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Abstract—The main issues of web scale image retrieval are
to achieve a good accuracy while retaining low computational
time and memory footprint. In this paper, we propose a compact
image signature by aggregating tensors of visual descriptors.
Efficient aggregation is achieved by preprocessing the descriptors.
Compactness is achieved by projection and quantization of the
signatures. We compare our method to other efficient signatures
on a 1 million images dataset, and show the soundness of the
approach.

Index Terms—Image/video retrieval, Image Processing and
Computer Vision.

I. INTRODUCTION

With the globalization of internet, collections with tremen-

dous amounts of images are available. For instance, more than

6 billions images were hosted on Flickr1 in 2011. Images

similarity search in these web scale databases is thus becoming

a hot topic in the multimedia indexing community. Given a

query image, image similarity search is to find similar images

in a huge collection of images. Similar images are defined

as the images with similar visual content (same object, same

action, same scene, ...), without any meta data such as textual

tags, time or location.

The two main problems of this task are the search time

and the storage size of indexes. To index an image, common

systems use a set of local visual descriptors extracted from

images called “bag of descriptors”. The main problem of bags

of descriptors is their prohibitive storage cost. Many methods

consist in computing a lightweight signature using the bag of

descriptors.

In this paper, we propose a very compact signature which

gives good performance in similarity search with a linear met-

ric. Our signature is based on compressed aggregation of ten-

sor products of local descriptors. In the first step, we perform

a preprocessing on the descriptors. Then, we aggregate tensors

of preprocessed descriptors. Finally, we compress the signature

by projection in a well chosen subspace. Extra compression is

achieved by binary quantization of the projected signatures.

The paper is organized as follows: First, we give an

overview of the state-of-the-art to compute similarity between

images. Then we detail our propositions in the third section.

In section IV, we present results for similarity search tasks

on well known web scale datasets and compare with recent

1As stated on Flickr’s blog on August 4th 2011.
http://blog.flickr.net/en/2011/08/04/6000000000/

methods. In the last section, we conclude and discuss the

possible improvements of our method, as well as the ongoing

challenges in web scale image indexing.

II. STATE-OF-THE-ART

Most similarity search methods use a two steps scheme.

In the first step, a set of local visual descriptors is extracted

from the images. Regions of interest in the image can be

selected by automatic point of interest detection, or by uniform

sampling. The most commonly used visual descriptors are

highly discriminant local descriptors [1] (HOG, SIFT, SURF,

...). The set of descriptors extracted from an image is called

a bag. We denote by Bi = {bri}r the set of descriptors

bri ∈ R
D in image i. B is the union of Bi for all image

i in the dataset.

In the second step, a similarity between two bags of de-

scriptors is defined. There are two main approaches to compute

such similarities. The first approach performs a straight match-

ing between descriptors in bags, for instance using a voting

approach. The second approach is to compute a signature

(generally a single vector) from the bag of descriptors, and

then to use similarity measures between vectors.

In both cases, the similarity measure is used to sort all

images of the database according to a query image. To

work with web-scale image databases, it is essential to have

extremely fast similarity computation.

A. Voting based approaches

In the approaches based on voting, the descriptors of the

query image are matched to the descriptors of the dataset B.

Each descriptor of the query votes for its k-Nearest Neighbors

(k-NN) in B. Then each image counts the number of votes

obtained by its descriptors. The image with the most votes

is the most similar image. The similarity score of bags Bj

relative to a query Bi is thus obtained with the following

equation:

k(Bi,Bj) =
∑

bri∈Bi

card

(

k -NN
B\Bi

(bri) ∩Bj

)

. (1)

Naive k-NN search has a complexity linear with the number

of descriptors in B, which is prohibitive at web scale. Com-

putation time can be saved using approximated k-NN search,
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where a subset B′(b) of candidate is selected thanks to a sub-

linear algorithm. A subset B′(b) is defined for each query

descriptor b as:

B′(b) = {bi ∈ B|P (d(bi,b) < R) > P} (2)

with R the distance threshold, P a probability of being similar

and d a distance function.

