JKernelMachines: A Simple Framework for Kernel Machines

David Picard 1, * Nicolas Thome 2 Matthieu Cord 2
* Auteur correspondant
1 MIDI
ETIS - Equipes Traitement de l'Information et Systèmes
2 MLIA - Machine Learning and Information Access
LIP6 - Laboratoire d'Informatique de Paris 6
Abstract : JKernelMachines is a Java library for learning with kernels. It is primarily designed to deal with custom kernels that are not easily found in standard libraries, such as kernels on structured data. These types of kernels are often used in computer vision or bioinformatics applications. We provide several kernels leading to state of the art classification performances in computer vision, as well as various kernels on sets. The main focus of the library is to be easily extended with new kernels. Standard SVM optimization algorithms are available, but also more sophisticated learning-based kernel combination methods such as Multiple Kernel Learning (MKL), and a recently published algorithm to learn powered products of similarities (Product Kernel Learning).
Type de document :
Article dans une revue
Journal of Machine Learning Research, Journal of Machine Learning Research, 2013, 14, pp.1417-1421
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00832030
Contributeur : David Picard <>
Soumis le : lundi 10 juin 2013 - 07:51:55
Dernière modification le : jeudi 13 décembre 2018 - 01:29:59
Document(s) archivé(s) le : mercredi 11 septembre 2013 - 04:10:37

Fichier

picard13a.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00832030, version 1

Citation

David Picard, Nicolas Thome, Matthieu Cord. JKernelMachines: A Simple Framework for Kernel Machines. Journal of Machine Learning Research, Journal of Machine Learning Research, 2013, 14, pp.1417-1421. 〈hal-00832030〉

Partager

Métriques

Consultations de la notice

306

Téléchargements de fichiers

212