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Abstract

This paper presents the concept of the Stochastic Multi-dimensional Harmonic Balance Method (Stochastic-MHBM) in order to solve dynamical
problems with non-regular nonlinearities in presence of uncertainties. To treat the nonlinearity in the stochastic and frequency domains, the
Alternate Frequency-Time method with Probabilistic Collocation (AFTPC) is proposed. The approach is demonstrated using nonlinear two-
degree-of-freedom model with different types of nonlinearities (cubic nonlinearity, contact/no contact, friction). The quasi-periodic stochastic
dynamic response is evaluated considering uncertainties in linear and nonlinear parts of the mechanical system. The results are compared
with those obtained from the classical Monte Carlo Simulation (MCS). For various numerical tests, it is found that the results agreed very well
whilst requiring significantly less computation.

1 Introduction

Due to the fact that deterioration or evolution of the structure during its lifetime can drastically affect its vibration behavior, there
has been a crucial and strong development in the treatment ofvariability in mechanical system and in the application of methods
to enable the analysis of stochastic vibration problems. Inorder to estimate the stochastic dynamic response of a linear system,
several approaches can be used. One classical method consists in carrying out Monte Carlo simulations (MCS) to obtain for in-
stance the probability density function or the envelope of the random dynamic response. This non-intrusive in a stochastic sense
method can easily be done, however, the convergence of the method needs a high number of samples that means a high CPU
time. One possibility to reduce this CPU time is to associateone non-intrusive method called the Probabilistic Collocation (PC)
[1] method and consisting in calculating the deterministicproblem on the collocation points, points Gaussian quadrature, alone,
of number smaller than that for the classical MC approach. Besides, the Monte Carlo simulations, the perturbation methods
are based on the development of the random quantities in Taylor series [2] or Neumann series [3, 4]. These methods give good
results for random problems with small variations but do notseem suitable to dynamic problems for frequencies close to the
resonance. Moreover, estimating the envelope of the response using the intervals method can be possible, however this technique
tends to over-estimate the results ; then it can not be adapted to calculate the random dynamic response with reliability. Another
method that could be suitable for convenient random variation is the Polynomial Chaos Expansion (PCE) [5]. The Polynomial
Chaos Expansion has already been successfully applied to estimate evolutions of the periodic and quasi-periodic responses with
harmonic components of a rotor system with uncertainties [6, 7].

Furthermore, the need for consideration of nonlinear effects in the description of a dynamical system is well recognized
in the field of engineering and numerous studies have been conducted to understand and model the nonlinear phenomena in
structural dynamics during the past decades [8]. Even if most of these models deal with deterministic parameters, it is obvious
that variations in the geometry or material properties are often present in these systems as it has already been mentioned in the
previous paragraph for linear systems. However, the treatment of uncertainty in the nonlinear structures is not common. So the
effects of variations in the geometry or material properties on the nonlinear dynamic responses remain misunderstood.Moreover,
it can be noted that most of the classical stochastic methodsused in the linear case fail to deal with a nonlinear problem.For
example, the previous methodology proposed by the authors in [6, 7] as well as the probabilistic collocation method do not
allow to solve problems including returning points [9] since they are unable to describe multi-solutions as usually observed for
nonlinear systems.

In the present study, we propose a new formulation, called the Stochastic Multi-dimensional Harmonic Balance Method
(Stochastic-MHBM) to solve the stochastic nonlinear dynamic problems. The aim of this new numerical procedure is to evaluate
the nonlinear responses of mechanical systems with uncertainties. The nonlinear system can include both regular and non-
regular nonlinearities and it can be submitted to mono or multi-frequency excitations. Uncertainties will relate justas easily to
nonlinearities that on the linear terms (rigidity, dampingand mass).

The next section of this paper presents the Stochastic Multi-dimensional Harmonic Balance Method in the order to determine
the quasi-periodic stochastic nonlinear response. Also, anew methodology called the Alternate Frequency Time methodwith
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Probabilistic Collocation (AFTPC) that is based on the combination of the Alternate Frequency-Time with Probabilistic Collo-
cation will be developed. This theoretical development (i.e. Alternate Frequency-Time method with Probabilistic Collocation,
AFTPC) allows the determination of the nonlinear terms in the stochastic and frequency domains. In the third section, the mod-
eling of the problem as well as the types of the nonlinearities treated will be explained. Effects of the following three kinds
of nonlinearities will be examined: cubic stiffness, contact/no contact, systems with frictional interface. Finally, results will be
presented for several values of the random parameters, thenwill be compared to results obtained from the Monte Carlo simu-
lations with the Multi-dimensional Harmonic Balance Method. To demonstrate the robustness and efficiency of the proposed
methodology, the nonlinear dynamic response of mechanicalsystem with various uncertainties will be investigated formono or
multiple excitation frequencies. The mean and standard deviation outputs will not be used since they do not allow to represent
multi-solutions.

2 Stochastic Multi-dimensional Harmonic Balance Method

In this section, we propose to describe the Stochastic Multi-dimensional Harmonic Balance Method based on the extension and
coupling procedure of the Multi-dimensional Harmonic Balance Method with the Polynomial Chaos Expansion. We recall that
the objective is to propose a new methodology to obtain the random quasi-periodic dynamic response of a nonlinear system(with
regular or non-regular nonlinearities) subjected to multi-frequency excitations in the presence of uncertainty on several physical
parameters.
First of all, a brief review of the Multi-dimensional Harmonic Balance Method (MHBM) is presented in this section. The
MHBM approach will be used in the following numerical studies in order to estimate the nonlinear responses via the Monte
Carlo simulations. We recall that the Monte Carlo approach will serve as reference to demonstrate the effectiveness andvalidity
of the proposed Stochastic Multi-dimensional Harmonic Balance Method. Then, the second part of this section concerns the
presentation of the proposed Stochastic Multi-dimensional Harmonic Balance Method.

2.1 Multi-dimensional Harmonic Balance Method

2.1.1 General theory of the Multi-Harmonic Balance Method

The general formulation for a nonlinear dynamical system can be written in the following form

Mẍ(t) +Cẋ(t) +Kx(t) = g(t,x(t)) = f(t) + fnl(x(t)) (1)

whereM, C andK define respectively the mass, damping and stiffness matrices. f et fnl are the external forces and nonlinear
effects in the system. The upper dot denotes a derivative with respect to timet.

Considering that the nonlinear system can be subjected top multiple periodic incommensurable excitation frequencies
ω1, ω2, ..., ωp, the response of the system contains the frequency components of any linear combination of the incommensu-
rable frequency componentsk1ω1+ k2ω2+ ...+ kiωi+ ...+ kpωp with ki = −Nh,−Nh+1, ...,−1, 0, 1, ..., Nh− 1, Nh where
Nh is the order of the Fourier series. Therefore the quasi-periodic dynamic responsex(t) and the global excitationg(t,x(t))
including the external forces and nonlinear effects can be approximated in the form of multiple Fourier series [10]:

x(t) =

Nh
∑

k1=−Nh

Nh
∑

k2=−Nh

...

Nh
∑

kp=−Nh

(Xc
[k1,k2,...,kp] cos(

p
∑

i=1

kiωit) +Xs
[k1,k2,...,kp] sin(

p
∑

i=1

kiωit)) (2)

g(t,x(t)) =

Nh
∑

k1=−Nh

Nh
∑

k2=−Nh

...