Locality Sensitive Hashing (LSH) [2] uses hash functions to

produce the descriptor subset. The hash function h is defined

such that:

• if d(bi,b) ≤ R1 then P(h(bi) = h(b)) ≥ P1,

• if d(bi,b) ≥ R2 then P(h(bi) = h(b)) ≤ P2,

• R2 > R1,

• P1 > P2.

By properly choosing the (R1, R2, P1, P2) parameters, it is

guaranteed that the descriptors that are colliding (same hash)

have a high probability of being similar.

Another approach is to split the descriptor space with a

hierarchical tree structure such that all elements of a leaf

are very similar. Lejsek et al. [3] propose a method called

Nearest Vector Tree (NV-Tree). In this method each node of

the tree contains a subset of the descriptors, and each child

node a splitting of this subset. The nearest neighbor candidates

of query descriptor are all elements of the leaf to which it

belongs.

Voting based approaches give good results in similarity

search with very short response time. However, these ap-

proaches require the storage of all descriptors in B and also the

index structure for approximate nearest neighbor search. In [4],

the authors estimate around 100-500 bytes per descriptor for

the LSH indexing. For web scale databases with more than 1

billion descriptors (around 1 million images), the storage cost

of these approaches is prohibitive and not tractable.

B. Kernels on Bags approaches

Kernels on Bags approaches are an extension of kernel func-

tions commonly used in machine learning. These approaches

are similar to voting based approaches as they estimate the

number of similar descriptors. Unlike voting based approaches,

they use similarity functions to weight the vote. The similarity

function between two descriptors is called minor kernel and

is defined as:

k : (RD,RD) → [0, 1]. (3)

The minor kernel is chosen such that, for similar descriptors

k(·, ·) ≈ 1 and for dissimilar descriptors k(·, ·) ≈ 0.

In [5], the authors proposed to compute the sum of similarity

of all possible pairings between elements of Bi and Bj :

K(Bi,Bj) =
∑

r

∑

s

k(bri,bsj). (4)

Thus the higher the number of similar descriptors the more

the two bags are similar.

However, such kernel on bags produces a similarity of low

variance. To overcome this problem, Lyu proposed in [6] to

raise the minor kernel to power p. Therefore only highly

similar descriptors are considered.

Kernels on bags approaches have good results in the fields

of image retrieval and classification, but are rarely used in

web scaled problems [7]. Indeed the computational cost of

these approaches is prohibitive when the size of the bags

becomes too large, especially with dense sampling extraction

strategies. To compute the similarity between two bags of

10,000 descriptors, 100 million evaluations of the minor kernel

have to be performed.

To address these computational problems, only the most

similars descriptors of the bags can be considered, like in

voting based approaches. In [8] the problem is seen as the

following kernel on bag:

Kfast(Bi,Bj) =
∑

r

∑

s

k(bri,bsj)f(bri,bsj), (5)

with f(·, ·) a indicator function based on k-NN:

f(br,bs) =

{

1 if d(br,bs) < R,

0 otherwise.
(6)

f(br,bs) is obtained by previously described methods such

as LSH. These methods result in fast kernels on bags, but they

have same problem of storage cost as voting based approaches.

C. Statistical approaches

Statistical approaches have been inspired by text retrieval

methods. In these approaches, we assume a visual codebook

composed of descriptor prototypes (called visual words) can

be computed. A bag can then be described by a statistical

analysis of occurrences of visual words. The visual codebook

is generally computed by a clustering algorithm (e.g., k-means)

on a large set of descriptors. We denote by C the number of

visual words in the codebook.

The first method of this kind, named Bag of Words

(BoW)[9] counts the number of descriptors belonging to each

cluster. The size of the signature is C.

Avila et al. [10] suggested an extension of BoW called Bag

Of Statistical Sampling Analysis (BOSSA). This method aims

to keep more information on the distribution of descriptors

in the clusters. In this method, histograms of distances from

centers of clusters are computed. The signature size is C×H
with H the number of bins in distance histograms.

However, BoW approach is subject to codeword ambiguity.

