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Analysis of Drilling vibrations: A Time-Delay System Approach

Islam Boussaada and Hugues Mounier and Silviu-Iulian Niculescu and Arben Cela

Abstract— The main purpose of this study is the description
of the qualitative dynamical response of a rotary drilling system
with a drag bit, using a model that takes into consideration
the axial and the torsional vibration modes of the bit. The
studied model, based on the interface bit-rock, contains a couple
of wave equations with boundary conditions consisting of the
angular speed and the axial speed at the top additionally to
the angular and axial acceleration at the bit whose contain a
realistic frictional torque. Our analysis is based on the center
manifold Theorem and Normal forms theory whose allow us to
simplify the model.

Index Terms— Drilling system, Vibrations analysis, Time-
delay systems, Neutral systems, Functional differential equa-
tions, Center Manifold, Normal forms.

I. INTRODUCTION

Interconnected oscillatory systems often display what is

called propagation phenomena, [13]. In general by Lossless

propagation it is understood the phenomenon associated with

long transmission lines for physical signals. In engineering,

this problem is strongly related to electric and electronic

applications, e.g. circuit structures consisting of multipoles

connected through LC transmission lines, this can also be

seen in steam or gaz flows or pressures and water pipes [21],

[9], [23]. The mathematical model is described in all these

cases by a mixed initial and boundary value problem for

hyperbolic partial differential equations modeling the lossless

propagation. The boundary conditions are of special type

being in feedback connection with some system described

by ordinary differential equation. This leads to the so-

called derivative boundary conditions considered by Cooke

& Krumme [6] but also to the even more general boundary

conditions of Abolina & Myshkis described by Volterra

operators, see [23]. Integration along characteristics of the

hyperbolic partial differential equation is in fact the method

of d’Alembert, it allows the association of certain system of

functional equations to the mixed problem.

This paper is concerned by an application which can

be modeled by such equations therefore the above idea is

adopted, see [2], [8], [25], [26]. The analysis and modeling
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of a rotary drilling vibrations is a topic whose economical

interest has been renewed by recent oilfields discoveries

leading to a growing literature, see for instance [24], [10],

[20], [17], [19] and [18].

Throughout this paper, we would like first to contribute

by improving the modelling of the drilling system by taking

into account both axial and torsional vibrations and secondly

by extending the qualitative analysis to the investigation

of the nonlinear terms in the model. Indeed, the center

manifold theorem and normal forms theory are applied to

obtain a finite dimensional approximation that conserves the

main dynamics of the physical system. Let us consider the

following model for the axial vibrations U and torsional

vibrations Φ:










∂2tU(t, s) = c2 ∂2sU(t, s)

E Γ ∂sU(t, 0) = α∂tU(t, 0)−H(t)

M ∂2tU(t, L) = −E Γ∂sU(t, L) + F (∂tU(t, L))

, (1)

and










∂2tΦ(t, s) = c̃2 ∂2sΦ(t, s)

GΣ ∂sΦ(t, 0) = β∂tΦ(t, 0)− Ω(t)

J ∂2tΦ(t, L) = −GΣ ∂sΦ(t, L) + F̃ (∂tU(t, L))

, (2)

where in equation (1) H is the brake motor control and

α∂tU(t, 0) represents a friction force of viscous type. For

equation (2), the right hand side of the second equation

designate the difference between the motor speed and ro-

tational speed of the first pipe. The physical parameters of

the model (1)-(2) are: G is the shear modulus the for the

drillstring steel and E is the elasticity Young’s modulus,

then the wave speeds can be expressed by c =
√

E/ρ
and c̃ =

√

G/ρ and J is the inertia J = M r2 where r
is taken as the averaged radius of drillpipe and Γ is the

averaged section of the drillpipe and Σ is the quadratic

momentum. Those parameters are taken following the the

numerical settings presented in the Appendix. The nonlinear

aspect of the model is considered by taking functions F and

F̃ in the form: z 7→ pk z/(k2 z2 + ζ) where the parameters

p, k, ζ are some positive integer responsible of the sharpness

of the top angle of the friction force graph and p is some

parameter deciding the amplitude of the friction force such

that 0 < ζ ≪ 1 and 0 < k < 1. Moreover, the behavior

of the chosen friction model is close from the empirical

model: the white friction force but is more handleable;

which can be very useful in experimental identifications.