Nh
∑

kp=−Nh

(Gc
[k1,k2,...,kp] cos(

p
∑

i=1

kiωit) +Gs
[k1,k2,...,kp] sin(

p
∑

i=1

kiωit)) (3)

whereXc
[k1,k2,...,kp], X

s
[k1,k2,...,kp], G

c
[k1,k2,...,kp] andGs

[k1,k2,...,kp] define the Fourier coefficients of order[k1, k2, ..., kp]
for the quasi-periodic responsex(t) and the global excitationg(t,x(t)) respectively. A definition given by Kim and Choi [11]
for retainingNh harmonics in a multiple Fourier series can be given in the following form

∑p

i=1 |ki| ≤ Nh. For the reader
comprehension, it can be noted that all harmonics at negative combination frequencies can be replaced by harmonic termsat
positive combination frequencies due to the trigonometricrelation [8]. So it may be concluded that only terms at positive
combination frequencies can be retained in the nonlinear response and nonlinear force expression. So, the previous expression
(2) can be rewritten in a condensed form:

x(t) =
∑

k∈Zm

(Xc
k cos(k.ωt) +Xs

k sin(k.ωt)) (4)

where the (.) denotes the dot product,k is the harmonic number vector of each frequency direction,m defines the dimension
of the final multi-dimensional basis wherekj (with j = 0, ...,m) represents thejth harmonic terms andω is the vector ofm
incommensurable frequencies considered in the solution ofthe nonlinear system. So,Xc

k andXs
k define the unknown Fourier
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coefficients of any linear combinations of the incommensurable frequency components for the quasi-periodic response of the
nonlinear system.
Then, it can be observed that the global excitationg(t,x(t)) can also be expressed in the following form

g(t,x(t)) =
∑

k∈Zm

(Gc
k cos(k.ωt) +Gs

k sin(k.ωt)) (5)

For convenience, it is wise to deal with a non-dimensional time parameterT of dimensionp. It refers to the hyper-time concept
T = [T1, ..., Tp] = ωt [12]. Considering this last relation, Equation (4) can be rewritten by considering an equivalent function
x̂(t) of p time variables in ap-dimensional time domain:

x(t) = x̂(T) = x̂(ωt) (6)

This last equation is2π periodic on every hyper-time dimension ofT. Substituting expressions (4) and (5) in the equation of
motion of the system (1), it can be rewritten in the form of a linear algebraic matrix equation system :

LX = F+ Fnl(X) (7)

whereL is defined byL = diag(K,L1, ...,Lm) with

Lj =

[

K− (kj.ω)2M kj.ωC

−kj.ωC K− (kj.ω)
2M

]

(8)

ThenX, F andFnl denote the unknown vector of harmonic coefficients, the projection of the external forces and the nonlinear
part, respectively. They are given by respectively

X = [XcT
k0

XcT
k1

XsT
k1

... XcT
km

XsT
km

]T (9)

F = [FcT
k0

FcT
k1

FsT
k1

... FcT
km

FsT
km

]T (10)

Fnl = [Fc
nl

T
k0

Fc
nl

T
k1

Fs
nl

T
k1

... Fc
nl

T
km

Fs
nl

T
km

]T (11)

It may be difficult to determine the Fourier coefficients of the nonlinear termsFnl directly due to the complexity of the nonlin-
earities. In computational applications, the idea of the AFT method is to use Discrete Fourier Transformation (DFT) to derive
the Fourier components of the nonlinear forces for given displacements in the frequency domain. So the generalization of the
Alternating Frequency Time process [13, 14] to a p-dimensional frequency domain with a p-dimensional DFT is performed to
calculate the Fourier coefficients of the nonlinear termsFnl. The following diagram illustrates this procedure:

X
IDFT−−−→ x(t) −−→ Fnl

DFT−−→ fnl(t) (12)

By rewriting the vector of them incommensurable frequenciesω in the following formω = ω1[1, α2, ..., αp] = ω1α whereαi

are irrational numbers, the linear algebraic matrix equation system (7) is given by

(I0+ ω1I1+ ω2
1I2)X = F+ Fnl (13)

whereI0, I1 et I2 are defined by

I0 = diag(K, I01, ..., I0m) ; I1 = diag(0, I11, ..., I1m) ; I2 = diag(0, I21, ..., I2m) (14)

with

I0j =

[

K 0

0 K

]

; I1j =

[

0 kj.αC

−kj.αC 0

]

; I2j =

[

−(kj.α)2M 0

0 −(kj.α)2M

]

(15)

2.1.2 Path following: continuation

In mechanical systems, it may be useful to track the evolution of the system behavior for different operational points ofinterest
while all the other parameters are kept constant. In this case, it may be useful to apply predictor and corrector mechanisms in
order to estimate the nonlinear response as one of its parameter varies (for example the evolution of the excitation frequency of
the system).
The predictor-correctormethod, called continuation algorithm, is an algorithm that proceeds in two steps. It includes an algorithm
to find the predicted points for the next solution by using thepredictor, and another algorithm to obtain solutions from these
predicted points using the corrector. Various techniques and numerical procedures exist for these two steps. In this section,
we propose to give an overview of the most classical methods for both the predictor and corrector methods [8]. We focus on
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the resolution of the nonlinear system given by Equation (7). This resolution corresponds to the minimization of a function H

defined by

H(X, ω1) = LX − F− Fnl(X) (16)

In the following part of the paper, thenth converged point is defined byy(n) = (X(n), ω1
(n)), the predicted point is denoted by

y(n+1,0) = (X(n+1,0), ω1
(n+1,0)), and thejth corrected point is defined byy(n+1,j) = (X(n+1,j), ω1

(n+1,j)).
The predictor-corrector method needs a prediction distance denoted∆s that defines the distance between two consecutive

points. Classically, the following approximation of the curvilinear abscissa can be proposed

∆s(n+1) =
√

(X(n+1) −X(n))T (X(n+1) −X(n)) + (ω1
(n+1) − ω1

(n))2 (17)

The value of this distance∆s must be adjusted automatically and optimized according to changes (more or less abrupt) of the
nonlinear response curve. In regions of high curvature, it will be necessary to reduce the prediction distance to betterestimate
the next solution of the system. On the contrary, in the case of an solution that does not change significantly with changesin the
control parameter, the prediction distance may be increased to accelerate the calculations while keeping a good estimate of the
solution [8].

Firstly, the predictor is intended to find the predicted point for the next solution by calculating a rough approximationof
the desired quantity. The predicted points are found on an extension of the vector (i.e. direction and distance) connecting the
current solution and the previous solution. It may be noted that the quality of the predictor governs the number of corrector
iterations required to obtain accurate solutions. The concept of the most classical predictors (tangent predictor, secant predictor
and Lagrange polynomials predictor) are illustrated in Figure 1.
The secant method is defined by the recurrence relation

y(n+1,0) = y(n) +∆s
y(n) − y(n−1)

‖y(n) − y(n−1)‖ (18)

As can be seen from the iteration process, the secant method requires two initial values,y(n) andy(n−1), which should ideally be
chosen to lie close to the root. The secant method assumes that the function is approximately linear in the local region ofinterest
and the algorithm may not converge for functions that are notsufficiently smooth.
The tangent method uses only one initial valuey(n). However, the evaluation of derivatives has to be performedin order to
calculate tangent vector

−→
t = (

−→
tX, tω1

) to the curve at the pointy(n). The tangent method is defined by the relation

y(n+1,0) = y(n) +∆s
−→
t (19)

If we compare this process with the secant method, we see thatthe tangent method requires the evaluation of both the function
and its derivative at every step, while the secant method only requires the evaluation of the function. Therefore, the secant
method may occasionally be faster in practice. The predictor of Lagrange polynomials is a linear combination of Lagrange basis
polynomials. This predictor uses Lagrange polynomialsPd of degreed to extrapolate the curve defined by thed + 1 previous
points. The estimation of the following point can be predicted by the relation

