B. Cheng, G. Liu, J. Wang, Z. Huang, and S. Yan, Multi-task low-rank affinity pursuit for image segmentation, 2011 International Conference on Computer Vision, pp.2439-2446, 2011.
DOI : 10.1109/ICCV.2011.6126528

D. Comaniciu and P. Meer, Mean shift: a robust approach toward feature space analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.5, pp.603-619, 2002.
DOI : 10.1109/34.1000236

P. F. Felzenszwalb and D. P. Huttenlocher, Efficient Graph-Based Image Segmentation, International Journal of Computer Vision, vol.59, issue.2, pp.167-181, 2004.
DOI : 10.1023/B:VISI.0000022288.19776.77

J. Freixenet, X. Muñoz, D. Raba, J. Martí, and X. Cufí, Yet Another Survey on Image Segmentation: Region and Boundary Information Integration, pp.408-422, 2002.
DOI : 10.1007/3-540-47977-5_27

H. Fu and G. Qiu, Integrating low-level and semantic features for object consistent segmentation, Int. Conf. on Image and Graphics (ICIG), pp.39-44, 2011.

Y. J. Lee and K. Grauman, Object-graphs for context-aware visual category discovery, PAMI, vol.34, issue.2, pp.346-358, 2012.

L. J. Li, H. Su, E. P. Xing, and L. Fei-fei, Object bank: A high-level image representation for scene classification and semantic feature sparsification, Advances in Neural Information Processing Systems, 2010.

Z. Li, X. M. Wu, and S. F. Chang, Segmentation using superpixels: A bipartite graph partitioning approach, pp.789-796, 2012.

T. Malisiewicz and A. A. Efros, Improving Spatial Support for Objects via Multiple Segmentations, Procedings of the British Machine Vision Conference 2007, p.BMVC, 2007.
DOI : 10.5244/C.21.55

D. R. Martin, C. Fowlkes, D. Tal, and J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, pp.416-425, 2001.
DOI : 10.1109/ICCV.2001.937655

M. Meila, Comparing clusterings, Proceedings of the 22nd international conference on Machine learning , ICML '05, pp.577-584, 2005.
DOI : 10.1145/1102351.1102424

Y. Pati, R. Rezaiifar, and P. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, pp.40-44, 1993.
DOI : 10.1109/ACSSC.1993.342465

J. Shi and J. Malik, Normalized cuts and image segmentation, PAMI, vol.22, issue.8, pp.888-905, 2000.

J. Shotton, J. Winn, C. Rother, and A. Criminisi, TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-class Object Recognition and Segmentation, pp.1-15, 2006.
DOI : 10.1007/11744023_1

R. Unnikrishnan, C. Pantofaru, and M. Hebert, Toward Objective Evaluation of Image Segmentation Algorithms, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, issue.6, pp.929-944, 2007.
DOI : 10.1109/TPAMI.2007.1046

X. Wang, H. Li, S. Masnou, and L. Chen, A graph-cut approach to image segmentation using an affinity graph based on &#x2113;<inf>0</inf>-sparse representation of features, 2013 IEEE International Conference on Image Processing, 2013.
DOI : 10.1109/ICIP.2013.6738828

Z. Yu, A. Li, O. Au, and C. Xu, Bag of textons for image segmentation via soft clustering and convex shift, pp.781-788, 2012.

W. Zou, K. Kpalma, and J. Ronsin, Semantic segmentation via sparse coding over hierarchical regions, 2012 19th IEEE International Conference on Image Processing, pp.2577-2580, 2012.
DOI : 10.1109/ICIP.2012.6467425

URL : https://hal.archives-ouvertes.fr/hal-00728136