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Abstract

We propose in this paper a graph-based unsupervised segmentation ap-

proach that combines superpixels, sparse representation, and a new mid-

level feature to describe superpixels. Given an input image, we first extract a

set of interest points either by sampling or using a local feature detector, and

we compute a set of low-level features associated with the patches centered

at the interest points. We define a low-level dictionary as the collection of all

these low-level features. We call superpixel a region of an oversegmented

image obtained from the input image, and we compute the low-level features

associated with it. Then we compute for each superpixel a mid-level feature

defined as the sparse coding of its low-level features in the aforementioned

dictionary. These mid-level features not only carry the same information

as the initial low-level features, but also carry additional contextual cue. We

use the superpixels at several segmentation scales, their associated mid-level

features, and the sparse representation coefficients to build graphs at several

scales. Merging these graphs leads to a bipartite graph that can be parti-

tioned using the Transfer Cut algorithm. We validate the proposed mid-level

feature framework on the MSRC dataset, and the segmented results show

improvements from both qualitative and quantitative viewpoints compared

with other state-of-the-art methods.
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1 Introduction

Most unsupervised image segmentation methods, which are frequently used for

high-level vision tasks like object recognition or image annotation, involve low

level features such as color, boundary or texture. In particular, several methods

using graphs and spectral clustering have been proposed in recent years [13] [8],

however it remains challenging for those methods to provide desirable visually

semantic partitions.

Generally, for those methods, building a faithful graph is critical to the final

quality. The graph nodes can be pixels or regions, and the graph affinity matrix

encodes the similarity between either low level features or top down features asso-

ciated with the nodes. Low level features capture object basic properties and they

can be obtained with various descriptors or operators, such as color histograms,

histogram of oriented gradients (HOG), scale invariant feature transform (SIFT),

local binary patterns (LBP), etc. Despite progresses in the design of more in-

formative low-level features, performances remain limited. Top down features

usually convey semantic or prior knowledge about the segmented regions or ob-

jects. Many works treat the output of trained classifiers and object detectors [7],

or semantic segmentation algorithm [5] as top down information to guide the low

level unsupervised segmentation. However, all these top-down semantic methods

require non-trivial amounts of human-labeled training data, which is unrealistic in

practical situation.

In recent years, successful applications of mid-level features (e.g., bag of fea-

tures) to content-based image retrieval and object categorization have motivated

their introduction for other computer vision tasks such as image segmentation.

Yu et al.[17] proposed bag of textons combined with clustering for image seg-

mentation. The baseline of a mid-level feature mainly involves low-level feature

extraction, representation (using hard assignments with k-means, or soft assign-

ments via sparse coding) and pooling. In this paper, we focus on mid-level features

based on sparse coding, as in [18] where first a dictionary is built by learning or

human labeling, then the coefficients of the sparse representation in this dictionary

are used to define mid-level features for classification or grouping. In contrast to

[18], we build the dictionary from informative patches centered at interest points

detected without any supervision, and each mid-level feature is the sparse coding

2



in the dictionary of the low level feature associated with a superpixel. This way,

the contextual information, which has been proved an efficient cue to discriminate

two objects or images [6], is added to the original low-level features to improve

the robustness of the similarity coefficient between two superpixels in the graph

construction, whose quality plays a critical role to the segmentation result.

More precisely, the whole segmentation model starts by extracting interest

points from the image, associating with them a set of low-level features whose col-

lection forms a dictionary, and over-segmenting the input image into multi-layer

superpixels. Then, each superpixel is associated with a sparse representation of its

low level feature in the previously built dictionary. This proposed feature inherits

of the original descriptors’ property and covers also adaptive contextual informa-

tion. Compared with related works and other benchmark algorithms on the MSRC

dataset [14], the key contribution of this paper is that our new mid-level feature

is able to describe better the superpixels. The similarities between superpixels

are then computed based on ℓ0 graph construction in the spirit of [16] (where

only low-level features were used). Finally, the constructed graph is plugged into

a robust unsupervised segmentation framework introduced in [8]. The proposed

method can segment visually semantic regions, and can be used in many high-

level computer vision tasks.