Pd(s) =
∑

k0=0

( d
∏

k=0
k 6=k0

s− s(i−k)

s(i−k0) − s(i−k)

)

y(i−k0) (20)

wheres(k) denotes curvilinear abscissa of pointy(k). The predicted pointy(n+1,0) of curvilinear abscissa∆s is calculated by
the relation

y(n+1,0) = Pd(∆s) (21)

Secondly, we consider the corrector in the predictor/corrector method. The corrector step refines the initial approximation,
using the predicted points obtained by the predictor as initial values. For the reader comprehension, the converged solution
satisfies the relationH(X, ω1) = 0 instead of the predicted solution. So, the objective of thissecond step is to obtain the
converged solution from the predicted point. The concept ofthe most classical correctors (arc length, pseudo arc length and
Moore-Penrose) are illustrated in Figure 1.
The arc length method proposes to add an additional constraint between the corrected pointy(n+1,j) and the previous converged
pointy(n). The distance condition is defined by the following relation

∀j ≥ 1, ‖X(n+1,j) −X(n)‖2 + |ω1
(n+1,j) − ω1

(n)|2 = (∆s(n+1))2 (22)
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(a) (b) (c)

(d) (e) (f)

Fig. 1: Predictors and corrections (a) Secant method (b) Tangent method (c) Lagrange polynomials (d) Arc length (e) Pseudo arc
length (f) Moore-Penrose.

The pseudo arc length method adds an orthogonality condition between the predicted pointy(n+1,0) − y(n) and the corrected
points∆y = y(n+1,0) − y(n+1,j). This constraint is given by

∀j ≥ 1,∆y.(y(n+1,0) − y(n)) = 0 (23)

After calculations, this constraint can be written in the following form

∆X.(X(n+1,0) −X(n)) + ∆ω1.(ω1
(n+1,0) − ω1

(n)) = 0 (24)

where∆X and∆ω1 define the corrections forX andω1. The Moore-Penrose method allows to solve the system by using
the Moore-Penrose pseudo-inverse matrix ofA defined byA+ = AT (AAT )−1. The pseudo-inverse provides a least squares
solution to a system of linear equationsAx = b whereA has less rows than columns. Using this Moore-Penrose correctors, an
additional orthogonality condition with the kernel of matrix A is implicitly added. This fact is illustrated in Figure 1(f)wherekj
defines the kernel for thejth step of the corrector.

In the present study, the tangent and arc length methods willbe used as predictor and corrector for the coupling of the
Monte-Carlo simulations and Multi-Harmonic Balance Method.

2.2 Stochastic Multi-dimensional Harmonic Balance Method

Figure 2 represents the general algorithm procedure of the Stochastic Multi-dimensional Harmonic Balance Method thatwill be
discussed and detailed in the next sections of the paper.

2.2.1 The stochastic nonlinear problem

Several excitations and materials parameters can be considered as random. Here, we retain for random quantities : mass,damping
and rigidity parameters as well as the linear and nonlinear excitation terms respectivelỹM(τ), C̃(τ), K̃(τ), F̃(τ) andF̃nl(τ),
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Equation of motion
Mẍ + Cẋ + Kx = f + fnl(x)

Fourier and Stochastic expressions

X = [XcT
k0

X
cT
k1

X
sT
k1

... XcT
km

X
sT
km

]T and X̃ =
∑Np

j=0 XjΨj(ξ(τ))

L̂X̂ = F̂ + F̂nl(X̂)

Initialisation

X̂(τ)ini, ω̃(τ)ini

Point

X̂(i), ω̃(i)

Condensation

[X̂p

(i), X̂
q

(i)]

New point
(i)− > (i + 1)

Non-linear Efforts (AFT-PC)

X̃(τ)
n Gauss points
−−−−−−−−−→ {X}n

IDFT
−−−→ {x(t)}n

↓

F̃nl(τ)
projection on Ψj

←−−−−−−−−−− {Fnl}n
DFT
←−−− {fnl(t)}n

Evaluation of the function

H(X̂) = L̂X̂− F̂− F̂nl(X̂)

Minimisation

||H(X̂)|| < ε

X̂ = [XT
0 X

T
1 ... XT

Np]
T

Non-linear stochastic response

X̃ =
∑Np

j=0 XjΨj(ξ(τ))

Fig. 2: General algorithm procedure for the Stochastic Multi-dimensional Harmonic Balance Method

whereτ designates the random character. The dynamic equation of the system can be written in the stochastic domain as :

(Ĩ0(τ) + ω1Ĩ1(τ) + ω2
1 Ĩ2(τ))X̃(τ) = F̃(τ) + F̃nl(τ) (25)

with

Ĩ0(τ) = diag(K̃(τ), ˜I01(τ), ..., ˜I0m(τ)) ; Ĩ1(τ) = diag(0, ˜I11(τ), ..., ˜I1m(τ)) ; Ĩ2(τ) = diag(0, ˜I21(τ), ..., ˜I2m(τ))
(26)

˜I0j(τ) =

[

K̃(τ) 0

0 K̃(τ)

]

; ˜I1j(τ) =

[

0 kj.αC̃(τ)

−kj.αC̃(τ) 0

]

; ˜I2j(τ) =

[

−(kj.α)2M̃(τ) 0

0 −(kj.α)2M̃(τ)

]

(27)

Firstly, the uncertain material parameters and the uncertain forces are expanded using the Karhunen-Loeve expansion [15]
with the Galerkin formulation of the finite element method [5] as following

Z̃(τ) = Z+
L
∑

l=1

ξl(τ)Zl (28)
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whereZ̃(τ) is M̃(τ), C̃(τ), K̃(τ) or coefficients in the uncertain forces. Then, for each uncertain quantity, we have one or
several independent Gaussian random variables{ξl(τ)}. Finally, Z designates the mean of quantityZ̃ andZl is thelth term of
the Karhunen-Loeve expansion.

The stochastic dynamic responseX̃(τ) is expanded on the Polynomial Chaos basis [5]. This method isfounded on the theory
of the Homogeneous Chaos [16] that express uncertainties via orthogonal polynomials. Random response is given by

X̃(τ) =

∞
∑

j=0

XjΨj(ξ(τ)) (29)

whereΨj(ξ(τ)) designates the polynomials of the basis withξ(τ) the random vector andXj the deterministic coefficient to be
found. In this study, the uncertain parameters will follow the Gaussian law, consequently the polynomials considered are the
Hermite polynomials. If the positive value is required for the quantity then random quantity will be truncated to positive values.
Besides, expression (29) will be truncated to a finite numberNp for the numerical study.Np is the number of polynomials

defined byNp = (p+r)!
p!r! wherer is the number of random variables andp is the chaos order. The truncated form is given by

X̃(τ) =

Np
∑

j=0

XjΨj(ξ(τ)) (30)

In the following, we will retain the truncate form of the modeling for the expansions used on the uncertain parameters.
The Karhunen-Loeve expansion for all material quantities and for forces coefficients, given by Equation (28), introduced in a

more global quantity•j asI0j for the mass,I1j for the damping,I2j for the rigidity, orFj andFnlj for the forces, and identified
on the whole basis defined by vectorξ(τ), yields the more global random quantity to be written as:

•̃j(τ) =
∞
∑

j=0

•jΨj(ξ(τ)), (31)

Quantity•j will be detailed in the next sections for each uncertain quantity of the problem.
The expansion given in Equation (31) (and truncated to a finite number) alone is not sufficient to solve nonlinear problems
which include returning point (i.e. phenomena of reversal curve of the Frequency Response Function). We then need to consider
parameter̃ω1 as random and then expand this new unknown on the chaos basis.It will allow to describe the envelopes of the
response of the system and especially in the vicinity of the returning points. Then, we propose the following expansion :

