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Abstract

This paper presents the concept of the Stochastic Multedsional Harmonic Balance Method (Stochastic-MHBM) ireotto solve dynamical
problems with non-regular nonlinearities in presence ofentainties. To treat the nonlinearity in the stochastiddrequency domains, the
Alternate Frequency-Time method with Probabilistic Caéiton (AFTPC) is proposed. The approach is demonstrat@tjusonlinear two-
degree-of-freedom model with different types of nonliitiesr (cubic nonlinearity, contact/no contact, frictionhe quasi-periodic stochastic
dynamic response is evaluated considering uncertaintidméar and nonlinear parts of the mechanical system. Tiselte are compared
with those obtained from the classical Monte Carlo Simola{MCS). For various numerical tests, it is found that theutes agreed very well
whilst requiring significantly less computation.

1 Introduction

Due to the fact that deterioration or evolution of the stanetduring its lifetime can drastically affect its vibratibehavior, there
has been a crucial and strong development in the treatmenatiability in mechanical system and in the application @thods

to enable the analysis of stochastic vibration problemardler to estimate the stochastic dynamic response of arlgystem,
several approaches can be used. One classical methodtsangiarrying out Monte Carlo simulations (MCS) to obtain ifo
stance the probability density function or the envelopéefrandom dynamic response. This non-intrusive in a stéichsense
method can easily be done, however, the convergence of tHethaeeds a high number of samples that means a high CPU
time. One possibility to reduce this CPU time is to assoaaie non-intrusive method called the Probabilistic Coltara(PC)

[1] method and consisting in calculating the determinipticblem on the collocation points, points Gaussian quadsatalone,

of number smaller than that for the classical MC approachsidgss, the Monte Carlo simulations, the perturbation nasho
are based on the development of the random quantities iiagties [2] or Neumann series [3, 4]. These methods give goo
results for random problems with small variations but do se¢m suitable to dynamic problems for frequencies closkeo t
resonance. Moreover, estimating the envelope of the regpasing the intervals method can be possible, howeveetimique
tends to over-estimate the results ; then it can not be adaptalculate the random dynamic response with reliabifityother
method that could be suitable for convenient random vaai the Polynomial Chaos Expansion (PCE) [5]. The Polyabmi
Chaos Expansion has already been successfully applietinmeés evolutions of the periodic and quasi-periodic resss with
harmonic components of a rotor system with uncertaintieg]6

Furthermore, the need for consideration of nonlinear éffét the description of a dynamical system is well recogthize
in the field of engineering and numerous studies have beeduoted to understand and model the nonlinear phenomena in
structural dynamics during the past decades [8]. Even iftrobthese models deal with deterministic parameters, ibidaus
that variations in the geometry or material properties dteropresent in these systems as it has already been meshiiotiee
previous paragraph for linear systems. However, the treatraf uncertainty in the nonlinear structures is not comntemthe
effects of variations in the geometry or material propertia the nonlinear dynamic responses remain misunderstéaetover,
it can be noted that most of the classical stochastic methised in the linear case fail to deal with a nonlinear problé&ior
example, the previous methodology proposed by the authof§, i7] as well as the probabilistic collocation method da no
allow to solve problems including returning points [9] sinthey are unable to describe multi-solutions as usuallgesl for
nonlinear systems.

In the present study, we propose a new formulation, calledStochastic Multi-dimensional Harmonic Balance Method
(Stochastic-MHBM) to solve the stochastic nonlinear dyitgmoblems. The aim of this new numerical procedure is tduata
the nonlinear responses of mechanical systems with unegeg The nonlinear system can include both regular and no
regular nonlinearities and it can be submitted to mono ottiffiidquency excitations. Uncertainties will relate jast easily to
nonlinearities that on the linear terms (rigidity, damparg mass).

The next section of this paper presents the Stochastic Mumtensional Harmonic Balance Method in the order to deiteem
the quasi-periodic stochastic nonlinear response. Alswvamethodology called the Alternate Frequency Time methibial



Probabilistic Collocation (AFTPC) that is based on the coration of the Alternate Frequency-Time with Probabitgtiollo-
cation will be developed. This theoretical developmermt (Alternate Frequency-Time method with Probabilisticl@gation,
AFTPC) allows the determination of the nonlinear terms i ¢tochastic and frequency domains. In the third secti@ntbd-
eling of the problem as well as the types of the nonlineaitieated will be explained. Effects of the following thraads

of nonlinearities will be examined: cubic stiffness, cantao contact, systems with frictional interface. Finatlgsults will be
presented for several values of the random parametersyihielme compared to results obtained from the Monte Carlousim
lations with the Multi-dimensional Harmonic Balance MethdTo demonstrate the robustness and efficiency of the peapos
methodology, the nonlinear dynamic response of mechasysiém with various uncertainties will be investigatedrfano or
multiple excitation frequencies. The mean and standaréhtiex outputs will not be used since they do not allow to esgint
multi-solutions.