This problem arises when a descriptor lies at the boundary

between two clusters or away from all the cluster centers.

To solve this problem Gemert et al. [11] proposed a robust

alternative to histograms using kernel density estimation (typ-

ically Gaussian functions) to smooth the local neighborhood

of descriptors. This method allows for a soft assignment of a

descriptor to several codewords. The size of the signature is C.

These approaches obtain better results than BoW approaches.

D. Coding approaches

The coding approaches are borrowed from the telecommu-

nications and signal processing communities. The main idea

of these approaches is to use coding methods based on recon-

struction problems [12] (notably used in data compression). In
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most cases the encoding methods minimize a reconstruction

error.

The signature is obtained with a two-step scheme. The first

step consists in encoding each descriptor of the bag (coding

step). The second step consists in aggregating all codes in a

single vector (pooling step). Many coding functions have been

proposed with different structural constraints on the code.

A sparsity regularization term is usually added in order

to have good compression and aggregation properties on the

code. Wang et al. [13] proposed a coding constraint such that

similar descriptors are always coded with the same visual

words by adding a Locality-constrained term:

qllc(Bi) = argmin
Ci

∑

r

‖bri −Dcri‖2 + λ‖dri ⊙ cri‖2 (7)

with dri a locality constraint and ⊙ the Hadamard product.

The most common polling methods are:

• sum pooling : ci =
∑

r cri
• max pooling : ci = maxr(cri)

where “max” functions in a row-wise manner, returning a

vector of size C.

E. Model Deviation approaches

Model Deviation approaches are based on a model of the

descriptors space. The signature of a bag of descriptors is the

deviation between the descriptors of the bag and the model.

Recently, Perronnin et al. [14] proposed a successful method

called Fisher Vectors. The authors proposed to model the

descriptors space by a probability density function denoted

by uλ of parameters λ. To describe the image, they compute

the derivative of the log-likelihood of image descriptors to the

model:

GBi

λ =
1

T
∇λ log uλ(Bi). (8)

The model used is a Gaussian Mixture Model (GMM) of

parameters µc and σc. Elements of the Fisher Vector for each

Gaussian c can be written as:

GBi

µ,c =
1

T
√
ωc

∑

r

γc(bri)

(

bri − µc

σc

)

, (9)

GBi

σ,c =
1

T
√
ωc

∑

r

γc(bri)

[

(bri − µc)
2

σ2
c

− 1

]

. (10)

Where bri are the descriptors of image i, (ωc,µc, σc)
are the weight, mean and standard deviation of Gaussian c,
and γc(bri) the normalized likelihood of bri to Gaussian

c. The final descriptor is obtained by concatenation of GBi
µ,c

and GBi
σ,c for all Gaussians. Fisher Vectors achieve very good

results [14]. However, Fisher Vectors are limited to the simple

model of mixtures of Gaussians with diagonal covariance

matrices. Moreover, the GMM algorithm is computationally

very intensive.

Jegou et al. [15] proposed a simplified version of Fisher

Vector by aggregating local descriptors, called Vectors of

Locally Aggregated Descriptors (VLAD). They proposed to

model the descriptors space by a small codebook obtained by

clustering a large set of descriptors. The model is simply the

sum of all centered descriptors Bci = {brci}r ⊆ Bi from

image i and cluster c:

νci =
∑

r

brci − µc (11)

with µc the center of cluster c. The final signature is obtained

by a concatenation of νc for all c. The signature size is D×C.