ω̃1(τ) =

Np
∑

j=0

ω1jΨj(ξ(τ)) (32)

whereω1j are the deterministic coefficients to find. It leads Equation(25) to be rewritten as following

( Np
∑

i=0

I0iΨi

)( Np
∑

j=0

XjΨj

)

+

( Np
∑

i=0

I1iΨi

)( Np
∑

j=0

XjΨj

)( Np
∑

k=0

ω1kΨk

)

+

( Np
∑

i=0

I2iΨi

)( Np
∑

j=0

XjΨj

)( Np
∑

k=0

ω1kΨk

)( Np
∑

l=0

ω1lΨl

)

=

Np
∑

j=0

FjΨj +

Np
∑

j=0

FnljΨj (33)

and which, when projecting on{Ψm}Np
m=0 basis, is:

Np
∑

i=0

Np
∑

j=0

〈ΨiΨjΨm〉I0iXj+

Np
∑

i=0

Np
∑

j=0

Np
∑

k=0

〈ΨiΨjΨkΨm〉I1iXjω1k

+

Np
∑

i=0

Np
∑

j=0

Np
∑

k=0

Np
∑

l=0

〈ΨiΨjΨkΨlΨm〉I2iXjω1kω1l = (Fm + Fnlm)〈Ψ2
m〉 (34)

for m = 0, 1, ..., Np and where〈.〉 is the mathematical expectation.
Finally, we obtain the following nonlinear system to solve

L̂X̂ = F̂+ F̂nl(X̂) (35)

of size(2m+ 1)×Np× nDOF and having(2m+ 2)×Np× nDOF unknowns where

L̂jm =

Np
∑

i=0

〈ΨiΨjΨm〉I0i +

Np
∑

i=0

Np
∑

k=0

〈ΨiΨjΨkΨm〉I1iω1k +

Np
∑

i=0

Np
∑

k=0

Np
∑

l=0

〈ΨiΨjΨkΨlΨm〉I2iω1kω1l j,m = 0, ..., Np (36)
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and

X̂ = [XT
0 XT

1 ... XT
Np]

T

= [(Xc
k0
)T0 (Xc

k1
)T0 (Xs

k1
)T0 ... (Xc

km
)T0 (Xs

km
)T0 ...

(Xc
k0
)TNp (Xc

k1
)TNp (Xs

k1
)TNp ... (Xc

km
)TNp (Xs

km
)TNp]

T (37)

F̂ = [FT
0 〈Ψ2

0〉 FT
1 〈Ψ2

1〉 ... FT
Np〈Ψ2

Np〉]T

= [
(

(Fc
k0
)T0 (Fc

k1
)T0 (Fs

k1
)T0 ... (Fc

km
)T0 (Fs

km
)T0

)

〈Ψ2
0〉 ...

(

(Fc
k0
)TNp (Fc

k1
)TNp (Fs

k1
)TNp ... (Fc

km
)TNp (Fs

km
)TNp

)

〈Ψ2
Np〉]T (38)

It should be noted that moments〈Ψ2
m〉, 〈ΨiΨjΨm〉, 〈ΨiΨjΨkΨm〉 and〈ΨiΨjΨkΨlΨm〉 can be computed by using a Gauss-

Hermite quadrature technique or analytically and only oncefor the whole problem. For the dynamic response and the linear
forces components (i.e.(Xc

k)m, (Xs
k)m, (Fc

k)m, (Fs
k)m), the subscriptk refers to MHBM order and the second subscript

m refers to PCE order.
The nonlinear stochastic term̂Fnl is defined as

F̂nl = [Fnl
T
0 〈Ψ2

0〉 Fnl
T
1 〈Ψ2

1〉 ... Fnl
T
Np〈Ψ2

Np〉]T (39)

whereFnlj is evaluated via an Alternate Frequency-Time method with Probabilistic Collocation described in the following
section.

To solve this nonlinear system of size(2m + 1) × Np × nDOF and having(2m + 2) × Np × nDOF unknowns, a phase
condition between the stochastic response and the deterministic response is added. This condition can be formulated asfollowing

km
∑

k=k0

diag(Xc
k ⊗ (Xs

k)i −Xs
k ⊗ (Xc

k)i) = 0 (40)

for i = 0, ..., Np. ⊗ defines the tensorial product.

2.2.2 Alternate Frequency-Time method with Probabilistic Collocation (AFT-PC method)

As previously explained in Section 2.1, the Alternate Frequency Time (AFT) method allows to derive the Fourier components
of the nonlinear forces as a function of the Fourier components of displacements in deterministic case. However, this procedure
is not applicable in the case of stochastic problem with non regular nonlinearities due to the fact that it is not possibleto obtain
analytical expressions of the nonlinear forces in the stochastic domain neither in the time domain.
Consequently, it is necessary to calculate by another way than analytically unknown coefficientsFnlj of Equation (31). The
complete process named Alternate Frequency-Time method with Probabilistic Collocation to evaluate of the nonlinear force on
the chaos basis and based on the combination of the AlternateFrequency Time and Polynomial Chaos methods is presented
hereafter.
First of all, the unknown coefficientsFnlj of Equation (31) are defined by

Fnlj =
〈F̃nl(τ)Ψj(ξ)〉
〈Ψ2

j(ξ)〉
(41)

which is in fact given by the inner product

〈a(ξ)Ψj(ξ)〉 =
∫

Ω

a(ξ)Ψj(ξ)p(ξ)dξ (42)

with p(ξ) the probability density ofξ.
This integral can be evaluated by the Probabilistic Collocation (PC) method using a Gauss quadrature [1] such as

〈a(ξ)Ψj(ξ)〉 =
n
∑

i=1

w(ξ
i
)a(ξ

i
)Ψj(ξi) (43)

whereξ
i

are the Gaussian variables at collocationi, n is the locations number andw is the weight function defined, in the case
of Gaussian random variables, by

w(ξ) =
1√
2π

r e
− ξtξ

2 (44)
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wherer is the vector sizeξ that is the random variables number of the problem. Then Equation (41) is given by

Fnlj =
〈F̃nl(τ)Ψj(ξ)〉
〈Ψ2

j (ξ)〉
=

∑n

i=1 w(ξi)F̃nl(ξi)Ψj(ξi)
∑n

i=1 w(ξi)Ψ
2
j(ξi)

(45)

So, we propose an extension of the Alternate Frequency Time method to evaluate the expressions of the nonlinear forces for
stochastic problems. The methodology is based on the combination of the AFT and PC methods by using projection not only on
the frequency basis but also on the chaos basis.
Let’s start fromX̃(τ), the stochastic dynamic response of the nonlinear system (the size of the vector̃X(τ) is (2m+ 1) ×
Np × nDOF ), expanded on the Polynomial basis. Using, an IDFT (InverseDiscrete Fourier Transform) procedure,n Gauss
locations, one can evaluate the harmonic components of the response{X}n in the frequency domain (the size of the vector
{X}n is (2m+ 1) × nDOF ). Then, one can express the associated displacements{x(t)}n in the time-domain (the size of the
vector{x(t)}n is nDOF ) by using an IDFT (Inverse Discrete Fourier Transform) procedure. At this stage of process, we can
note that the velocities{ẋ(t)}n and accelerations{ẍ(t)}n of the response can also be calculated.

