 1.
(21)

Then
{

−ψ(v) 6 Φ′(u) (v − ψ(v)) 6 1− ψ(v)

−Φ(u) 6 ψ′(v) (u− Φ(u)) 6 1− Φ(u).
(22)

Therefore














1− ψ(v)

v − ψ(v)
6 Φ′(u) 6

−ψ(v)
v − ψ(v)

1− Φ(u)

u− Φ(u)
6 ψ′(v) 6

−Φ(u)
u− Φ(u)

.

(23)

Finally, we have










































0 6
−ψ(v)
v − ψ(v)

− Φ′(u)

0 6 Φ′(u)− 1− ψ(v)

v − ψ(v)

0 6
−Φ(u)
u− Φ(u)

− ψ′(v)

0 6 ψ′(v)− 1− Φ(u)

u− Φ(u)
.

(24)

To make our computation more compact, we will denote by:

A1(u) =
Φ(u)

u− Φ(u)
, A2(u) =

1− Φ(u)

u− Φ(u)
, (25)
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and

B1(v) =
ψ(v)

v − ψ(v)
, B2(v) =

1− ψ(v)

v − ψ(v)
. (26)

The following table summarizes all the conditions :
case 1 case 2 case 3 case 4

∀u if Φ(u) < u ∀v if ψ(v) < v ∀u if Φ(u) > u ∀v if ψ(v) > v

0 6 ψ′(v) +A1(u) 0 6 Φ′(u) +B1(v) 0 6 −ψ′(v)−A1(u) 0 6 −Φ′(u)−B1(v)
0 6 −ψ′(v) +A2(u) 0 6 −Φ′(u) +B2(v) 0 6 ψ′(v)−A2(u) 0 6 Φ′(u)−B2(v)

4 Measures of dependency

The classical linear dependence between two variablesX and Y is the Pearson correlation defined
as :

ρ =
cov(X,Y )

√

var(X)
√

var(Y )
. (27)

The two other most commonly used nonparametric measures of association for two random
variables are Spearman’s rho (ρS) and Kendall’s tau (τ)([11, 22]). For many joint distributions
these measures have different values, as they measure different aspects of the dependence struc-
ture. For example, if X and Y are random variables with marginal distribution functions F1

and F2, respectively, then Spearman’s ρ is the ordinary (Pearson) correlation coefficient of the
transformed random variables F1(X) and F2(Y ), it is defined as

ρ =
cov(F1(X), F2(Y ))

√

var(F1(X))
√

var(F2(Y ))
(28)

which is equivalent to :

ρ = 12

∫ 1

0

∫ 1

0
C(u, v) du dv − 3, (29)

where Cu, v) is their corresponding copula. The Kendall’s τ is the difference between the
probability of concordance

P [(X1 −X2)(Y1 − Y2) > 0]

and the probability of discordance

P [(X1 −X2)(Y1 − Y2) < 0]

for two independent pairs (X1, Y1) and (X2, Y2) of observations drawn from the distribution , in
terms of the copula C

τ = 4

∫ 1

0

∫ 1

0
C(u, v) dC(u, v) − 1. (30)

In terms of dependence properties, Spearman’s ρ is a measure of average quadrant dependence,
while Kendall’s τ is a measure of average likelihood ratio dependence.

There are also other important concepts of dependence [18, 19]. One last example we mention
here is the Gini’s gamma (γC):

γC = 4

∫ 1

0
[C(u, u) + C(u, 1− u)]du− 2. (31)
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As a comparison, one can show that the Spearman’s ρ can also be written as

ρ = 3

∫ 1

0

∫ 1

0

[

(u+ v − 1)2 − (u− v)2
]

dC(u, v)

and the Gini’s measure

γC = 2

∫ 1

0

∫ 1

0
[| u+ v − 1 | − | u− v |] dC(u, v).

4.1 Expression of depencence measure of our copula family

After tedious simple algebra, their respective expressions the n = 2 case of (10) gives :

τ = 4

(
∫ 1

0
F1(x1) dx1 − 2

∫ 1

0
F1(x1) dx1

∫ 1

0
F2(x2) dx2 +

∫ 1

0
F2(x2) dx2

)

− 2,

and

ρ = 6

(
∫ 1

0
F1(x1) dx1 − 2

∫ 1

0
F1(x1) dx1

∫ 1

0
F2(x2) dx2 +

∫ 1

0
F2(x2) dx2

)

− 3.