Picard et al. [16] proposed an extension of VLAD by

aggregating tensor products of local descriptors, called Vector

of Locally Aggregated Tensors (VLAT). They proposed to use

the covariance matrix of the descriptors of each cluster. Let us

denote by “µc” the mean of cluster c and “Tc” the covariance

matrix of cluster c with brci descriptors belonging to cluster

c:

µc =
1

|c|
∑

i

∑

r

brci (12)

Tc =
1

|c|
∑

i

∑

r

(brci − µc)(brci − µc)
⊤, (13)

with |c| being the total number of descriptors in cluster c.
For each cluster c, the signature of image i is the sum of

centered tensors of centered descriptors belonging to cluster

c:
Tic =

∑

r

(brci − µc)(brci − µc)
⊤ − Tc. (14)

Each Tic is flattened into a vector vic. The VLAT signature vi

for image i consists of the concatenation of vic for all clusters:

vi = (vi1 . . .viC). (15)

For better results, normalization steps are added:

xi =
v′
i

‖v′
i‖
, ∀j,v′

i[j] = sign
(

vi[j]
)
∣

∣vi[j]
∣

∣

α
, (16)

with α typically set to 0,5. xi is the normalized VLAT

signature.

As the Tic matrices are symmetric, only the diagonal and

the upper part are kept while flattening Tic into a vector vic.

The size of the signature is then C × D×(D+1)
2 .

III. COMPACT VLAT

In this paper, we propose to improve VLAT by increasing

their discriminative power while reducing their size. The

first improvement consists in preprocessing the descriptors to

optimize the model (µc, Tc)c. Then we present a method to

reduce the size of the VLAT signatures while preserving the

dot product. Our dimensionality reduction is based on linear

projections that have been made more efficient thanks to the

model optimization.

A. PCA cluster-wise of VLAT

The signature is composed of deviations between covariance

matrices of the clusters and covariance matrices of the image

descriptors. To optimize this deviation, we propose to perform

a Principal Component Analysis (PCA) within each cluster.

First, we compute the Takagi decomposition of the covari-

ance matrix of each cluster c:

Tc = VcDcV
⊤
c , (17)
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where Dc is a real non-negative diagonal matrix (eigenvalues),

and Vc is unitary (eigenvectors). Then we project the centered

descriptors belonging to c on the eigenvectors:

b′
rci = V⊤

c (brci − µc). (18)

Combining eq.(18) and eq.(14), we get:

Tic = V⊤
c

(

∑

r

(brci − µc)(brci − µc)
⊤ − Tc

)

Vc

=
∑

r

V⊤
c

(

(brci − µc)(brci − µc)
⊤
)

Vc −Dc

=
∑

r

(

V⊤
c (brci − µc)

) (

V⊤
c (brci − µc)

)⊤ −Dc.

The new VLAT signature of image i in cluster c is the sum

of tensors of projected descriptors b′
rci belonging to cluster c,

centered by Dc:

Tic =
∑

r

b′
rcib

′⊤
rci −Dc. (19)

The optimized VLAT signature is obtained by the same steps

of flattening, concatenation and normalization as the standard

signature. This optimization has the very interesting property

that most of the variance is concentrated among the first

dimensions of each cluster.

B. Compact VLAT

We propose to reduce drastically the size of the VLAT

signature while retaining its discriminative power. We seek

a linear projection into a subspace in which the original

similarity between two signatures is retained. Hence, we want

to solve the following problem:

PN =argmin
A

∑

xi∈S

∑

xj∈S

(〈xi|xj〉 − 〈A⊤xi|A⊤xj〉)2

s.t. A ∈ MS,N with N < L ≪ W

with S a training set of L images, N the size of subspace

and W the size of VLAT signature. We solve this problem by

performing a low rank approximation of the Gram matrix and

computing the linear projectors of the associated subspace.

We compute the Gram matrix of a training set S (L× L):

Gij = (x⊤
j xi)ij (20)

Then, we perform the Takagi factorization of G:

G = ULU⊤ (21)

L = diag(λ1, . . . , λL) (22)

U = (u1, . . . ,uL) (23)

with λ1 ≥ λ2 ≥ · · · ≥ λL ≥ 0 and ui the eigenvector

associated with the eigenvalue λi . We denote by LN the

matrix with the N largest eigenvalues of L on the diagonal:

LN = diag(λ1, . . . , λN ) (24)

and we denote by UN the matrix of the N first eigenvectors

of U:

UN = (u1, . . . ,uN ). (25)

The approximated Gram matrix is then:

GN = UNLNU⊤
N (26)

We compute the projection matrix signatures in the subspace:

PN = XUNL
−1/2
N . (27)

For each image, we compute the projection of VLAT in the

sub-space as:

yi = P⊤
Nxi. (28)

yi contains an approximate and compressed version of xi. The

subspace defined by the projectors preserves most of the sim-

ilarity even for very a small dimension and for small training

sets because the optimization of section III-A concentrated the

information in a small number of dimensions. One can note

this procedure is analog to that of a kernel PCA with a linear

kernel.