2 Stochastic Multi-dimensional Harmonic Balance Method

In this section, we propose to describe the Stochastic Miuttiensional Harmonic Balance Method based on the exte=sid
coupling procedure of the Multi-dimensional Harmonic Beda Method with the Polynomial Chaos Expansion. We recall th
the objective is to propose a new methodology to obtain thdom quasi-periodic dynamic response of a nonlinear syétetin
regular or non-regular nonlinearities) subjected to mfnéifuency excitations in the presence of uncertainty eersg physical
parameters.

First of all, a brief review of the Multi-dimensional HarmienBalance Method (MHBM) is presented in this section. The
MHBM approach will be used in the following numerical stusli@ order to estimate the nonlinear responses via the Monte
Carlo simulations. We recall that the Monte Carlo approathserve as reference to demonstrate the effectivenessalidity

of the proposed Stochastic Multi-dimensional HarmonicaBak Method. Then, the second part of this section conchens t
presentation of the proposed Stochastic Multi-dimengibliaamonic Balance Method.

2.1 Multi-dimensional Harmonic Balance Method
2.1.1 General theory of the Multi-Harmonic Balance Method

The general formulation for a nonlinear dynamical systemlmawritten in the following form
Mxk(t) + Cx(t) + Kx(t) = g(t,x(t)) = £(¢) + fa(x(t)) 1)

whereM, C andK define respectively the mass, damping and stiffness mattfoet f,,; are the external forces and nonlinear
effects in the system. The upper dot denotes a derivativerefipect to time.

Considering that the nonlinear system can be subjected rfaultiple periodic incommensurable excitation frequescie
w1, wa, ..., wp, the response of the system contains the frequency comimakany linear combination of the incommensu-
rable frequency componerttsw, + kawa + ... + kiw; + ... + kpwp With k; = —Np,, — N, +1,...,—1,0,1, ..., N, — 1, N}, where
Ny, is the order of the Fourier series. Therefore the quasiegé@idynamic response(t) and the global excitatiog(t,x(t))
including the external forces and nonlinear effects cangpeaimated in the form of multiple Fourier series [10]:

Np, Ny Ny p p
Z Z Z (Xc [k1,k2,... kp] COS(Z kiwit) + Xs[kl,kg,...,kp] bll’l(z kzwﬂf)) (2)
ki=—Np ka=—Nj,  kp=—N}, i=1 i=1
Np Np, Np P P
Z Z Z k1 ko) COS(Z kiwit) + G®(ky ko, k) sin(z kiwit)) (3
ki=—Np ka=—Np  kp=—N, i=1 i=1
whereX ., iy k) X ki koo kn]s Gkt ko ky) @GS, 1y .k, define the Fourier coefficients of ordgs , k2, ..., k]

for the quasi- perlodlc responsgt) and the global excitatiog(t, x (¢ )) respectively. A definition given by Kim and Choi [11]
for retaining V;, harmonics in a multiple Fourier series can be given in thiofdghg form >°"_ |k;| < Nj,. For the reader
comprehension, it can be noted that all harmonics at negatimbination frequencies can be replaced by harmonic tatms
positive combination frequencies due to the trigonomeatlation [8]. So it may be concluded that only terms at pesiti
combination frequencies can be retained in the nonlinegraiese and nonlinear force expression. So, the previousssipn
(2) can be rewritten in a condensed form:

x(t) = Y (X cos(k.wt) + Xj sin(k.wt)) (4)
kezm

where the (.) denotes the dot produktis the harmonic number vector of each frequency directiordefines the dimension

of the final multi-dimensional basis whekg (with j = 0, ..., m) represents thg!” harmonic terms and is the vector ofm
incommensurable frequencies considered in the solutidheohonlinear system. SX; andXj define the unknown Fourier



coefficients of any linear combinations of the incommenklgrdrequency components for the quasi-periodic respofisieeo
nonlinear system.
Then, it can be observed that the global excitagigh x(¢)) can also be expressed in the following form

g(t.x(t)) = Y _ (Gf cos(k.wt) + Gj sin(k.wt)) (5)
kezm™

For convenience, it is wise to deal with a non-dimensiomaétparametel of dimensiorp. It refers to the hyper-time concept
T = [T1,...,Tp] = wt [12]. Considering this last relation, Equation (4) can beritten by considering an equivalent function
%(t) of p time variables in @-dimensional time domain:

x(t) = %(T) = %(wt) 6)