Note also that the proposed model can be expanded to

Taylor sum, this fact is very important when the aim is to

give accurate approximation at any fixed order. The chosen



functions have a close behavior to the one used in [3] for

modelling the friction. The second originality of the present

contribution is an analytical study of the drilling model as

functional differential equations of neutral type and based

on the qualitative theory; Center Manifold Theorem [5] and

Normal Forms Theory [11]. Indeed, most of the references

concerned by partial differential equations (PDE) or Delay

differential equations (DDE) models for the drilling problem

have a numerical analysis character. In this work we reduce

the considered PDE model to a singularly perturbed system

of ordinary differential equations (ODE) in like Bogdanov-

Takens configuration (double zero eigenvalues). Furthermore,

to the best of the authors knowledge, this type of singularity

never studied for NDDE depending on parameter, thus we

extend the methodology for computing the center manifold

which allows us to establish the linear stability and the

bifurcation elements. Similar result can be found in [12]

where the analysis of a physiological control model of DDE

with double-zero eigenvalue singularity. This study have the

same spirit of the results of Bogdanov and Takens for ODEs.

We refer the reader to [14], [11] for elements of Bifurcation

theory.

The remaining part of the paper is organized as fol-

lows. The second section is concerned by preliminaries,

we describe the standard procedure for reducing the PDE

drillstring model to a Neutral Delay differential equations

(NDDE). In the third section, entitled Dynamics Analysis,

we establish linear stability analysis and apply bifurcation

results for Bogdanov-Takens singularity. The methodological

scheme described in [1], [4] is extended to the study of the

parametrized model of neutral type. For the sake of self-

containment, we report in the Appendix, a table for the

numerical settings for the parameters used in (1)-(2), then

we present elements of the qualitative theory of differential

equations, entitled Model reduction, which comprises the

outlines of a methodology enabling to approximate a system

of NDDE by a system of ordinary differential equations

(Center Variety) and then to study local bifurcations (Normal

Forms).

II. PRELIMINARIES

For the sake of self-containment, in the sequel we describe

a standard procedure allowing to transform the considered

PDE model to a delay system of Neutral type. To the best of

the authors knowledge, this was presented for the first time

in [6], see also [2] and [16].

A. Axial vibrations

First, let us consider the subsystem (1).

The change of variables ξ = t + c s and η = t − c s gives

from the top equation of (1) ∂2ξηU(t, s) = 0 which leads to

separate the variables, i.e. U(ξ, η) = ϕ(ξ) + ψ(η).
Then

∂tU =
∂

∂ξ
(ϕ) +

∂

∂η
(ψ), and ∂sU = c

∂

∂ξ
(ϕ)− c

∂

∂η
(ψ)

Substituting this into the two last equations (boundary con-

ditions) of (1) and introducing τ such that τ = c L we obtain

E Γ

α
∂sU(t, 0) = ∂tU(t, 0)−

1

α
H(t). (3)

To simplify notations, from now we adopt (.) for (∂t =
d
dt
).

H(t) = (α− cE Γ)ϕ̇(t)+(α+ cE Γ)ψ̇(t) = A ϕ̇(t)+B ψ̇(t)
(4)

such that A = α− cE Γ and B = α+ cE Γ.

M Ü(t, L) =M ϕ̈(t+ τ) +M ψ̈(t− τ)

= −E Γ c ϕ̇(t+ τ) + E Γ c ψ̇(t− τ)

+ F (ϕ̇(t+ τ) + ψ̇(t− τ)).

