Morphological Segmentation on Learned Boundaries

Abstract : Colour information is usually not enough to segment natural complex scenes. Texture contains relevant information that segmentation approaches should consider. Martin et al. [Learning to detect natural image boundaries using local brightness, color, and texture cues, IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (5) (2004) 530-549] proposed a particularly interesting colour-texture gradient. This gradient is not suitable for Watershed-based approaches because it contains gaps. In this paper, we propose a method based on the distance function to fill these gaps. Then, two hierarchical Watershed-based approaches, the Watershed using volume extinction values and the Waterfall, are used to segment natural complex scenes. Resulting segmentations are thoroughly evaluated and compared to segmentations produced by the Normalised Cuts algorithm using the Berkeley segmentation dataset and benchmark. Evaluations based on both the area overlap and boundary agreement with manual segmentations are performed.
Type de document :
Article dans une revue
Image and Vision Computing, Elsevier, 2009, 27 (4), pp.480-488. <10.1016/j.imavis.2008.06.012>
Liste complète des métadonnées
Contributeur : Doriane Ibarra <>
Soumis le : mercredi 12 juin 2013 - 13:34:25
Dernière modification le : mardi 12 septembre 2017 - 11:41:38
Document(s) archivé(s) le : mardi 4 avril 2017 - 20:04:18


Fichiers produits par l'(les) auteur(s)




Allan Hanbury, Beatriz Marcotegui. Morphological Segmentation on Learned Boundaries. Image and Vision Computing, Elsevier, 2009, 27 (4), pp.480-488. <10.1016/j.imavis.2008.06.012>. <hal-00833285>



Consultations de
la notice


Téléchargements du document