The organization of the paper is as follows: in Section 2 we introduce the pro-

posed mid-level features based on the sparse coding and the segmentation frame-

work, and in Section 3 we present and comment a few segmentation results on the

MSRC dataset. We conclude in Section 4.

2 Superpixels, mid-level features, and sparse repre-

sentation

Our approach consists of three steps: 1) interest points extraction, low-level fea-

tures computation, and dictionary building; 2) over-segmentation of the original

image, extraction of superpixels (defined as the over-segmented regions), compu-

tation of a low-level feature for each superpixel, and sparse representation in the

dictionary of step 1; 3) graph construction and partitioning.
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2.1 Low-Level Features Detection and Extraction

We use low-level features extraction to build a meaningful dictionary to represent

a given image. First, we extract a set of key points from the image. The mean-

ingfulness of the low-level dictionary is highly dependent on the choice of the key

points. If they capture the main structural information of the input image, then the

derived dictionary will be highly meaningful. In practice, we have tested various

approaches, see Fig. 1: either the interest points are randomly or densely sampled,

or they are obtained using a feature descriptor, e.g., the Harris detector, the Differ-

ence of Gaussians (DoG), or the Hessian detector. The respective performances

are discussed in Section 3.

Figure 1: Illustration of different types of interest points.

Once interest points have been extracted, we consider the local image patches

around them, from which low-level features can be computed (we use in this paper

RGB color histograms for its strong discriminative skill, but other features as LBP

histogram or SIFT may be used). Finally, our low-level dictionary is defined as

the collection of all these low-level features, see Fig. 2.
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Figure 2: Illustration of low-level features computation.

2.2 Mid-Level Features Extraction over Superpixels

We call superpixel a region of an over-segmentation of the original image. In

practice, we compute several over-segmentations, and we associate with each su-

perpixel a low-level feature (in our experiments, we used RGB color histograms

for its strong discriminative skill). Then we define the mid-level feature associated

with a superpixel as the sparse representation of its low-level feature in the dic-

tionary built previously, see Fig. 3 for an illustration of the whole process. More

precisely, given a superpixel, suppose x ∈ R
m is the low-level feature associated

with it, and let D = [d1 · · ·dn] ∈ R
m×n be the low-level dictionary built in sec-

tion 2.1. The sparse representation of x in D is obtained by solving the following

optimization problem:

min
α

||x−Dα||22 s.t. ||α||0 ≤ L, (1)

where α ∈ R
n, and ‖α‖0 := ‖α‖ℓ0

is the number of its non-zero coefficients.

Suppose α̂ is a solution of the problem and Λα̂ = { j|α̂( j) 6= 0} is the index set of

non-zero coefficients of α̂ , then the mid-level feature associated with the low-level

feature x is defined as

x̂ = Dα̂ = ∑
j∈Λα̂

d jα̂( j). (2)
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Therefore, the mid-level feature x̂ is a linear combination of several low-level fea-

tures, thus not only carries the same information as the original low-level features,

but also carries additional contextual cue.

Figure 3: Illustration of mid-level features computation.

2.3 Graph Construction and Partitioning

Once mid-level features have been computed, we build the graph that will be

plugged into a spectral clustering algorithm to perform image segmentation. This

is done as follows: For each scale of over-segmentation (i.e. for each instance of

over-segmentation), we construct a graph whose nodes are the superpixels at that

scale, and whose graph edges and weights are computed using ℓ0-sparse represen-

tation. More precisely, we consider as dictionary the mid-level features associated

with the superpixels. Then, as in Equation (2), each mid-level feature x̂i can be

represented as a sparse linear combination x̂i = ∑ j α i
jx̂ j of the other mid-level

features. The similarity coefficient of any pair x̂i, x̂ j of superpixels is defined as

wi j =

{

1 if i = j

1− (ri j + r ji)/2 if i 6= j.
where ri j is the sparse representation error

of x̂i and x̂ j, i.e. ri j = ‖x̂i −α i
jx̂ j‖

2
2.
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We collect all ℓ0 affinity matrices obtained from all over-segmented images,

and we concatenate them diagonally into a unique matrix denoted as WSS, together

with the pixel-superpixels affinity matrix WIS. Then we consider the bipartite

graph associated with the matrix B =

[

WIS

WSS

]

and the Transfer Cut algorithm [8]

is applied to partition the bipartite graph into K clusters by solving the following

generalized eigenvalue problem over superpixels only LV f = λDV f, where LV =
DV −WV , DV = diag(B⊤1), and WV = B⊤D−1

U B, DU = diag(B1), see [8] for more

details.