For a more robust similarity, we use the dot product asso-

ciated with Mahalanobis distance:

k(yi,yj) = y⊤
j L

−1
N yi. (29)

This normalization can be integrated in our projection step:

k(yi,yj) = (L
− 1

2

N yj)
⊤(L

− 1

2

N yi), (30)

y′
i = L

− 1

2

N P⊤
Nxi. (31)

The compact signature has a size N , therefore 4 × N bytes

of storage space (in single precision) are used.

C. Binarized Compact VLAT

The storage size of signatures is a key point in the field

of web scale similarity search. To produce ultra compact

signatures, we propose to perform a binary quantization of

compact VLAT signatures. We assume that signatures are

sampled from a normal distribution which is consistent with

the projections used in eq. (31). To maximize the retained

information, we propose to set the threshold such that each

class contains 50% of density. The binarized compact signature

is then computed as:

ŷi[j] =

{

1 if yi[j] ≥ 0,

−1 otherwise.
(32)

This quantization reduces the signatures size to N/8 bytes of

storage space.

To sum up, our signature is computed in three steps: First

we perform an optimization of the model with a PCA for

each cluster of codebook. Secondly, we compute the VLAT

signatures with preprocessed descriptors. Then, we compress

the signatures by projection onto a subspace with a low rank

approximation of some training Gram matrix. Finally, we

reduce the storage size with a binary quantization of Compact

VLAT signatures.
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Fig. 1. Images from Holidays dataset.

IV. EXPERIMENTS

In this section, we evaluate and compare our Compact

VLAT signatures and our Binarized Compact VLAT signa-

tures with the state-of-the-art. We use two evaluation datasets

(INRIA Holidays and Oxford datasets) and three additional

independent datasets to evaluate the performance of all meth-

ods:

INRIA Holidays dataset (Fig. 1) is a set of images drawn

from personal holidays photos, created to test similarity

search methods. It contains 1,491 images gathered in 500

subgroups, each of them being a distinct scene or object.

Oxford dataset is a set of images collected from Flickr

by searching for particular Oxford landmarks. It contains

5,062 images gathered in 11 different landmarks, each

represented by 5 possible queries.

Holidays Flickr1M dataset is a set of high quality pic-

tures from Flickr. It contains 1 million images, commonly

used as distractors for testing the Holidays dataset in large

scale context.

Oxford Flickr100k dataset is a set of high quality pic-

tures from Flickr. It contains 100,000 images, commonly

used as distractors for testing the Oxford dataset in large

scale context.

Holidays Flickr60K dataset is a set of high quality pic-

tures from Flickr. It contains 60,000 images, commonly

used as training set.

The three Holidays datasets are completely independent and

include SIFT descriptors [17]. For the two Oxford datasets,

we use a dense extraction of HOG descriptors.

For the INRIA Holidays dataset, we use the same evaluation

setup as Jegou et al. [15] and for the Oxford dataset, we use

the same evaluation setup as Philbin et al. [18].

For both, the accuracy of search is measured by the mean

Average Precision (mAP).

To evaluate our methods at web scale, we merge a large

images set (distactors set) with the standard evaluation dataset.

For the INRIA Holidays dataset, we use the Flickr1M dataset

as distactors set and for the Oxford datasets, we use the

Flickr100k dataset as distactors set.