(5)

Let v be the axial vibration at the bit

v(t) = U(t, L) = ϕ(t+ τ) + ψ(t− τ), (6)

which gives

ϕ(t) = v(t− τ)− ψ(t− 2 τ). (7)

Equality (4) with (7) give

H(t− τ) = A (v̇(t− 2 τ)− ψ̇(t− 3 τ)) +Bψ̇(t− τ). (8)

Equality (5) with (7) give

M v̈(t) = −E Γ c v̇(t) + 2E Γ c ψ̇(t− τ) + F (v̇(t)). (9)

This last equality gives

ψ̇(t− τ) =
M v̈(t) + E Γ c v̇(t)− F (v̇(t))

2E Γ c
. (10)

One obtains the first neutral delay differential equation by

substituting (10) into (8):

v̈(t)−
A

B
v̈(t− 2τ) = −

E Γ c

M
v̇(t)−

AE Γ c

MB
v̇(t− 2τ)

+
1

M
F (v̇(t))−

A

BM
F (v̇(t− 2τ))

+
2E Γ c

BM
H(t− τ)

(11)

B. Torsional vibrations

Let us deal with the torsional vibrations and consider the

subsystem (2). We use the change of variables α = t + c̃ s
and β = t − c̃ s and we separate the variables Φ(α, β) =
ϕ̃(α) + ψ̃(β). Then

∂tΦ =
∂

∂α
(ϕ̃) +

∂

∂β
(ψ̃)

and

∂sΦ = c̃
∂

∂α
(ϕ̃)− c̃

∂

∂β
(ψ̃).

Now let w be the torsional vibration at the bit, by the same

way as for the axial vibrations, we obtain

ẅ(t)−
C

D
ẅ(t− 2 τ̃) = −

c̃ GΣ

J
ẇ(t)−

c̃ C GΣ

DJ
ẇ(t− 2τ̃)

+
1

J
F̃ (v̇(t))−

C

DJ
F̃ (v̇(t− 2τ̃))

+
2c̃ GΣ

DJ
Ω(t− τ̃)

(12)



such that C = β − c̃ GΣ and D = β + c̃ GΣ. Now let us

consider the two obtained neutral equations (11)-(12). To

obtain the NDDE dimensionless form of (1)-(2) one may

adopt the following units of length, time and torque the

quantities L, T = L/c and EΓ/L, thus system (11)-(12)

is written


































































































v̈(t)−
α− 1

α+ 1
v̈(t− 2) =

−
1

M
v̇(t)−

α− 1

M (α+ 1)
v̇(t− 2) +

2

M (α+ 1)
H(t− 1)

+
1

M
F (v̇(t))−

α− 1

M (α+ 1)
F (v̇(t− 2))

ẅ(t)−
cE Γβ − c̃ GΣ

cE Γβ + c̃ GΣ
ẅ(t− 2 τ̃) =

−
c̃ GΣ

cE Γ J
ẇ(t)−

c̃ GΣ

cE Γ J

cE Γβ − c̃ GΣ

cE Γβ + c̃ GΣ
ẇ(t− 2τ̃)

+
1

J
F̃ (v̇(t))−

cE Γβ − c̃ GΣ

J (cE Γβ + c̃ GΣ)
F̃ (v̇(t− 2τ̃))

+
2c̃ GΣ

J (cE Γβ + c̃ GΣ)
Ω(t− τ̃)

(13)

where τ̃ is the ratio of the speeds τ̃ = c̃
c
.

III. DYNAMICS ANALYSIS OF THE UNCONTROLLED

DRILLING SYSTEM

Let us consider the normalized and uncontrolled system,

i.e. Ω = H = 0.

A. Linearized Stability and Bifurcation Analysis

Let denote by x1 the axial vibrations speed x1 = v̇ and

by x2 the angular vibrations speed x2 = ẇ and adopt the

matrix representation of the linear part of the above system

where x = (x1, x2)
T











ẋ(t) =D1 ẋ(t− 2) +D2 ẋ(t−
2c̃

c
) +A0 x(t) +A1 x(t− 2)

+A2 x(t−
2c̃

c
) + F(x(t), x(t− 2), x(t−

2c̃

c
))

(14)

where F is the nonlinear part of the system (13)

D1 =

[

d1,1,1 0

0 0

]

, D2 =

[

0 0

0 d2,2,2

]

,

A0 =

[

a0,1,1 0

a0,2,1 a0,2,2

]

, A1 =

[

a1,1,1 0

0 0

]