3 Experimental Results

3.1 Database and parameter settings

We evaluate our approach on the Microsoft Research Cambridge (MSRC) database,

which contains 591 images from 23 object classes, and we use for the evaluation

the accurate ground-truth segmentations of [9]. To quantitatively evaluate the per-

formance, we apply four popular measurements : 1) Probabilistic Rand Index

(PRI) [15]; 2) Variation of Information (VOI) [11]; 3) Global Consistency Error

(GCE) [10]; and 4) Boundary Displacement Error (BDE) [4]. A segmentation

result is better if PRI is higher and the other three ones are lower. For low-level

features extraction, we only use the color feature in RGB space, and the feature di-

mension is reduced from 256×3 to 64 by PCA. For mid-level dictionary building

via sparse coding, we use the Orthogonal Matching Pursuit (OMP) algorithm [12]

to solve Eqn. 1 and set the sparsity number L = 4 according to the experimental

results.

On the step of graph construction and partitioning, we proceed as in our pre-

vious work [16], i.e. we derive from the original image 5 or 6 oversegmented

images (this number of scales being experimentally satisfactory) obtained by the

Mean Shift (MS) method [2] and by the FH method [3]. More precisely, we de-

rive three images by the MS method using the sets of parameters (hs, hr, M)=

{(7,7,100), (7,9,100), and (7,11,100)}, respectively, where hs and hr are band-

width parameters in the spatial and range domains, and M is the minimum size of

each segment. Either two of three oversegmented images are provided by the FH

method using as parameters (σ , c, M) either {(0.5,100,50),(0.8,200,100)}, or

{(0.8,150,50),(0.8,200,100),(0.8,300,100)}. To build the ℓ0 graph, the spar-

sity number L = 3 is used for all the experiments, see [16] for more details. We
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Table 1: Comparison of different feature detectors on the whole MSRC database

(red color indicates the best result).

Detector PRI↑ VoI↓ GCE↓ BDE↓
Harris detector 0.8195 1.4214 0.1694 9.4530

Hessian detector 0.8177 1.4366 0.1691 9.9951

DoG detector 0.8226 1.3900 0.1670 9.3955

Random sampling 0.8069 1.5578 0.1781 10.1746

Dense sampling 0.8280 1.3452 0.1633 9.4403

organize our experimental results as follows: first, we compare the performances

of the five different kinds of low-level feature detectors introduced in section 2.1;

then, we list the quantitative results of our proposed method on different subsets

of MSRC database and compare it with several state-of-the-art methods; finally,

we show some visual examples of our method.

3.2 Experimental Results

As mentioned in section 2.1, the property of the low-level dictionary is highly

dependent on the selection of the key points. Therefore, we compared the Harris

detector, Difference of Gaussian (DoG), Hessian detector, random sampling, and

the dense sampling (see Fig. 1). The results are shown in Tab. 1, from which

we can deduce that dense sampling is the most efficient way to extract interest

points. The main reason is that dense sampling can capture almost all information

of the image and is well-suited for sparse coding that requires an over-complete

dictionary.

We compare in Table 2 the performances of our method on the MSRC database

and the performances of the method we proposed in [16] (limiting to RGB his-

togram as superpixel feature, and calling baseline this reference algorithm). Obvi-

ously, our new method can achieve excellent performances on segmenting object

classes such as cow, building, sheep, flower, sign, bird, road, and boat, but is less

efficient for tree, face, cat, dog, bike, etc. The visual results are also shown in

Fig.4. The reasons for the difference performances are various: 1) objects like

face, cat, and dog usually have complex backgrounds mainly associated with in-

door scene which makes the evaluation unfair for the machine algorithms since

the ground-truth does not label the indoor objects. On the other side, in the case
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Table 2: Performances of our method on MSRC and comparison with state-of-

the-art methods.