To study the influence of the parameters of our method,

we use the INRIA Holidays dataset. For all experiments on

INRIA Holidays, we compute a set of codebooks (32, 64,

128 visual words) with SIFT descriptors from the Flickr60K

32 64 128 256 9000 FULL

VLAT - - - - - 64.0

PVLAT - - - - - 66.4

CVLAT 46.3 49.6 53.3 54.9 58.2 -

CPVLAT 47.1 51.9 53.9 55.6 55.0 -

CVLAT-M 47.1 50.0 55.1 57.5 70.0 -

CPVLAT-M 48.5 54.3 57.3 60.6 70.0 -

TABLE I
PARAMETERS STUDY ON HOLIDAYS DATASET WITH D = 64 (MAP).

dataset. For each cluster of each codebook, we compute their

mean and covariance matrix (µc, Tc)c with SIFT descriptors

of the Flickr60K dataset. We use these covariance matrices to

compute the cluster-wise PCA. To compute the projectors of

Compact VLAT signatures, we use a sample of 10k images

extracted from Flickr60K dataset.

In this section we denote by D the number of clusters in

the codebooks and by N the size of the signatures. We denote

by “CVLAT” the Compact VLAT signatures, “CPVLAT” for

the Compact VLAT signatures with Cluster-wise PCA and “-

M” suffix denotes the use of the dot product associated with

Mahalanobis distance.

A. Parameters study

In this section, we study the behavior of Compact VLAT

signatures according to their parameters. All experiments are

done with Holidays dataset, unless another setup is specified.

Table I shows the influence of the different stages of our

method on the mAP. Rows are the differents configuration

of our methods stages and columns represent the size N
of the signature (“FULL” means uncompressed signature).

We observe a gain of 2.4% between VLAT and PVLAT

which highlights the improvements brought by the model

optimization. Rows 3 and 4 show that the model optimization

allows to retain more information at higher compression ratio

(typically N ≤ 256). We can see that using of the dot product

associated with Mahalanobis distance greatly increases the

performance with compressed signature. For D = 64 and

N = 256, we divided by 2,000 the signature size for a loss

of only 3.4% of mAP.
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Fig. 2. Comparison of Compact VLAT signatures with cluster-wise PCA as
a function of the database size and the D numbers of clusters in codebook.

CPVLAT, D=64

N 16 32 64 128 256 512

Standard 22.1 33.5 38.9 42.7 45.6 47.6

Binarized 2.1 9.6 18.3 28.3 34.7 38.9

TABLE II
COMPARISON OF BINARIZED AND STANDARD COMPACT VLAT

SIGNATURES WITH CLUSTER-WISE PCA ON 100K EXTENDED HOLIDAYS

DATASET (MAP).

To study the influence of the number D of clusters on

CPVLAT signature, we fixed the size to N = 256. Figure

2 shows the variation of the mAP according to the size of

the database on Extended Holidays dataset. We show that for

databases with fewer images, a small codebook gives better

results. However, the results become similar when numbers of

images in the database increases. This shows that a medium

codebook (D = 64) leading to less computational time of

projection gives sufficiently good results at larger scale.

To study the influence of binarization, we consider CPVLAT

signature, and a codebook of 64 visual words. Table II shows

the mAP (%) with the columns representing the size N of

the signatures. We show that binarization reduces drastically

the accuracy. However, since it leads to a strong compression

of the storage size, a larger number of projectors can then

be retained. Furthermore, we note that the loss of accuracy is

lower for larger projections.

B. Comparison with the state-of-the-art

In this section, we compare our signatures with the results

of [15] on the Extended Holidays dataset and with the results

of [18] on the Oxford dataset.

For the Holidays dataset, we compute the CPVLAT signa-

tures with a codebook of 64 visual words. CPVLAT signatures

are computed with a subspace projection of size N = 96 and

N = 256. We compute the Binarized CPVLAT signatures with
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m
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CPVLAT, D=64, N=256
CPVLAT, D=64, N=96

CPVLAT D=64, N=512, Binarized

BOW, D=200k†

Fisher K=64, PCA D=96†

Fisher K=256, IVFADC 64/8192, 256x10†

Fig. 3. Comparison of state-of-the-art signatures as a function of the database
size († extract from [15]).

a subspace projection of size N = 512. Results are shown in

Figure 3.

