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1 Background

Recent years have witnessed a surge of interest for network inference in biologi-
cal networks. In silico prediction of protein-protein interaction (PPI) networks is
motivated by the cost and the difficulty to experimentally detect physical inter-
actions between proteins. The underlying hypothesis is that some input features
relative to the proteins provide valuable information about the presence or the
absence of a physical interaction. The main approaches devoted to this task fall
into two families: supervised approaches, which aim at building pairwise classi-
fiers able to predict if two proteins interact, from a dataset of labeled pairs of
proteins [1–5], and matrix completion approaches that fits into an unsupervised
setting with some constraints [6, 7] or directly into a semi-supervised framework
[8, 9].

Let us define O the set of descriptions of the proteins we are interested in. In
this paper, we have chosen to convert the binary pairwise classification task into
an output kernel learning task as in [3, 4]. This is made possible by noticing that
a Gram matrix KYℓ

on the training data Oℓ can be defined from the adjacency
matrix using any kernel that encodes the proximities of proteins in the network
(for instance a diffusion kernel [10]). We assume that a positive definite kernel κy:
O×O → R underlies this Gram matrix such that ∀i, j ≤ ℓ, KYℓ

(i, j) = κy(oi, oj).
Moreover, there exists an Hilbert space Fy, called the feature space, and a fea-
ture map y : O → Fy such that ∀(o, o′) ∈ O, κy(o, o′) = 〈y(o), y(o′)〉Fy

.
The assumption underlying output kernel learning is that an approximation of
κy will provide valuable information about the proximity of proteins in terms
of nodes in the interaction graph. This approximation is built from the in-
ner product between the outputs of a single variable function h : O → Fy

: κ̂y(o, o′) = 〈h(o), h(o′)〉Fy
. This allows one to reduce the problem of learning

from pairs to learning a single variable function with values in the output feature
space. This supervised regression task is referred to as Output Kernel Regres-
sion (OKR). Once the output kernel is learnt, a classifier fθ is defined from the
approximation κ̂y by thresholding its output values:

fθ(o, o
′) = sgn(κ̂y(o, o′) − θ) .
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2 RKHS for vector-valued functions for supervised and

semi-supervised OKR

In the case of OKR, the function to be learnt is not real-valued but vector-valued
in the output Hilbert space. If we want to benefit from the theoretical framework
of Reproducing Hilbert Space theory (RKHS), well appropriate to regularization,
we need to turn to the proper RKHS theory, devoted to vector-valued functions,
which was introduced in [13] and developed in [14]. In this theory, kernels are
operator-valued and applied to vectors in the given output Hilbert space. While
being very powerful, this theory is still underused.

Supervised setting

In this work, the RKHS theory devoted to functions with values in a Hilbert
space provides us with a general framework for OKR. Let Fy be an Hilbert
space. Let Sℓ = {(oi,yi)}

ℓ
i=1 ⊆ O × Fy be a set of labeled examples, and H be

a RKHS with reproducing kernel Kx. We focus here on the to penalized least
square cost in the case of vector-valued functions:

argmin
h∈H

J(h) =
ℓ∑

i=1

‖h(oi) − yi‖
2
Fy

+ λ1‖h‖
2
H ,with λ1 > 0. (1)

Michelli & Pontil [14] have shown that the minimizer of this problem admits an

expansion ĥ(·) =
∑ℓ

j=1
Kx(oj , ·)cj , where the vectors cj ∈ Fy, j = {1, · · · , ℓ},

satisfy the equations:

yj =

ℓ∑

i=1

Kx(oi, oj)ci + λ1cj . (2)

To benefit from this theory, we must define a suitable input operator-valued
kernel. OKR is extended to data described by some input scalar kernel. The
training input set is now defined by an input Gram matrix KXℓ

, which encodes for
the properties of the training objects Oℓ. As in the output case, the coefficients
of the Gram matrix are supposed to be defined from a positive definite input
kernel function κx : O×O → R, with ∀i, j ≤ ℓ, KXℓ

(i, j) = κx(oi, oj). We define
an operator-valued kernel Kx from this scalar kernel:

Kx(o, o′) = κx(o, o′) × IFy
, (3)

with IFy
, the identity matrix of size dim(Fy)×dim(Fy). The theorem from [13,

14] ensures that a RKHS can be built from it. Starting from the results existing
in the supervised case for the penalized least-square cost, we show that with this
choice of the operator-valued kernel, we can derive a closed-form solution.

Proposition 1. When Kx is defined by mapping (3), the solution of Prob-

lem (1) reads

C = Yℓ(KXℓ
+ λ1Iℓ)

−1 , (4)

where Yℓ = (y1, · · · ,yℓ), C = (c1, · · · , cℓ), and Iℓ is the ℓ × ℓ identity matrix.
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It is worth noting that we directly retrieve the extension of kernel ridge
regression to output kernels proposed by [15].

Semi-supervised setting

In biology, it is much easier to get a detailed description of the properties of a
protein compared to the cost of experimental methods used to detect physical
interactions between two proteins. To benefit from the usually large amount of
unlabeled data, we need to extend OKR to semi-supervised learning. A powerful
approach is based on graph-based regularization that forces the prediction func-
tion to be smooth on the graph describing similarities between inputs. Enforcing
smoothness of the function permits to propagate output labels over close inputs
as shown in [11, 12]. [12] have proposed to explicitly embed such ideas into the
framework of regularization within RKHS for real-valued functions.