This last equation i&x periodic on every hyper-time dimension @ Substituting expressions (4) and (5) in the equation of
motion of the system (1), it can be rewritten in the form ofreelr algebraic matrix equation system :

LX = F + F(X) ()
whereL is defined byL. = diag K, Ly, ..., L,,,) with
[ K= (kw)M k;.wC
L] N —kj.wC K- (kj.w)QM (8)

ThenX, F andF,,; denote the unknown vector of harmonic coefficients, thegmtapn of the external forces and the nonlinear
part, respectively. They are given by respectively

X =[X%%, X% X% .. XL X517 (9)
F=[F FeL F[ .. Fo F |7 (10)
For = [Fop, Fon, Fan, - Fop  Fop 17 (11)

It may be difficult to determine the Fourier coefficients of thonlinear term&,,; directly due to the complexity of the nonlin-
earities. In computational applications, the idea of thél Afrethod is to use Discrete Fourier Transformation (DFT) écik
the Fourier components of the nonlinear forces for givepldisements in the frequency domain. So the generalizafitimeo
Alternating Frequency Time process [13, 14] to a p-dimemsidrequency domain with a p-dimensional DFT is performed t
calculate the Fourier coefficients of the nonlinear teffgs. The following diagram illustrates this procedure:

X 2N x@t) —Fua XS fal) (12)

By rewriting the vector of then incommensurable frequenciesin the following formw = w1[1, ag, ..., ] = w1 Wherea;
are irrational numbers, the linear algebraic matrix equrasiystem (7) is given by

(I0 + w11 + WiI2)X = F + F, (13)
wherel0, I1 etI2 are defined by
10 = diagK,104,...,10,,) ; I1=diag0,I14,...,11,,) ; 1I2=diag0,12,,...,12,,) (14)
with
[K o . o 0 kj.aC | [ -k M 0
10; = [ 0 K } I = [ “k.aC 0 } P 12= [ 0 ~(kj.0)>M (15)

2.1.2 Path following: continuation

In mechanical systems, it may be useful to track the evaluticthe system behavior for different operational pointindérest
while all the other parameters are kept constant. In this,dasnay be useful to apply predictor and corrector mechmasis
order to estimate the nonlinear response as one of its p&eansies (for example the evolution of the excitation fregcy of
the system).

The predictor-corrector method, called continuation &thm, is an algorithm that proceeds in two steps. It inckide algorithm

to find the predicted points for the next solution by using pinedictor, and another algorithm to obtain solutions frdrase
predicted points using the corrector. Various technigues mumerical procedures exist for these two steps. In thisme

we propose to give an overview of the most classical methodbdth the predictor and corrector methods [8]. We focus on



the resolution of the nonlinear system given by Equation THis resolution corresponds to the minimization of a fiorectH
defined by

H(X,w;) =LX — F — Fpy(X) (16)

In the following part of the paper, thé" converged point is defined by™ = (X(™), w,; (™), the predicted point is denoted by
y(t10) — (X (n+1.0) ,, (n+1.0)) "and thej” corrected point is defined by +1:9) = (X(+1.7) () (n4+1.9)),

The predictor-corrector method needs a prediction digtatenotedA s that defines the distance between two consecutive
points. Classically, the following approximation of thergilinear abscissa can be proposed

As(n+1) _ \/(X(n—l-l) _ X(n))T(X(n+1) _ X(n)) + (wl(n,+1) _ wl(n))Q (17)

The value of this distancA s must be adjusted automatically and optimized accordinb#mges (more or less abrupt) of the
nonlinear response curve. In regions of high curvaturejlitbe necessary to reduce the prediction distance to bettiemate
the next solution of the system. On the contrary, in the cAs@ golution that does not change significantly with charigdise
control parameter, the prediction distance may be inceetsaccelerate the calculations while keeping a good etimfethe
solution [8].