Compare to BoW computed with a codebook of 200k visual

words, CPVLAT signatures computed with a smaller codebook

give better results. With CPVLAT signatures of size N = 96,

we have a gain of ∼ 5% of mAP, while our signatures are

about 2,000 times smaller.

Compared to the Fisher signature computed with a code-

book of size 64 (different from our codebook) and keeping

the first 96 dimensions with PCA, we obtain better results

with same size of codebook and signature. We also have

similar results with Binarized CPVLAT signatures. However,

our storage size is much smaller with 64 bytes compared to

384 bytes for the Fisher signature with PCA.

Compared to the Fisher Vectors signature indexed by IV-

FADC with a codebook of size 256, we obtain lower results on

small size databases. However, this signature is more sensitive

to the increased number of images. For more than 10k images,

we have better results with a smaller codebook.

To test the universality of our method, we use default

parameters on Oxford datasets. We use Oxford images as

training set for all parameters. We compute the VLAD, VLAT,

and CPVLAT signature with a dense extraction of HOG

descriptors. We use the same codebook of 64 visual words

for all signatures. For compressed VLAD signatures, we use

the same protocol as in [18]. Results are shown in Table III.

We can see that using dense extraction of HOG descriptors

increases the performance of VLAD signature of 6%. The

compression of VLAD@HOG signature has about the same

loss that the compression of VLAD in [18]. We observe that

the VLAT signature has much better performance than the

VLAD signature. With this setup, we observe that our method

has much better performances at large scale for the same size

(around 20% mAP improvement).

C. Scalability

In this section, we study the influence of the storage size

of our signatures. We compute the CPVLAT signatures with
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Oxford Oxford + 100k

Fisher [18] 31.7 -

VLAD [18] 30.4 -

Fisher-PCA (N=128) [18] 24.3 -

VLAD-PCA (N=128) [18] 25.7 -

VLAD@HOG 36.6 -

VLAT@HOG 50.7 -

PVLAT@HOG 54.2 -

VLAD@HOG-PCA (N=128) 32.7 25.6

CPVLAT@HOG (N=128) 54.3 46.6

TABLE III
PERFORMENCE OF THE ROW DESCRIPTORS AS WELL AS DESCRIPTORS

COMPRESSED ON OXFORD DATASET AND OXFORD DATASET + 100K

DISTRACTORS (MAP).
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Fig. 4. Comparison of Binarized and Standard Compact VLAT signatures
with cluster-wise PCA on 1M Extended Holidays dataset (D = 64).

varying number of selected projectors and the same binarized

versions. We set the size D of the codebook to 64. In Figure

4, we plot the standard CPVLAT signature and Binarized

CPVLAT signature against the storage size for 1 million

images. We observe that binarized version of the signature

leads to much better results at similar storage size. For a

storage size of 64 bytes, we obtain a mAP of 14.6% with

a standard CPVLAT signature and a mAP of 31.6% with a

Binarized CPVLAT signature (gain of 17% of mAP). With

the Binarized CPVLAT signature of dimension N = 512, all

signatures of the Extended Holidays dataset are stored in only

61 MB of memory.

V. CONCLUSION

In this paper, we proposed a new compact signature for

similarity search in web scale databases called Compact

VLAT. Our method belongs to the model deviation approaches.

First, we preprocess descriptors using PCA in each cluster

to ensure good properties for the compression step. We use

an aggregation of tensors of preprocessed descriptors. Then

we compress the signatures using projections onto a subspace

analog to kernel-PCA. We carried out similarity search exper-

iments on the Extended INRIA Holidays dataset (1M images)

and Oxford dataset (100k images). We presented the impact

of the signatures size on its performance. We compared our

results with popular methods, and showed the competitiveness

of our approach for large scale datasets.

Future works include the following issues: First, combining

VLAT and VLAD signatures before performing the projection

step; Secondly, using a soft assignment of descriptors inspired

by coding techniques; Third, using a non-binary quantization

for the extra compression step. Finally, we want to stress that

the next challenge to be addressed in web scale image retrieval

will be the loss of performances occurring when the number

of distractors increases.
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