Then using the analytical expression of the nonlinear force(or a nonlinear operator) in time-domain (see expressions given
in Equations (52), (53) and (54) as described in the next section for the current study), one can estimate the associated nonlinear
expressions{fnl(t)}n of the system (the size of the vector{fnl(t)}n is nDOF ). Then, the DFT (Discrete Fourier Transform)
algorithm allows the calculation of the harmonic components {Fnl}n of the nonlinear force in the frequency domain. Finally,
the random vector̃Fnl(τ) for the nonlinear force can be obtained by the expansion on the chaos basis Equation (31) (i.e.
F̃nl(τ) =

∑Np

j=0 FnljΨj(ξ(τ)) whereΨj(ξ(τ)) designates the polynomials of the basis). The size of the vector F̃nl(τ) is
(2m+ 1) × Np × nDOF . The following diagram illustrates both the Alternate Frequency-Time method with Probabilistic
Collocation:

X̃(τ) =
∑Np

j=0 XjΨj(ξ(τ))
evaluation−−−−−−−−−→

n Gauss locations
{X}n IDFT−−−→ {x(t)}n

↓
F̃nl(τ) =

∑Np

j=0 FnljΨj(ξ(τ))
projection onΨj←−−−−−−−−− {Fnl}n DFT←−− {fnl(t)}n

It can be observed that the harmonic components of the response{X}n in the frequency domain is an approximation of the
“exact” value ofX due to the evaluation vian Gauss points. So, increasing the number of Gauss points allows a better estimation
of the harmonic components of the response{X}n in the frequency domain (i.e. a minimization of errors between the vector
{X}n and the unknown quantityX). Moreover, it can be noted that the vector of displacements{x(t)}n and the vector of the
nonlinear forces{fnl(t)}n in the time-domain and the harmonic components{Fnl}n of the nonlinear force in the frequency
domain are also approximated expressions of the “exact” values ofx(t), fnl(t) andFnl due to the previous process.

2.2.3 Condensation process for the stochastic nonlinear problem

As previously explained by Sinou [17, 14], if a nonlinear deterministic system consists of an-degree-of-freedom system with
nonlinear forces associated withq of these degrees-of-freedom, it may be of great interest to keep only theq nonlinear degrees-of-
freedom. The classical procedures of condensation on the nonlinear degrees-of-freedom developed to treat this type ofproblem
are still applicable to the stochastic problem. So, the previous nonlinear Equation (35) is transformed by

[

L̂ln,ln L̂ln,nl

L̂nl,ln L̂nl,nl

](

X̂ln

X̂nl

)

=

(

F̂ln

F̂nl

)

+

(

0

F̂nl

)

(46)

whereX̂ln andX̂nl contain then − q linear degrees-of-freedom and theq nonlinear degrees-of-freedom, respectively. Here,
we do not present the condensation procedure used to obtain the Fourier coefficients associated with the nonlinear and linear
elements of the complete system. We refer the interested reader to the following paper [14] for more details.
After calculations, the determination of the Fourier componentsX̂nl associated with the nonlinear elements can be obtained by
considering the following condensed system

L̂eqX̂nl = F̂nl + F̂eq (47)

with

L̂eq = L̂nl,nl − L̂nl,lnL̂
−1
ln,lnL̂ln,nl ; F̂eq = F̂nl − L̂nl,lnL̂

−1
ln,lnF̂ln (48)

It should be noted that for a general nonlinear system, certain linear degrees-of-freedom of the vectorX̂ln can be transferred to
the vectorX̂nl of the nonlinear degree-of-freedom without loosing the general process presented previously. This operation can
be very interesting if keeping the physical linear degree-of-freedom is necessary for the study.
Moreover, the same condensation process can be applied to the linear elements. After calculation, we obtain the following
relations

L̂ln,lnX̂ln = F̂ln − L̂ln,nlX̂nl (49)
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3 Numerical studies

In this section, in order to verify the suitability of the proposed approach, we will present numerical example cases fora nonlinear
two-degrees-of-freedom model with different types of nonlinearities and uncertainties.

3.1 Description of the nonlinear model under study

Figure 3 shows the nonlinear two-degrees-of-freedom modelto be used in the following. This minimal two-degrees-of-freedom
model is chosen due to its simplicity and to better understand the effects of uncertainties of various physical parameters including,
more specifically, the nonlinear elements of the system.
The equations of motion take the following form for this system:

[

m 0
0 m

](

ẍ1

ẍ2

)

+

[

2c −c
−c 2c

](

ẋ1

ẋ2

)

+

[

2k −k
−k 2k

](

x1

x2

)

=

(

f1 cos(ω1t)
f2 sin(ω2t)

)

+

(

fnl1
fnl2

)

(50)

Two cases will be investigated for the excitation of the system. The first one considers only one excitation of frequencyω1 (with
f2 sin(ω2t) = 0). So the response of the nonlinear system is represented as truncated Fourier series withω1 the fundamental
frequency. The second one considers that the global excitation of the system is composed by two external incommensurable
frequenciesω1 etω2 with

ω2

ω1
=

1√
2

(51)

Therefore the vector of the frequency basis is given byω = [ω1 ω2]
T andk = [k1, k2]. So the bi-periodic motion of the

nonlinear system is an equivalent function of 2 time variables in a 2-dimensional time domain and it covers the invarianttorus in
the phase space [7, 12].
fnl1 and fnl2 define the nonlinear contributions applied to the mechanical system. In the present study, various numerical
examples will be conducted. These cases were chosen to demonstrate the robustness and efficiency of the stochastic nonlinear
method with respect to various types of nonlinearity (regular or non-regular).
The first one consider a cubic polynomial nonlinearity (see Figure 3(c)) given by

fnl1(t) = −knlx3
1(t) (52)

whereknl defines the cubic nonlinear term andx1(t) is the temporal displacement for the first degree-of-freedom.
Secondly, a non-regular nonlinearity with contact to no-contact states is investigated (see Figure 3(d)). The restoring force can
be estimated by the following relation

{

fnl1(t) = −k1x1(t) if |x1(t)| ≤ xlim

fnl1(t) = −k2x1(t) + sign(x1(t))(k2 − k1)xlim if |x1(t)| > xlim

(53)

wherek1 andk2 define effective stiffnesses andxlim represents the clearance value.
The last case considers the rubbing phenomena with frictiondissipation mechanism and stick-slip motion [18, 19], as illustrated
in Figures 3(b) and (e). The nonlinear forcesfnl1(t) due to friction is expressed, according to the Coulomb law, as:

{

fnl1(t) = −kf(x1(t)− z(t)) if adhesion state

fnl1(t) = −µPsign(ż(t)) if slip state
(54)

wherekf defines the contact stiffness,µ the constant friction coefficient,P the normal contact load, andz(t) is the relative
displacement of the contact point.
The values of the physical parameters are given in Table 1.

3.2 Uncertainties in system

The uncertain parameters considered in the problem are the following. As mentioned previously, they are expanded in a
Karhunen-Loeve expansion (Equation (28)) and the random variables are taken all as Gaussian variables.
First, the linear stiffness is taken as random and is defined as

k̃ = k(1 + δkξ1) (55)

whereξ1 is one Gaussian random variable. Quantityδk designates the variation coefficient of the random stiffness.
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Fig. 3: Two-degrees-of-freedom model with nonlinearities(a) 2 DOFs model (b) friction model (c) cubic stiffness; (d) contact;
(e) friction.