,

A2 =

[

0 0

a2,2,1 a2,2,2

]

where the matrices coefficients are

d1,1,1 = α−1
α+1 , d2,2,2 = c1E(Γ) β−c2GΣ

c1E(Γ) β+c2GΣ , a0,1,1 =
pk−ζ
Mζ

, a0,2,1 = a2k
Jζ
, a0,2,2 = − c2GΣ

c1E(Γ) J , a1,1,1 =

− (α−1)(ζ+pk)
(α+1)Mζ

, a2,2,1 = − pk(c1E(Γ) β−c2GΣ)
ζ (c1E(Γ) β+c2GΣ)J , a2,2,2 =

− c2GΣ (c1E(Γ) β−c2GΣ)
Jc1E(Γ) (c1E(Γ) β+c2GΣ) .
Recall that in the above quoted references (concerned

by PDE models), the studies was concerned only by the

torsional vibrations. Thus the associated NDDE (governing

the speed of such vibrations) is scalar which is easier to

study compared with (14). And for the physiological model

considered in [12], A2 = Di = 0 for i ∈ {1, 2} since the

model is DDE with one delay.

Setting the numerical values of the physical parameters

given in the Appendix and taking p (the parameter deciding

for the amplitude of the friction forces F and F̃ ) is left free

allows us to the following result.

Proposition 1: • When α is left free and α = 30 p then

zero is an eigenvalue of algebraic and geometric mul-

tiplicity 1. Moreover, Zero is the only eigenvalue with

zero real part and the remaining eigenvalues are with

negative real parts. We have a Pitchfork-like bifurcation

occurring in ODE, this comes from the Z2 symmetry

structure of the system.

• When α takes its physical values αc given in the

appendix and αc = 30 pc (pc = 6.6667), then zero is an

eigenvalue of algebraic multiplicity 2 and of geometric

multiplicity 1. Zero is the only eigenvalue with zero real

part and the remaining eigenvalues are with negative

real parts. The zero eigenvalue is non-semisimple and

the singularity is of Bogdanov-Takens like, see [11].

• The system (14) is formally stable but not asymptoti-

cally stable (although there are no characteristic roots

with positive real parts).

Analogously to [12] which considers a singular delay

system linearly dependent on a parameter, and in the same

spirit of the decomposition established in [7] in the goal of

computing the normal form for delay systems depending on

a parameter, we extend the scheme of computing the center

manifold to the case of NDDE depending on parameters and

thus look for the system (14) as a perturbation of

d

dt
D xt = L0 xt, where L0 = L|{p=pc, µ=0} (15)

Indeed, system (14) can be written as

d

dt
D xt : = L0 xt + F̃µ,pǫ

(xt)

= L0 xt + (L − L0)xt + Fµ,pǫ
(xt)

(16)

such that

Fµ,p =

[

−0.006750 px31(t) + 0.006682px31(t− 2)
−1.875 px31(t) + 1.874998 px31(t− 1.264911064)

]

Here we follow the theoretical schemes briefly presented in

the Appendix and give computations steps for the equation of

the evolution of the problem’s solutions on the center variety

for system (15).

First, we compute the basis of the generalized eigenspace

corresponding to the double eigenvalue λ0 = 0.

Φ(θ) =

[

1− θ 1

104351600− 104351600 θ 104351600

]

,

where θ ∈ [−2, 0]. Recall that the adjoint linear equation



associated to (14) is











u̇(t) =D1u̇(t+ 2) +D2u̇(t+
2c̃

c
)

−A0u(t)−A1u(t+ 2)−A2u(t+
2c̃

c
)

(17)

with a basis for the generalized eigenspace associated to the

double eigenvalue zero is given by

Ψ(θ) =

[

−0.5025082 + 0.005025011 ξ 0

1.004179 + 0.4924583 ξ 0

]

, ξ ∈ [0, 2].

The associated bilinear form is

(ψ,ϕ) =ψ(0)(ϕ(0)−D1ϕ(−2)−D2ϕ(−1.264911))

+

∫ 0

−2

ψ(ξ + 2)A1ϕ(ξ)dξ

+

∫ 0

−1.264911

ψ(ξ + 1.264911)A2ϕ(ξ)dξ

−

∫ 0

−2

ψ′(ξ + 2)D1ϕ(ξ)dξ

−

∫ 0

−1.264911

ψ′(ξ + 1.264911)D2ϕ(ξ)dξ.

