Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks

Abstract : We study Hamilton-Jacobi equations on networks in the case where Hamiltonians are quasi-convex with respect to the gradient variable and can be discontinuous with respect to the space variable at vertices. First, we prove that imposing a general vertex condition is equivalent to imposing a specific one which only depends on Hamiltonians and an additional free parameter, the flux limiter. Second, a general method for proving comparison principles is introduced. This method consists in constructing a vertex test function to be used in the doubling variable approach. With such a theory and such a method in hand, we present various applications, among which a very general existence and uniqueness result for quasi-convex Hamilton-Jacobi equations on networks.
Type de document :
Article dans une revue
Annales scientifiques de l'Ecole normale supérieure, 2017, 50 (2), pp.357 à 448. 〈http://smf4.emath.fr/Publications/AnnalesENS/4_50/html/ens_ann-sc_50_357-448.php〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00832545
Contributeur : Cyril Imbert <>
Soumis le : samedi 29 juillet 2017 - 16:05:40
Dernière modification le : mardi 24 avril 2018 - 17:20:06

Fichiers

IM-hal6.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00832545, version 6
  • ARXIV : 1306.2428

Collections

Citation

Cyril Imbert, R Monneau. Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks. Annales scientifiques de l'Ecole normale supérieure, 2017, 50 (2), pp.357 à 448. 〈http://smf4.emath.fr/Publications/AnnalesENS/4_50/html/ens_ann-sc_50_357-448.php〉. 〈hal-00832545v6〉

Partager

Métriques

Consultations de la notice

252

Téléchargements de fichiers

68