To validate the efficiency of the stochastic nonlinear method, the nonlinear parts of the two degree-of-freedom system will
also be random. For the first type of nonlinearity (cubic nonlinearity, see Figure 3(c)), we define a random nonlinear stiffness̃knl
following:

k̃nl = knl(1 + δknl
ξ2) (56)

For the second type of nonlinearity (contact and no-contactstates, see Figure 3(d)), we consider the parameterk̃2 that defines the
effective stiffness of the system in contact state as stochastic:

k̃2 = k2(1 + δk2
ξ3) (57)

Finally, in the frictional case (third nonlinear case, Figure 3(e)), the random parameter which seems the most interesting is
the friction coefficientµ. Indeed, this parameter can usually be unknown due to various operating conditions or tribological
phenomena such as wear. Then, we can expand this parameter as:

µ̃ = µ(1 + δµξ4) (58)
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Parameter Value

k 15000 N.m−1

m 1 kg
c 1 N.m−1.s−1

f1 1 N
f2 1 N
kf 3000 N.m−1

P 10 N
k1 5.10−4 N.m−1

k2 5.103 N.m−1

Tab. 1: Parameter values

Case δk knl (N.m− 1

3 ) δknl k2 (N.m−1) δk2 µ δµ HBM order HBM dim PCE order

1 2.5% 5.108 - - - - - 3 1 3
2 - 5.108 10% - - - - 3 1 3
2bis - 5.109 10% - - - - 3 1 3
2ter - 5.1010 10% - - - - 3 1 3
3 - - - 5.103 5% - - 1 1 3
4 - - - - - 0.3 5% 1 1 3
4bis - - - - - 0.4 5% 1 1 3
4ter - - - - - 0.5 5% 1 1 3
5 2.5% - - 5.103 5% - - 1 1 3
6 2.5% - - 5.103 - - - 1 2 3
7 - - - - - 0.4 5% 1 2 3

Tab. 2: Sets of parameters for the case studies

3.3 Results

In this section, the relevance of the proposed Stochastic Multi-dimensional Harmonic Balance Method is demonstrated through
different sets of parameters for which uncertainty values are given in Table 2. Information concerning the order of chaos, the
order of the truncated Fourier series and the type of nonlinearities are also given in this table.
Regarding the types of excitation applied to the two-degree-of-freedom system, we will first treat the case of mono-frequency
excitationω1 (for cases 1, 2, 2bis, 2ter, 3, 4, 4bis, 4ter and 5) and then twocases (case 6 and 7) with two external incommen-
surable frequenciesω1 et ω2 (with ω2

ω1

= 1√
2
). All the results are presented for the second degree-of-freedomx2. For the case

with a mono-frequency excitation, the general Stochastic Multi-dimensional Harmonic Balance Method will be restricted to the
Stochastic Harmonic Balance Method that corresponds to thesimplification of the Stochastic-MHBM with only one-dimensional
excitation.

To validate the Stochastic Multi-dimensional Harmonic Balance Method, all the calculations are compared to those obtained
from the combination of the classical deterministic Multi-dimensional Harmonic Balance Method that has been previously val-
idated in [10, 14] and the Monte Carlo simulations. Figure 4 represents the global computational procedure for both the Monte
Carlo simulations and the Stochastic Multi-dimensional Harmonic Balance Method. For the reference solutions{X}i(MCS) (for
i = 1, . . . , N ) computed from the Monte Carlo simulations with the deterministic Multi-dimensional Harmonic Balance Method,
N samples of the random vector

{

ξ(τ)
}

i
(for i = 1, . . . , N ) are considered. The number of samplesN is taken equal to 1000

for the present study. As indicated in Figure 4, the results obtained via of the Stochastic Multi-dimensional Harmonic Balance
Method that are expressed on the basis of chaos are post-processed using the formulation of the truncated stochastic dynamic
responsẽX(τ) given in Equation (30). The same samples

{

ξ(τ)
}

i
are then used for the evaluation of Hermite polynomials as in-

dicated in Figure 4. This allows us to obtain the nonlinear solutions
{

X̃
}

i(Stochastic-HBM)
(for i = 1, . . . , N ) that will be compared

to the previous reference solutions{X}i(MCS). We recall that the stochastic dynamic responseX̃(τ) given in Equation (30)
has been previously calculated via the Stochastic Multi-dimensional Harmonic Balance Method without specification ofthese
samples.

For all results, the order of chaos is set at 3 due to the fact that preliminary studies, not presented here, for various orders of
chaos led to the conclusion that an order 3 is sufficient for each case.
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N samples
{ξ(τ)}i

for i = 1, ..., N

Stochastic Multi-Dimensional
Harmonic Balance Method
(see previous algorithm)

X̂ = [XT
0 X

T
1 ... X

T
Np]

T

Evaluation of N values of Hermite polynomials
with

{

ξ(τ)
}

i
(for i = 1, . . . , N)

Monte Carlo Simulations
with Multi-Dimensional

Harmonic Balance Method
X̃ =

∑Np

j=0 XjΨj(ξ(τ))

Non-linear responses
{X}i(MCS)

for i = 1, ..., N

Non-linear responses

{X̃}i(Stochastic-HBM)

for i = 1, ..., N

Fig. 4: Computational procedure for both the Monte Carlo simulations and the Stochastic Multi-dimensional Harmonic Balance
Method

3.3.1 Case 1: uncertainty in the linear stiffness

For case 1, we consider a random variation ofδk = 2.5% for the stiffness properties of the mechanical system (as indicated in
Equation (55)). All the other physical parameters are kept deterministic and a mono-excitation of frequencyω1 is applied on
the nonlinear system. The nonlinear term is chosen of type cubic stiffness contribution in this first case. Figures 5 showthe
Frequency Response Functions for the random global nonlinear response and then× super-harmonic component (forn = 1 and
n = 3) for both Monte-Carlo Simulation and the Stochastic Harmonic Balance Method. A very good agreement is obtained
between the results from the MCS and the Stochastic-HBM. As expected, the random parameter influences not only the1×
response (see Figures 5(c,d)), but also the3× response (see Figures 5(e,f)). Even if uncertainty is introduced initially into
one linear term (i.e. linear stiffness of the system), due tothe nonlinear behavior of the system and the coupling between the
linear contribution and the nonlinear operator defined in Equation (52), uncertainty is also found on the nonlinear terms via
the Alternate Frequency-Time method with Probabilistic Collocation. Moreover, this first example illustrates the fact that the
Stochastic Harmonic Balance Method is able to predict variations of the global nonlinear response and then× super-harmonic
components around the reversal curve of the Frequency Response Function (between12Hz and14Hz as shown in Figures 5(a,b)
for the global nonlinear response and in Figures 5(c,d) and (e,f) for the1× and3× super-harmonic components, respectively). It
is recalled that this phenomena is only due to the hardening effect of the nonlinearity. This result of monitoring the evolution of
the random nonlinear response around the turning point is possible due to the fact that the pulsation frequency is considered to
be random, as previously introduced in Equation (32).

3.3.2 Cases 2, 2bis and 2ter: uncertainty in the nonlinear cubic stiffness

In this subsection, we are interested in the effect of variations on the cubic stiffness. We focus our attention on three cases
with different values of the mean cubic stiffnessknl (case 2:knl = 5.108N.m− 1

3 ; case 2bis:knl = 5.109N.m− 1

3 and case
2ter: knl = 5.1010N.m− 1

3 ). All the other physical parameters are kept deterministicand a mono-excitation of frequencyω1 is
applied on the nonlinear system. It is recalled that increasing the nonlinear cubic stiffness increases the hardening behavior of
the mechanical system (i.e. the Frequency Response Function shows a more curved peak frequency and a more abrupt turning
point). Variation ofδknl

= 10% on the cubic term is considered (as previously introduced inEquation (56)).
Figures 6 present the results obtained by the Stochastic-HBM and MCS approaches for the three cases (note that each curve

is indicated by the number of the associated cases 2, 2bis or 2ter in Figures 6(a) and 6(b)). In all cases, the nonlinear behavior
is mainly due to first harmonic component even if the3× harmonic component is visible around5Hz for case 2ter (with
knl = 5.1010N.m− 1