Metric PRI↑ VoI↓ GCE↓ BDE↓

Object class baseline new baseline new baseline new baseline new

1. grass, cow 0.8889 0.8978 0.7927 0.8417 0.1006 0.1059 4.8316 4.9181

2. tree, grass, sky 0.7865 0.7963 1.2569 1.3664 0.1727 0.1990 18.6141 13.6065

3. building, sky 0.8429 0.8697 1.2660 1.3768 0.1670 0.1755 8.0268 8.3904

4. aeroplane, grass, sky 0.9083 0.9202 1.3133 1.2662 0.1463 0.1649 4.1802 4.3369

5. cow, grass, mount 0.9038 0.8647 0.5641 0.7804 0.0752 0.0889 4.2286 4.8817

6. face, body 0.7176 0.7277 2.2429 2.3892 0.2601 0.2669 16.1357 15.2383

7. car, building 0.7423 0.7624 2.2676 2.1879 0.2044 0.2546 12.3907 12.3268

8. bike, building 0.7037 0.7196 2.0662 2.1575 0.2729 0.2854 10.7725 10.9580

9. sheep, grass 0.8837 0.8867 0.7287 0.7166 0.0853 0.0874 4.7323 4.9983

10. flower 0.8712 0.8766 0.6368 0.7172 0.0836 0.0927 6.8501 5.7331

11. sign 0.8581 0.8839 0.7668 0.7591 0.0929 0.0940 6.4911 6.3972

12. bird, sky, grass, water 0.8820 0.8932 0.6977 0.7215 0.0963 0.0831 5.6918 5.9985

13. book 0.6714 0.6613 1.7574 1.9669 0.1596 0.1633 18.9275 17.7393

14. chair 0.7395 0.7806 1.3144 1.6839 0.1862 0.1807 11.7096 7.7027

15. cat 0.7532 0.7483 1.3479 1.2819 0.1272 0.1240 12.0134 11.8589

16. dog 0.8030 0.8029 1.2856 1.2436 0.1394 0.1613 9.7475 9.5381

17. road, building 0.8439 0.8610 1.6346 1.7412 0.2002 0.2025 9.0031 8.4299

18. water, boat 0.8548 0.8424 1.0310 1.0947 0.0935 0.1088 9.1329 12.4533

19. body, face 0.8376 0.8275 1.6961 1.9347 0.1931 0.2124 7.4399 8.8790

20. water, boat, sky, mount 0.8884 0.9154 1.1942 1.0002 0.1602 0.1279 6.3682 5.6792

Average performance

Method PRI↑ VoI↓ GCE↓ BDE↓

Our new method 0.8269 1.3614 0.1590 9.0032

Baseline [16] 0.8190 1.2930 0.1508 9.3644

NCut [13] 0.8052 1.2516 - -

LRR(CH)[1] 0.7912 1.3002 - -

MS[2] 0.7307 1.7472 - -

of objects without complex backgrounds, our method can segment them correctly

even if the object itself presents obvious color variations like on cow, building and

flower; 2) objects like face or bike can be subject to strong illumination changes
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which prevent the machine algorithms from grouping object correctly if only color

is used as low level descriptor. Results should be improved if other descriptors as

LBP were used, and this is the purpose of future work. 3) the quality of segmen-

tation can also be influenced greatly by the way superpixels are extracted.

We compare the performances of our approach with other state-of-the-arts al-

gorithms in Tab. 2. We used the scores given in [1], observing that GCE and

BDE were not reported. Our method ranks first according to PRI and BDE, which

makes it one of the most competitive algorithms.

4 Conclusion

We introduced a new unsupervised image segmentation method based on ℓ0-

graph, superpixels, mid-level features, and sparse coding. An nice property of

the mid-level feature we propose is that it can capture adaptive contextual infor-

mation and carries as well the original low level feature information. Quantitative

comparison with the state-of-art methods, as well as visual results, indicate that

our new algorithm is a competitive image segmentation method.
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