By the introduced bilinear form we can easily check that

(Ψ,Φ) = Id, thus the space C can be decomposed as

C = P
⊕

Q, where P = {ϕ = Φz; z ∈ R
2} and

Q = {ϕ ∈ C; (Ψ, ϕ) = 0}. Recall that each of those

subspaces is invariant under the semigroup T (t) and that

the matrix B (introduced in the previous section concerned

by the theoretical settings) satisfying AΦ = ΦB is given by

B =

[

0 0

−1 0

]

. (18)

Let us first set the following decomposition xt = Φy(t)+z(t)
where z(t) ∈ Q and y(t) ∈ R

2, z(t) = h(y(t)) and h is some

analytic function h : P → Q. Thus the explicit solution on

the center manifold can be obtained by the use of the proven

formula in [4], [12] that is

ẏ(t) = By(t) + Ψ(0)F [Φ(θ)y(t) + h(θ, y(t))] (19)

∂h

dy
{By +Ψ(0)F [Φ(θ)y + h]}+Φ(θ)Ψ(0)F [Φ(θ)y + h]

=







∂h

dθ
, −2 ≤ θ ≤ 0

L(h(θ, y)) + F [Φ(θ)y + h(θ, y)], θ = 0
(20)

where h = h(θ, y) and F̃ is defined in (16).

Simple computations show that for (15), the evolution of

solutions on the center manifold is determined by solving

(20) (restricted to p = pc, µ = µc = 0) for h(θ, y) and then

(19) for y(t) (this is done order by order of truncation). It is

of important note that F is an odd function. This fact implies

that there is no need to compute h. Thus, the third order ODE

reduction of the system (13) at p = pc, µ = µc = 0 ⇒ α =

αc is given by

ẏ(t) =

[

0 0

−1 0

]

[

y1
y2

]

+











(

−0.5818668 y1
3 − 0.5366406 y1

2y2
−0.1336538 y1y2

2 + 0.0002250037 y2
3

)

(

1.162764 y1
3 + 1.072387 y1

2y2
+0.2670850 y1y2

2 − 0.0004496326 y2
3

)











(21)

Since our aim is to study the parameter Bifurcations then

the computation of the equation of the evolution of the

problem’s solutions on the center variety for system (16) is

required. The same principle applied (i.e. formulas (19) and

(20) are used) but the expression of F change, indeed, the

above approximation is made for the system (15) for which

p = pc, but for the following approximation for (16), p is

taken p = pc + µ where µ is a small parameter. In the next

step, we introduce a small parameter r, as a scaling parameter

for making a zoom into the neighborhood of the singularity.

We introduce the following changes of coordinates
{

µ := 1326.69991 γ r2, p = pc + µ, y1 = r2z1 , y2 = rz2
}

and we scale the time by told = r tnew which allows us to

the following cubic normal form reduction of (14), (see the

Appendix)
{

ż1 = γ z1 − z1z2
2

ż2 = −z1
(22)

IV. CONCLUDING REMARKS

The main purpose of this paper is a qualitative analy-

sis of a PDE drilling model based on time-delay system

approach. In this study we establish the linear stability

analysis of the steady-state at the origin for system (14)

as well as a qualitative approximation of solutions of the

infinite dimensional system (PDE) by solutions of a finite

dimensional one (ODE). For system (22), we establish a

first integral I(z1, z2) = (z1 + γ z2 − 1
3 z

3
2)

2 leading to a

Lyapunov function V (z1, z2) = z21 + I(z1, z2) asserting that

the system is locally asymptotically stable in attraction region

D = {(x, y), such thatγ < z22}. Our future aim will concern

the design of appropriate control laws guaranteeing a desired

drilling dynamical behavior.
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APPENDIX

A. Graphical Illustration

The projection of the dynamics on the center manifold for

the critical value p = pc is given in Figure 1 and p = pc+µ is

given in Figure 2 and 3. Figure 4 gives the state z1 response

for various values of γ.