If we denote by

ξ(F1, F2) =

∫ 1

0
F1(x1) dx1 − 2

∫ 1

0
F1(x1) dx1

∫ 1

0
F2(x2) dx2 +

∫ 1

0
F2(x2) dx2, (32)

we have the following relation between the Kendall’s tau and the Spearman’s rho coefficients

2ξ(F1, F2)− 1 =
τ

2
=
ρ

3
which implies τ =

2

3
ρ. (33)

And we have also

γC = 4

(
∫ 1

0
t (ψ(t) + ψ(1− t)) dt+

∫ 1

0
φ(t) (1− ψ(t) + ψ(1 − t)) dt

)

− 2. (34)

4.2 Expression of depencences measures for copula in Equation (12)

We recall the expression obtained in [21] ( θ = 1 in Equation (12)):

τ = 8

∫ 1

0
ψ(t) dt

∫ 1

0
φ(t) dt,

ρ = 12

∫ 1

0
ψ(t) dt

∫ 1

0
φ(t) dt =

3τ

2
,

γC = 4

∫ 1

0
φ(t) (ψ(t) + ψ(1− t)) dt.

It is an obvious fact that now our families does not belong to the set of copulas studied by
Rodriguez-Lallena and Úbeda-Flores [21] which generalizes many known families of copulas
such as the Fairlie-Gumbel-Morgenstern (FGM). Up to our knowledge the families of copulas
we have derived in this paper have not discussed in and are new.
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5 Examples of family of bivariate copula

In [17] we used the Beta distribution in the case where the parameters allow explicit expressions
of the inverse cumulative distributions to obtain examples of families of copula. Here are some
other examples of bounded distribution on [0, 1] and explicit expression of the inverse cumulative
distribution F−1

i (xi), i = 1, 2 which, through the Corollary 3.2 are used to construct other
families of copulas.

5.1 Kumaraswamy distribution

The probability distribution function (pdf) of the standard Kumaraswamy distribution [23]
having nice properties and more tractable than the Beta distribution as it was presented in [24]
is given by

fi(xi) = a b xa−1
i (1− xai )

b−1 (35)

with its cdf
Fi(xi) = 1− (1− xai )

b, (36)

and inverse cdf

F−1
i (ui) = 1− (1− u

1

b

i )
1

a , (37)

where a > 0 and b > 0.
Therefore the associated copula for suitable parameters a and b and having two given

marginal distributions which are the standard Kumaraswamy distributions, has the following
form :

C(u1, u2) = u1

(

1− (1− u
1

b

2 )
1

a

)

+ u2

(

1− (1− u
1

b

1 )
1

a

)

−
(

1− (1− u
1

b

1 )
1

a

)(

1− (1− u
1

b

2 )
1

a

)

(38)

5.2 Two-sided power distribution

The pdf of the standard two-sided power distributions introduced in [25] is given by

fi(xi; a, b) =







b
(

xi

a

)b−1
, 0 ≤ xi ≤ a

b
(

1−xi

1−a

)b−1
, a ≤ xi ≤ 1

(39)

where 0 ≤ a ≤ 1, b > 0, and its cdf is

Fi(xi; a, b) =







a
(

xi

a

)b
, 0 ≤ xi ≤ a

1− (1− a)
(

1−xi

1−a

)b

, a ≤ xi ≤ 1
(40)

and evidently

F−1
i (ui; a, b) =

{

b

√

aub−1
i , 0 ≤ ui ≤ a

1− b
√

(1− uk)(1− a)b−1, a ≤ ui ≤ 1
(41)
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when b = 2 it corresponds to the triangular distribution, with the quantile distribution

F−1
i (ui; a) =

{√
aui, 0 ≤ ui ≤ a

1−
√

(1− ui)(1− a), a ≤ ui ≤ 1
(42)

Therefore the associated copula for suitable parameters a and b and having two given marginal
distributions which are the two-sided power distributions, has the following form :
Case 1: 0 ≤ ui ≤ a and b > 0:

C(u1, u2) = u1

(

b

√

aub−1
2

)

+ u2

(

b

√

aub−1
1

)

−
(

b

√

aub−1
1

)(

b

√

aub−1
2

)

(43)

Case 2: a ≤ ui ≤ 1 and b > 0:

C(u1, u2) = u1

(

1− b

√

(1− u2)(1− a)b−1

)

+ u2

(

1− b

√

(1− u1)(1− a)b−1

)

−
(

1− b

√

(1− u1)(1− a)b−1

)(

1− b

√

(1− u2)(1 − a)b−1

)

(44)

Up to our knowledge, copulas defined in (38), (43), (44) are new families of copulas. However
we have to check for the explicit range of their parameters. We plan to use these copulas for
different applications such as criteria for Blind Source Separation and for analyzing multivariate
signals.

6 Conclusion

We have presented a method which can be used for constructing a multivariate joint distribution
from the only knowledge of its univariate marginals, constructing new families of copula. Then
we show some families of copula using several distributions with bounded support. Any computer
algebra system can be used to figure out the appropriate range of the values of the parameters of
these new families of copula. We are still working on this aspect of the problem, but this part is
out the aim of this paper, which is to show this method of constructing copula. Indeed, for the
bivariate case, the expression and relationship between the Kendall’s tau (τ) and Spearman’s
rho (ρ) for this new families of copula which are dependencies measure of association between
two continuous random variables are shown.
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