Firstly, the predictor is intended to find the predicted pdor the next solution by calculating a rough approximatafn
the desired quantity. The predicted points are found on &nsion of the vector (i.e. direction and distance) coringdhe
current solution and the previous solution. It may be note the quality of the predictor governs the number of camec
iterations required to obtain accurate solutions. The ephof the most classical predictors (tangent predict@asepredictor
and Lagrange polynomials predictor) are illustrated inuFegl.

The secant method is defined by the recurrence relation

y(n) —_ y(nfl)

(n+1,0) _  (n) oy eyt
Yy =y + As
[y —y(=1)|]

(18)

As can be seen from the iteration process, the secant meghaites two initial values;™ andy (™1, which should ideally be
chosen to lie close to the root. The secant method assuntabefanction is approximately linear in the local regionimerest

and the algorithm may not converge for functions that aresnfftciently smooth.

The tangent method uses on_ly one initial vajiie). However, the evaluation of derivatives has to be perforinearder to

calculate tangent vectof = (tx, t,,,) to the curve at the point™. The tangent method is defined by the relation

y(HLO) — () L AGT (19)

If we compare this process with the secant method, we seéhthgingent method requires the evaluation of both the ifmmct
and its derivative at every step, while the secant methoy meguires the evaluation of the function. Therefore, thease
method may occasionally be faster in practice. The predaftbagrange polynomials is a linear combination of Lagrabgsis
polynomials. This predictor uses Lagrange polynomiajof degreed to extrapolate the curve defined by thhe- 1 previous
points. The estimation of the following point can be preglitby the relation

d _ J(i—k)
— Z _STS 7 ), G—ko)
Fa(s) = ( H Si—Fo) _ S(ik))y ’ (20)

ko=0 k=0
k#ko

wheres(*) denotes curvilinear abscissa of poif). The predicted poing(™+1:9) of curvilinear abscissas is calculated by
the relation

y" 10 = Py(As) (21)

Secondly, we consider the corrector in the predictor/aimemethod. The corrector step refines the initial appration,
using the predicted points obtained by the predictor aginilues. For the reader comprehension, the convergedicol
satisfies the relatiol/ (X, w;) = 0 instead of the predicted solution. So, the objective of geisond step is to obtain the
converged solution from the predicted point. The concepghefmost classical correctors (arc length, pseudo arc heaigd
Moore-Penrose) are illustrated in Figure 1.

The arc length method proposes to add an additional constreiween the corrected poigit**1-7) and the previous converged
pointy (™. The distance condition is defined by the following relation

Vi > 1, | X040 - X ))2 ) (D) g ()2 = (A D)2 (22)
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Fig. 1: Predictors and corrections (a) Secant method (bydarmethod (c) Lagrange polynomials (d) Arc length (e) Bsearc
length (f) Moore-Penrose.

The pseudo arc length method adds an orthogonality condiiween the predicted poipt”+9 — (") and the corrected
pointsAy = y(»+1.0) _ 4 (n+1.7) This constraint is given by

Vi > 1, Ay (y" 0 — M) =0 (23)
After calculations, this constraint can be written in thédaing form
AX (X0 X (M) 4 Awy (w; B0 — (M) = ¢ (24)

where AX and Aw,; define the corrections faK andw;. The Moore-Penrose method allows to solve the system bygusin
the Moore-Penrose pseudo-inverse matrixAotiefined byA* = AT(AAT)~!. The pseudo-inverse provides a least squares
solution to a system of linear equatioAsx = b whereA has less rows than columns. Using this Moore-Penrose ¢orss@an
additional orthogonality condition with the kernel of matA is implicitly added. This fact is illustrated in Figure 1(bherek;
defines the kernel for thg" step of the corrector.

In the present study, the tangent and arc length methodswillsed as predictor and corrector for the coupling of the
Monte-Carlo simulations and Multi-Harmonic Balance Meatho

2.2 Stochastic Multi-dimensional Harmonic Balance Method

Figure 2 represents the general algorithm procedure of theh&stic Multi-dimensional Harmonic Balance Method thiltbe
discussed and detailed in the next sections of the paper.