3 ). Moreover, Figure 6(d) clearly indicates that the3× harmonic component is not negligible: we can
see the appearance of peaks with more or less strong hardening effect for cases 2, 2bis or 2ter. The results obtained by MCS
approach for the1× and3× harmonic components are not presented in this paper due to the fact that they are similar to those
obtained by the Stochastic-HBM (given in Figures 6(c) and 6(d)).
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Then, Figure 7 shows a zoom of the evolutions of the random response of the1× and3× harmonic component around the first
frequency peak (between10Hz and16Hz). Some samples computed from the MCS and Stochastic-HBM areshown in Figure
7. We recall that the Stochastic-HBM results that are expressed on the basis of chaos are post-processed using the formulation
of the truncated stochastic dynamic response given in Equation (30)) with the samples previously used by the Monte-Carlo
simulations. The remarks previously stated remain valid: aperfect correlation between the Stochastic-HBM and MCS results
(for each random solution of then× harmonic components) is observed even if the hardening effect is very strong. These results
clearly demonstrate the efficiency of the Stochastic-HBM.
Finally, as illustrated in Figures 6 and 7, the response of the nonlinear system is not unique for some excitation frequencies.
Over a range of frequencies near the resonance, the system can take one of three possible response levels. For example, three
possible nonlinear responses with low amplitude or possible high amplitude coexist in the intervals[13; 17]Hz and[33; 55]Hz

for a given frequency. Here, we clearly show that the Stochastic-HBM approach is able to find the nonlinear solution in the
vicinity of the initial conditions (given by the previous calculation). So, all the FRF curve with low and high amplituderesponses
can be depicted by the Stochastic-HBM approach. Moreover, we see the evolution of the second resonance peak to the right
due to uncertainty in the nonlinear cubic stiffness. As previously explained, this phenomena reflects the fact that a variation
of the nonlinear cubic stiffness induces not only an evolution of the nonlinear response amplitudes but also a variationof the
fundamental frequency of the nonlinear system. This is one of the most difficult aspects to be captured by uncertainty methods
being applied to nonlinear systems. Here, it can be observedthat the Stochastic-HBM approach is able to find the response
amplitudes due to the fact that the pulsation frequency is considered to be random, as proposed in Equation (32). All thisresults
allows us to conclude on the robustness of the global Stochastic-HBM approach with the Alternate Frequency-Time methodwith
Probabilistic Collocation.

3.3.3 Case 3: uncertainty in the contact nonlinear stiffness

For case 3, the nonlinear term is chosen to be the contact/non-contact behavior and we are interested in the effect of a variation
on this nonlinear element ofδk2

= 5% (Equation (57)). All the other physical parameters are keptdeterministic and a mono-
excitation of frequencyω1 is applied on the nonlinear system.
Figures 8(a) presents the results obtained by the Stochastic-HBM approach. Zooms near the first and second resonance peaks
are illustrated in Figures 8(b) by applying the Stochastic-HBM and MCS approaches. As previously indicated in section 3.3.2,
only some samples computed from the MCS and Stochastic-HBM are compared. The remarks previously stated remain valid: a
perfect correlation between the Stochastic-HBM and MCS results (for each random solution of then× harmonic components) is
observed even if the hardening effect is very strong. These results clearly demonstrate the efficiency of the Stochastic-HBM.
These comparisons allow us to validate the methodology proposed in this study. As previously explained, we observed that a
variation of the contact nonlinear stiffness induces an evolution of the resonance frequency.
In the vicinity of the resonance peaks, one observes the classical behavior and characteristic of nonlinear systems with contact: a
break of slope of the resonance peak is observed due to the transition between the non contact state and contact state (seeFigures
8(b) for example). Moreover, variation of the contact stiffness induces a variability of the resonance frequency and a shift of the
resonance peaks to the right. Here again, using the Stochastic-HBM approach, it is possible to describe the multiple nonlinear
solutions with low or high amplitudes in the interval between [12.3; 13.3]Hz (see Figure 8(b), top figure) and[31.7; 31.9]Hz (see
Figure 8(b), bottom figure) for a given frequency. This demonstrates once again the effectiveness and robustness of the proposed
Stochastic-HBM approach.

3.3.4 Cases 4, 4bis and 4ter: uncertainty in the friction element

In this subsection, we focus our attention on the two-degree-of-freedom system with a the friction nonlinear element. As pre-
viously explained, one of the most interesting parameter tobe random is the friction coefficientµ. So we investigate the effect
of variations on the friction coefficientδµ = 5% on three cases with different values of the mean friction coefficient µ (case 4:
µ = 0.3 ; case 4bis:µ = 0.4 and case 4ter:µ = 0.5). All the other physical parameters are kept deterministicand a mono-
excitation of frequencyω1 is applied on the nonlinear system.
Figures 9 illustrated the Frequency Response Functions of the random global nonlinear response for cases 4, 4bis and 4ter by
applying the Stochastic-HBM. Zooms of the random nonlinearresponses (for only thirty selected samples) around the first and
second resonance peaks ([11.5; 14]Hz and[31; 34]Hz, respectively) for both the Stochastic-HBM and MCS methodsare plot-
ted in Figures 9(b,c,d) for different mean friction coefficients with the same uncertainty quantityδµ = 5%. By comparing the
Stochastic-HBM results with those estimated by Monte CarloSimulations, we can first notice that the efficiency of the Stochastic-
HBM approach is validated in the case of a nonlinear frictional element.
Then, we note the global progressive frequency shift of the resonance peaks due to the mean friction coefficient with the addi-
tional uncertainty quantityδµ = 5% (cases 4 to 4ter). This phenomenum reflects the fact the nonlinear effect of friction has
usually a softening effect on system dynamic.
So it can be concluded that all these results are consistent with the trends already known on the dissipative effects due to friction.
These cases also demonstrate the possibility of including uncertainties aspects to better characterize the dynamic behavior of
nonlinear systems with friction by using the Stochastic-HBM method.
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3.3.5 Case 5: uncertainties for both the linear stiffness and the contact nonlinear stiffness

In order to demonstrate the efficiency of the Stochastic-HBMprocedure described above, this subsection of the paper treats
the cases in which uncertain quantities come from two parameters studied previously: the first one concerns the stiffness with
the meank = 15000Nm−1 and a variation coefficient ofδk = 2.5%. The second uncertain quantity is the stiffness of the
contact/non-contact element with the mean stiffnessk2 = 5000Nm−1 and a variation coefficient ofδk2

= 5%. A mono-
excitation of frequencyω1 is applied on the nonlinear system.
We recall that in this case the cost of calculation may be greater than in the previous cases since it is directly linked to the number
of polynomials and consequently to the order of chaos and thenumber of random parameters.
Figures 10 illustrate all the Frequency Response Function samples for the nonlinear response amplitudes obtained by using the
MCS and Stochastic-HBM approaches. The results from both methods are in very good agreement. As explained previously
in sections 3.3.1 and 3.3.3, variations of physical parameters leads to changes for both the resonance peak frequenciesand the
dynamic response of the system around the peak frequencies.

In comparison with the previous results obtained in sections 3.3.3 and illustrated in Figures 8, it can be seen that the effects on
the response from uncertainties on the linear stiffness aregreater than those on the effective stiffness of the contactfor the values
of physical parameters given in Table 2 for cases 3 and 5. So even if the variation coefficient of the effective contact stiffnessδk2

is greater than the linear stiffnessδk, it may be concluded that the variations of nonlinear amplitudes are mainly due to the effects
of uncertainty on the linear stiffness. However, whatever the levels of uncertainty, it is recalled that the variation coefficient ofδk
affects also the nonlinear response of the system, as previously demonstrated in section 3.3.3.
In conclusion, this example demonstrated the robustness ofthe Stochastic-HBM approach when uncertain quantities come from
two parameters.