Let Sℓ = {(oi,yi)}
ℓ
i=1 be a set of labeled examples and Su = {oi}

ℓ+u
i=ℓ+1

a set
of unlabeled examples. Let H be a RKHS with reproducing kernel Kx, and a
symmetric matrix W with positive values measuring the similarity of objects in
the input space. We consider the following optimization problem:

argmin
h∈H

J(h) =

ℓ∑

i=1

‖h(oi)−yi‖
2
Fy

+λ1‖h‖
2
H+λ2

ℓ+u∑

i,j=1

Wij‖h(oi)−h(oj)‖
2
Fy

, (5)

with λ1 and λ2 > 0.

We state and prove a new representer theorem devoted to semi-supervised
learning in RKHS with vector-valued functions:

Theorem 1. The minimizer ĥ of the optimization problem (5) admits an ex-

pansion ĥ(·) =
∑ℓ+u

j=1
Kx(oj , ·)cj , where the vectors cj ∈ Fy, j = {1, · · · , (ℓ+u)}

satisfy the equations:

Vjyj = Vj

ℓ+u∑

i=1

Kx(oi, oj)ci + λ1cj + 2λ2

ℓ+u∑

i=1

Lij

ℓ+u∑

m=1

Kx(om, oi)cm . (6)

The matrix Vj of dimension dim(Fy) × dim(Fy) is the identity matrix if j ≤ ℓ

and the null matrix if ℓ < j ≤ (ℓ + u). L is the (ℓ+u)×(ℓ+u) Laplacian matrix,

given by L = D − W , where D is a diagonal matrix such that Dii =
∑ℓ+u

j=1
Wij.

Using the operator-valued kernel defined previously leads us to define a new
model, expressed as a closed-form solution.

Proposition 2. When Kx is defined by mapping (3), the solution of Problem

(5) reads

C = YℓU(KXℓ+u
UT U + λ1Iℓ+u + 2λ2KXℓ+u

L)−1, (7)
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where Yℓ = (y1, · · · ,yℓ), C = (c1, · · · , cℓ+u). U denotes a ℓ× (ℓ+u) matrix that

contains an identity matrix of size ℓ×ℓ on the left hand side and a zero matrix of

size ℓ×u on the right hand side. KXℓ+u
is the Gram matrix of size (ℓ+u)×(ℓ+u)

associated to kernel κx. Finally, Iℓ+u is the identity matrix of size (ℓ + u).

3 Experiments

We extensively studied the behavior of the provided models on transductive link
prediction using artificial data and a protein-protein interaction network dataset.

Synthetic networks We illustrate our method on synthetic networks in order
to measure the improvement brought by the semi-supervised method in extreme
cases (i.e. for low percentage of labeled proteins) when the input kernel is a very
good approximation of the output kernel. We produce the data by sampling ran-
dom graphs from a Erdős-Renyi law with different probabilities of presence of
edges. The input feature vectors have been obtained by applying Kernel PCA
on the diffusion kernel associated with the graph. Finally, we use the compo-
nents that capture 95% of the variance to define the input features. We observe
from the results obtained that the semi-supervised approach improves upon the
supervised one on Auc-Roc and Auc-Pr, especially for a small percentage of la-
beled data (up to 10%). Based on these results one can formulate the hypothesis
that supervised link prediction is harder in the case of more dense networks and
that the contribution of unlabeled data seems more helpful in this case. One can
also assume that using unlabeled data increases the AUCs for low percentage of
labeled data. But when enough information can be found in the labeled data,
semi-supervised learning does not improve the performance.

Protein-protein interaction network We illustrate our method on a PPI
network of the yeast Saccharomyces Cerevisiae composed of 984 proteins linked
by 2438 interactions. To reconstruct the PPI network, we deal with usual input
features that are gene expression data, phylogenetic profiles, protein localization
and protein interaction data derived from yeast two-hybrid (see for instance [2–6]
for a more complete description).

Table 1. Auc-roc and Auc-pr obtained for the reconstruction of the PPI network
from the gene expression data in the supervised and the semi-supervised settings. The
percentage values correspond to the proportions of labeled proteins.

Methods
Auc-roc Auc-pr

5% 10% 20% 5% 10% 20%

Supervised 76.9 ± 4.3 80.3 ± 0.9 82.1 ± 0.6 5.4 ± 1.6 7.1 ± 1.1 8.1 ± 0.7
Semi-supervised 79.6 ± 0.9 80.7 ± 1.0 81.9 ± 0.7 6.6 ± 1.1 7.6 ± 0.8 8.4 ± 0.5

We experimented with our method in the semi-supervised setting and com-
pared the results with those obtained in the supervised setting. For different
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values of ℓ, that is the number of labeled proteins, we randomly sub-sampled a
training set of proteins and considered all the remaining proteins for the test set.
The interaction assumed to be known are those between two proteins from the
training set. We ran each experiment ten times and tuned the hyperparameters
by 5-fold cross-validation on the training set. Averaged and standard deviations
of the Auc-roc and Auc-pr values when using gene expression data as input fea-
tures are summarized in Table 1. It is worth noting that the semi-supervised
method reaches better performances when the number of labeled proteins is
small, which is usually the case in PPI network inference problems.
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