Fig. 1. Phase portrait of the system (22)|γ=0 that is p = pc

Fig. 2. Phase portrait of the system (22)|γ=−2 that is p = pc + µ

B. Numerical Settings

Parameter Value Parameter Value

G 80 GPa E 200 GPa
ρ 8000 Kg/m3 r 6 cm

Γ 35 cm2 Σ 19 cm4

L 3000m M 40000Kg
α 200,025 kg/s β 2000 Nms
k 0,3 ζ 0,01

C. Proof of Proposition 1

We compute the characteristic equation associated with

(14) which gives

det(∆) = F1(λ)F2(λ, p)

= [
(

0.9999990 e−1.264911064λ − 1
)

λ

− 0.0000066 e−1.264911064λ − 0.0000066]×

[
(

−1 + 0.990049 e−2λ
)

λ

+ (−0.000024− 0.0007 p) e−2λ + 0.00075 p− 0.000025]

Considering separately these factors simplifies the analysis.

Let us consider the first factor

F1(λ) =
(

1− 0.9999990 e−1.264911064λ
)

λ

+ 0.0000066 + 0.0000066 e−1.264911064λ

it is a scalar first order quasi-polynomial, by substituting

λ = I ω we show that there are no spectral values with zero



Fig. 3. Phase portrait of the system (22)|γ=2 that is p = pc + µ

Fig. 4. The State response z1 for (22) (red) γ = 2, (black) γ = 0 and
(blue) γ = −2

real part. This scalar quasi-polynomial satisfy the conditions

for a Pontryagin theorem for scalar quasi-polynomial which

leads to prove that all spectral values have negative real part,

see [28]. Let us now consider the second factor

F2(λ, p) =
(

0.990049 e−2λ − 1
)

λ+ 0.00075p− 0.000025

+ (−0.000024− 0.000742 p) e−2.0λ

By the same way (λ = I ω) we show that, apart from ω0 = 0,

there are no spectral values with zero real part. Moreover,

p = pc = 6.666749999 is the only possible value for p
leading to a spectral value in zero. Let us adopt the following

parametrization of the problem µ = α− 30 p.

F2(λ, µ, p) =
[

(40000µ+ 1200000 p− 40000) e−2λ

−1200000 p− 40000µ− 40000]λ

+
(

1− µ− 30 pµ− 900 p2
)

e−2λ

− 1− µ+ 30 pµ+ 900 p2.

Computations show that µ = µc = 0 leads to a first

spectral value on the imaginary axis λ1 = 0, thus we

have a like Pitchfork bifurcation occurring in ODE. Indeed,

this comes from the Z2 symmetry structure of the system.

When additionally p = pc = 6.666749999 (µ = µc =
0 ⇒ α = αc = 30 × 6.666749999) then λ2 = 0, thus

we are in case of a double root at zero of non-semisimple

type since N (λ0 Id −A) have only one eigenvector, namely

v0 =

[

1

103851200

]

. Moreover, in that case and for the

same reasons as for the first factor, the remaining roots of F2

have negative real parts and thus, the spectra of A contains

two chains situated in the left half plane (first chain located

near Re(λ) = −0.00005 and the second chain is located

near Re(λ) = −0.0000007) and an isolated (double) spectral

value in zero.

In conclusion, the system is formally stable but not asymp-

totically stable (although there are no characteristic roots

with positive real parts) and the singularity is of Bogdanov-

Takens like, see [14], [11].

D. Model reduction

Generally speaking, Functional differential equations

(FDE) share some properties with ordinary differential equa-

tions (ODE). By this section we would like to present

how this can be done in approximating the behavior of the

dynamics of a neutral delay differential equation (NDDE)

by the one of a simpler ODE. Indeed, having computed the

projection of the NDDE to a center manifold which leads

to an ODE, the normal forms theory comes to simplify its

structure without any loss in the qualitative dynamic in a

neighborhood of the state equilibrium.

Let us consider the general discretely delayed autonomous

first order nonlinear system of Neutral type where we sepa-

rate its linear and nonlinear quantities as follow

d

dt
[x(t) +

n
∑

k=1

Ak x(t− τk)] =

n
∑

k=0

Bk x(t− τk) + F(x(t), . . . , x(t− τn))

(23)

where Ai, Bj are n × n real valued matrix and the delays

τk are ordered such that τj < τj when i < j and let τn = r.