3.3.6 Case 6: uncertainty in the linear stiffness with incommensurable multi-excitations

For this case, the two-degree-of-freedom system is subjected to two external incommensurable frequenciesω1 et ω2 (with
ω2

ω1

= 1√
2
). The two-degree-of-freedom has a deterministic effective contact stiffness (i.e.k2 = 5.103Nm−1) and a varia-

tion coefficient ofδk = 2.5% for the stiffness of the mechanical system.
At first, we propose to focus on the overall quasi-periodic response of the system. Figure 11(a) and 11(b) illustrate the global
nonlinear amplitudes obtained by using the MCS and the Stochastic-MHBM, respectively. We can note an important variation
of all the resonance frequencies and the associated amplitudes.
To better visualize these results and to propose a more detailed analysis of the contribution of each order[k1, k2], the responses
of orders[k1, k2] = [0, 1] and[k1, k2] = [1, 0] are given in Figures 11(c,d) and 11(e,f), respectively. We notice a similar enlarge-
ment of the operating area for all the contributions of orders. This fact can be explained by the addition of uncertainty on the
linear stiffness that induces a relatively similar effect to the responses of different orders[k1, k2] = [1, 0] and[k1, k2] = [0, 1],
as indicated in Equation (35). As previously explained in section 3.3.3, the classical characteristic of a nonlinear system with
contact is observed: a break of slope of the first and second resonance peaks (around[11.8; 12.4]Hz and [16.4; 17.7]Hz) is
observed due to the transition between the non contact stateand contact state. The same phenomena is also visible for thethird
peak resonances at32Hz with a less marked feature. For these three resonance peaks,uncertainty in the linear stiffness of the
two degree-of-freedom induces a variation of the resonancefrequency and a shift of the three resonance peaks to the right. Here
again, using the Stochastic-MHBM, it is possible to describe the three possible nonlinear responses due to the hardening effect,
with low or high amplitudes in the interval between[12.4; 13.1]Hz and[17.7; 18.7]Hz for a given frequency.
The comparison of the random nonlinear response from the Stochastic-MHBM (with AFTPC) and the reference one evalu-
ated by the simulations of Monte-Carlo and the Multi-dimensional Harmonic Balance method, validates the Stochastic-MHBM
methodology for a mechanical system with non-regular nonlinearity and subjected to two incommensurable multi-excitations.

3.3.7 Case 7: uncertainty in the friction element with incommensurable multi-excitations

For case 7, the nonlinear term is chosen to be the frictional interface (as previously indicated in section 3.3.4) and we investigate
the effect of a variation on the friction coefficientδµ = 5% with the mean value of the friction coefficientµ = 0.4. All the other
physical parameters are kept deterministic and the multiple excitation of incommensurable frequenciesω1 etω2 (with ω2

ω1

= 1√
2
)

is applied on the system.
Figure 12(a,c,e) show the results for the nonlinear quasi-periodic responses and the responses of orders[k1, k2] = [0, 1] and
[k1, k2] = [1, 0] by applying the Stochastic-MHBM (with AFTPC). Zooms are plotted in Figures 12(b,d,f) with adding the
Monte Carlo simulations. As previously explained in section 3.3.2, only some samples are plotted that shows in Figures 12(b,d,f)
the correlation between the MCS and Stochastic-HBM results. Due to the frictional nonlinear element, a softening effect with a
small shift of the first and second resonance peaks (at12Hz and17Hz) is detected. Once again, this observation is consistent
with the trends already known on the dissipative effects dueto friction. As previously observed in section 3.3.4, uncertainty on
the coefficient of friction induces small variation for boththe response amplitudes of all harmonic components and the associated
frequencies.
The remarks previously stated on the efficiency and robustness of the proposed Stochastic-MHBM remain still valid in thecase
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of the two degree-of-freedom with uncertainty in the nonlinear frictional interface and subjected to multiple incommensurable
frequencies: this allows us to conclude on the robustness ofthe Stochastic-MHBM with AFTPC to estimate the random quasi-
periodic response and overall contributions of harmonics.

4 Conclusion

In this paper, a study devoted to calculating the random nonlinear dynamical response of a two degree-of-freedom systemwith
regular and non-regular nonlinearities is presented. Due to the fact that the use of classical methods for nonlinear systems with
uncertainties can be rather expensive and requires considerable resources both in terms of computation time and data storage,
a new concept called the Stochastic Multi-dimensional Harmonic Balance (Stochastic-MHBM) is proposed and discussed.The
main originality and objective of this technique are to extract the quasi-periodic stochastic behavior of mechanical systems by
using approximations. The principal idea is to replace the stochastic nonlinear responses and the stochastic nonlinear forces in the
dynamical systems by constructing linear functions such asFourier series on the chaos basis. The comparison of the results from
this stochastic nonlinear approach and the reference one, combining the simulations of Monte Carlo and the Multi-dimensional
Harmonic Balance method, for different cases of uncertainties, validates the proposed methodology. In particular, itwas shown
that the process is able to capture all the possible responselevels when the response of the nonlinear system is not unique.

In conclusion, the proposed method offers a powerful technique for nonlinear systems with uncertainties and various non-
linearities. Future work to be considered consists of applying this new stochastic nonlinear method for complex systems and
practical cases in the field of mechanical engineering.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5: Frequency Response Functions of the random nonlinear response for case 1: (a,c,e) MCS (plots in grey); (b,d,f) Stochastic-
HBM (plots in red); deterministic response (black); (a,b) global nonlinear response; (c,d) 1× harmonic component ; (e,f) 3×
harmonic component.
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(a) (b)

(c) (d)

Fig. 6: Frequency Response Functions of the random nonlinear response for cases 2, 2bis and 2ter: (a) MCS (plots in grey);(b,c,d)
Stochastic-HBM (plots in red); deterministic response (black); (a,b) global nonlinear response; (c) 1× harmonic component ;
(d) 3× harmonic component.
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(a) (b)

Fig. 7: Zoom of the Frequency Response Functions of the random nonlinear response for cases 2, 2bis and 2ter: MCS (plots in
grey); Stochastic-HBM (plots in red); deterministic response (black); (a) 1× harmonic component ; (b) 3× harmonic component.
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Fig. 8: Frequency Response Functions of the random nonlinear response for case 3: (a) Stochastic-HBM (plots in red); (b)Zooms
: deterministic response (black), MCS (grey), Stochastic-HBM (red).
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Fig. 9: Frequency Response Functions of the random nonlinear response for cases 4, 4bis and 4ter: Stochastic-HBM (plotsin
red); MCS (grey); deterministic response (black); (a) case4; (b) Zooms of the FRF for case 4; (c) Zooms of the FRF for case
4bis; (d) Zooms of the FRF for case 4ter.
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(a) (b)

Fig. 10: Frequency Response Functions of the random nonlinear response for case 5: (a) MCS (plots in grey); (b) Stochastic-
HBM (plots in red); deterministic response (black).
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(a) (b)

(c) (d)

(e) (f)

Fig. 11: Frequency Response Functions of the random nonlinear response for cases 6: (a,c,e) MCS (plots in grey); (b,d,f)
Stochastic-HBM (plots in red); deterministic response (black); (a,b) global nonlinear response; (c,d) [0,1] harmonic component;
(e,f) [1,0] harmonic component.
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Fig. 12: Frequency Response Functions of the random nonlinear response for case 7: (a,c,e) Stochastic-HBM (plots in red);
(b,d,f) Zooms with MCS (grey), Stochastic-MHBM (red) and deterministic response (black); (a,b) global nonlinear response;
(c,d) [0,1] harmonic component; (e,f) [1,0] harmonic component.
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