The latter system can be written

d

dt
Dxt = Lxt + F(xt) (24)

where xt ∈ C = C([−r, 0],Rn), xt(θ) = x(t+ θ), D, L are

bounded linear operators such that Lφ =
∑n

k=0Bk φ(−τk),
Dφ = φ(0)+

∑n
k=1Ak φ(−τk) and F is sufficiently smooth

function mapping C into R
n with F(0) = DF(0) = 0. We

point out that the linear operators D and L can be written

in the integral form by Lφ =
∫ 0

−r
dη(θ)φ(θ) and Dφ =

φ(0) +
∫ 0

−r
dµ(θ)φ(θ), where µ and η are two real valued

n× n matrix.

The linearized equation of (24) is given by

d

dt
Dxt = Lxt (25)

for which the operator solution T (t) defined by T (t)(φ) =
xt(. , φ) such that xt(. , φ)(θ) = x(t + θ, φ) for θ ∈ [−r, 0]
is a strongly continuous semigroup with the infinitesimal

generator given by A = dφ
dθ

with the domain



Dom(A) = {φ ∈ C :
dφ

dθ
∈ C,D

dφ

dθ
= Lφ}

It is also known that σ(A) = σp(A) and the spectrum of

A consists of complex values λ ∈ C which satisfy the

characteristic equation p(λ) = det∆(λ) = 0, see [15] for

further details.

Let us denote by Mλ the eigenspace associated with λ ∈
σ(A). We define C∗ = C([−r, 0],Rn∗) where R

n∗ is the

space of n-dimensional row vectors and consider the bilinear

form on C∗ × C which is proposed in [13]

(ψ, φ) = φ(0)ψ(0)−

∫ 0

−r

d[

∫ θ

0

ψ(τ − θ)dµ(τ)]

+

∫ 0

−r

∫ θ

0

ψ(τ − θ)dη(θ)φ(τ)dτ

and let AT be the transposed operator of A, i.e., (ψ,Aφ) =
(ATψ, φ). The following Theorem [13] permits the decom-

position of the space C.

Theorem 2: Let Λ be a nonempty finite set of eigen-

values of A and let P = span{Mλ(A), λ ∈ Λ} and

PT = span{Mλ(A
T ), λ ∈ Λ}. Then P is invariant under

T (t), t ≥ 0 and there exists a space Q, also invariant

under T (t) such that C = P
⊕

Q. Furthermore, if Φ =
(φ1, . . . , φm) forms a basis of P , Ψ = col(ψ1, . . . , ψm) is

a basis of PT in C∗ such that (Φ,Ψ) = Id, then

Q = {φ ∈ C \ (Ψ, φ) = 0} and

P = {φ ∈ C \ ∃b ∈ R
m : φ = Φb}.

(26)

Also, T (t)Φ = Φ eBt, where B is an m × m matrix such

that σ(B) = Λ.

Let us consider the extension of the space C that contains

continuous functions on [−r, 0) with possible jump discon-

tinuity at 0, we denote this space BC. A given function

ξ ∈ BC can be written ξ = ϕ + X0 α, where ϕ ∈ C,

α ∈ R
n and X0 is defined by X0(θ) = 0 for −r ≤ θ < 0

and X0(0) = Idn×n. Then Hale-Verduyn Lunel bilinear

form [13] can be extended to the space C∗ × BC by

(ψ,X0) = ψ(0) and the infinitesimal generator A extends to

an operator Ã (defined in C1) onto the space BC as follow

Ãφ = Aφ+X0[Lφ−Dφ′] (27)

Under the above consideration one can write equation (24)

as an abstract ODE

ẋt = Ãxt +X0F(xt), (28)

see [27], [7]. Thanks to the projection Π : BC → P such

that Π(ϕ+X0α) = Φ[(Ψ, ϕ)+Ψ(0)α] hence xt = Φy(t)+zt
where y(t) ∈ R

m and then equation (24) can be split to

ẏ = By +Ψ(0)F (Φy + z)

ż = ÃQ + (I −Π)X0F(Φy + z),
(29)

and our interest will be focused only on the first equation

after writing z as a function of y. The way to do that is the

center manifold technique.

E. Center Manifold

Definition 3: Given a C1 map h from R
2 into Q. The

graph of h is said to be a local manifold associated to (24)

if h(0) = Dh(0) = 0 and there exists a neighborhood V of

0 ∈ R
2 such that for each ξ ∈ V , there exists δ = δ(ξ) > 0

and the solution x of (24) with initial data Φξ+h(ξ) exists on

the interval ]−δ−r, δ[ and it is given by xt = Φy(t)+h(y(t))
for t ∈ [0, δ[ where y(t) is the unique solution of the ODE

ẏ = By +Ψ(0)F (Φy + h(y))

y(0) = ξ
(30)

For some particular cases of the matrix B analytic character-

ization of the center manifold was the subject of few studies,

for instance in the case of Bogdanov-Takens singularity one

can find the characterization of the function h in [1]. Note

also that in the above definition it assumed that y ∈ R
2, but

it stills correct for y ∈ R
m for instance we quote the case of

a Double Hopf Bifurcation, the most important is to make a

decomposition which separate between the eigenspace of all

imaginary eigenvalues (real part equal to zero) and the space

of the remaining spectral values which are assumed to have

negative real parts.

Note that in our study we chose to consider and make the

necessary adaptations to the method and the scheme of center

manifold computations distinctly presented by Campbell in

[4] and originally made for delay differential equations.

In what follow we give the outlines of the normal forms

approach taking into account that y ∈ R
2 this simple case

is of considerable importance since this is typically the case

of Hopf bifurcation or Bogdanov-Takens one.

F. Normal Forms Theory

It is well known in the field of qualitative theory of

ODE that normal forms approach is a powerful tool in the

study of the local dynamics in neighborhood of singular

points. Among other problems local bifurcation and stability

analysis benefit from this theory.

Let x = (x1, x2) ∈ R
2 and f(x1, x2) ∈ R[x1, x2] ×

R[x1, x2] and consider the general planar system

ẋ = Lx+ f(x) = Lx+ f2(x) + f3(x) + . . . , (31)

where Lx represents the linear part, L the Jacobian matrix

associated to system (31) and fk(x) denotes the kth order

vector homogeneous polynomials of x. We assume that the

system admits an equilibrium at the origin O. The essential

idea of the Normal Form theory is to find a near identity

transformation

x = y + h(y) = y + h2(y) + h3(y) + . . . , (32)

by which the resulting system

ẏ = Ly + g(x) = Ly + g2(y) + g3(y) + . . . , (33)

becomes as simple as possible. In this sense, the terms

that are not essential in the local dynamical behavior are

removed from the analytical expression of the vector field.

Let us denote by hk(y) and gk(y) the kth order vectors



homogeneous polynomials of y. According to Takens normal

form theory, we define an operator as follows:

Lk : Hk → Hk, Uk ∈ Hk 7→ Lk(Uk) = [Uk, u1] ∈ Hk

(34)

where u1 = Ly is the linear part of the vector field and

Hk denotes a linear vector space containing the kth degree

homogeneous vector polynomials of y = (y1, y2). The

operator [., .] is called the Lie Bracket, defined by

[Uk, u1] = LUk −D(Uk)u1

where D denotes the frechet derivative.

Next, we define the spaces Rk and Kk as the range of

Hk and the complementary space of Rk respectively. Thus,

Hk = Rk + Kk and one can then choose bases for Kk

and Rk. The normal form theorem determines how it is

possible to reduce the analytic expression of the vector field

(see Gukenheimer and Holmes book [11]). The authors give

explicitly an analysis for the quadratic and the cubic cases.

Consequently, a vector homogeneous polynomial fk ∈ Hk

can be split into two parts, such that one of them can be

spanned in Kk and the remaining part in Rk.

Normal form theory shows that the part belonging to Rk

can be eliminated and the remaining part can be retained in

the normal form. By the equations (31), (32) and (33), we

can obtain algebraic equations one order after another.