2.2.1 The stochastic nonlinear problem

Several excitations and materials parameters can be @edids random. Here, we retain for random quantities : rdassping
and rigidity parameters as well as the linear and nonlingeitation terms respectiveli(7), C(r), K(7), F(r) andFp(7),



Mx + Cx + Kx =f + f1(x)

|

Fourier and Stochastic expressions
X = [X°, X, X, . X, X |7 and X = 7 X;05(4(7)
LX =F + Fy(X)

Initialisation
X(7)iniy @(T)ini

Point
Xi)s @)

Condensation

Xy, X))

[ Equation of motion ]

Non-linear Efforts (AFT-PC)

New point X(r) ~Lomeeomtogxy o BEL @)
(i)= > (i+1) !

~. projection on W DFT
— I

{Fnl}n — {fnl(t)}n

|

Evaluation of the function
HX) = LX - F - P (X)

|

Minimisation

IHX)[| <

[X = [XT XT ... Xgp]T]

I

[ Non-linear stochastic response ]

X = Z;V:po X;W;(¢(7))

Fig. 2: General algorithm procedure for the Stochastic Miilhensional Harmonic Balance Method

wherer designates the random character. The dynamic equatior afy§tem can be written in the stochastic domain as :

(T0(7) + wiT1(7) + w2T2(7))X (7) = F(7) + Fo(7) (25)
with
10(7) = diag K(7),101(7), ....10,,(7)) ; I1(7) =diag0,I1,(7),....,I1,,(7)) ; 1I2(7)=diag0,12,(7),...,12,,(7))
(26)
< [ K() o C o 0 k;.aC(7) 5 [ —(kj.e)®M(T) 0
R I e e I e A
(27)

Firstly, the uncertain material parameters and the unicefteices are expanded using the Karhunen-Loeve expansiin [
with the Galerkin formulation of the finite element methodids following

L
Z(r)=Z+) &(nZ (28)
=1



whereZ(7) is M(7), C(), K(7) or coefficients in the uncertain forces. Then, for each uaggiguantity, we have one or
several independent Gaussian random variafdgs)}. Finally, Z designates the mean of quantityandZ; is thelth term of
the Karhunen-Loeve expansion.

The stochastic dynamic resporﬁéﬂ is expanded on the Polynomial Chaos basis [5]. This methfmdireded on the theory
of the Homogeneous Chaos [16] that express uncertaintiesrtiogonal polynomials. Random response is given by

)= X 0,((7)) (29)
=0

where¥;(£(7)) designates the polynomials of the basis with) the random vector anX ; the deterministic coefficient to be
found. In this study, the uncertain parameters will folldve tGaussian law, consequently the polynomials considerethe
Hermite polynomials. If the positive value is required foetquantity then random quantity will be truncated to pesitialues.
Besides, expression (29) will be truncated to a finite numerfor the numerical study.N,, is the number of polynomials

defined byNp = 41! wherer is the number of random variables an the chaos order. The truncated form is given by

Tl

Np
) =Y X;%;(4(7)) (30)
p

In the following, we will retain the truncate form of the mdihg for the expansions used on the uncertain parameters.

The Karhunen-Loeve expansion for all material quantitiefar forces coefficients, given by Equation (28), introedin a
more global quantity; asI0, for the massl1; for the dampingI2; for the rigidity, orF; andFy, ; for the forces, and identified
on the whole basis defined by vectdrr), yields the more global random quantity to be written as:

(1) =D 0 05(E(n), (31)
7=0

Quantitye; will be detailed in the next sections for each uncertain gtyaaof the problem.
The expansion given in Equation (31) (and truncated to aefinitmber) alone is not sufficient to solve nonlinear problems
which include returning point (i.e. phenomena of reversale of the Frequency Response Function). We then need tidson
parameteto; as random and then expand this new unknown on the chaos Iasidl. allow to describe the envelopes of the
response of the system and especially in the vicinity of &erning points. Then, we propose the following expansion :

Np
7) =) Wi Pi(E(n) (32)
=0
wherew ; are the deterministic coefficients to find. It leads Equaf) to be rewritten as following
Np Np Np Np Np
(Zloi\m) (ijq/j) + (an) (ijmj) (Zwlk\l’k>
i=0 j=0 i=0 j=0 k=0

Np

Np Np Np Np Np
+(ZI2¢%> (ijxyj) (Zwlkm) (Z“ll‘l’l) = F;¥;+ > Fuy¥, (33)
=0 j=0 k=0 =0 j=0 j=0

and which, when projecting ofi,,,}'?  basis, is:

Np Np Np Np Np
SO (W T)I0,X+ > > Y (0000, )L X wiy
i=0 j=0 i=0 j=0 k=0
Np Np Np Np
+ZZZZ (00,0, 9,0, )12, X 01 w17 = (Fr + Faip) (92) (34)
i=0 j=0 k=0 =

form =0,1,..., Np and wherg.) is the mathematical expectation.
Finally, we obtain the following nonlinear system to solve

LX = F+Fyu(X) (35)

of size(2m + 1) x Np x npor and having2m + 2) x Np x npor unknowns where

Np Np Np Np Np Np
Ljm =D (W 0,0,)10; + > > (0000 ) Ihiwi, + > > (000,09, )M2,01 w01 j,m =0,..., N, (36)
=0 i=0 k=0 =0 k=0 [=0



and

X=x7 xI .. X"
=[(X%)5 (X%)E (X°k)f o (Xum)b (XPkn)d
XAy X%)hp Xk)hp o Xy Xk )ip) - (37)
F=[FJ(T3) FL(U3) .. FL,(U3,)]"

(Fro)s (Fu)s (Foi)d o (Foun)s (FPin)o ) (90)
(F)hp F)hpy Fr)hp - Frdhy Forn)iy) (U307 (38)

It should be noted that momen{¥?2 ), (U950 ,,), (U, 0,0, 0,,) and (¥, ¥,; ¥, ¥, ¥,,) can be computed by using a Gauss-
Hermite quadrature technique or analytically and only oftceghe whole problem. For the dynamic response and theiinea
forces components (i.€X )., (X%k)m, (Fk)m. (F%x)m), the subscripk refers to MHBM order and the second subscript
m refers to PCE order.

The nonlinear stochastic terfy,; is defined as

(
(

Foi= [Fag (U5) Fuil (¥9) .. Fuiy, (U3,)]" (39)

whereFy,; is evaluated via an Alternate Frequency-Time method withbRbilistic Collocation described in the following
section.

To solve this nonlinear system of siz8m + 1) x Np x npor and having2m + 2) x Np X npor unknowns, a phase
condition between the stochastic response and the deistiniesponse is added. This condition can be formulatéalasving

km
D diag X @ (X5k)i — X5 @ (X°)i) = 0 (40)
k=ko

fori =0, ..., N,. ® defines the tensorial product.

2.2.2 Alternate Frequency-Time method with Probabilistic Collocation (AFT-PC method)

As previously explained in Section 2.1, the Alternate Featry Time (AFT) method allows to derive the Fourier compdaen

of the nonlinear forces as a function of the Fourier comptsehdisplacements in deterministic case. However, thosgdure

is not applicable in the case of stochastic problem with regular nonlinearities due to the fact that it is not possiblebtain
analytical expressions of the nonlinear forces in the sistitb domain neither in the time domain.

Consequently, it is necessary to calculate by another waiy #malytically unknown coefficienis,,;; of Equation (31). The
complete process named Alternate Frequency-Time methibdRubbabilistic Collocation to evaluate of the nonlineancke on

the chaos basis and based on the combination of the AlteFmatpiency Time and Polynomial Chaos methods is presented
hereafter.

First of all, the unknown coefficieniB,,;; of Equation (31) are defined by

_ (Fu(m)Y,(9)
o = ) “
which is in fact given by the inner product
@O = [ a©V©p©)d (42)
Q

with p(€) the probability density of.

This integral can be evaluated by the Probabilistic Coliore(PC) method using a Gauss quadrature [1] such as

n

(@(©W;(9) =D w(€)al&,)¥;(€,) (43)

i=1

Wheregi are the Gaussian variables at collocation is the locations number and is the weight function defined, in the case
of Gaussian random variables, by

—_

|
~

o

w(é) = 7€ 2 (44)



wherer is the vector sizg that is the random variables number of the problem. Then &mugdl) is given by

o Fa(OW(©) X wlg)Fml6) V() s)
" (P2() i w(€)P3(E,)

So, we propose an extension of the Alternate Frequency Tigthad to evaluate the expressions of the nonlinear forages fo
stochastic problems. The methodology is based on the catiamof the AFT and PC methods by using projection not only on
the frequency basis but also on the chaos basis.

Let's start fromX(7), the stochastic dynamic response of the nonlinear systeensfze of the vectoK (7) is (2m + 1) x

N, x npor), expanded on the Polynomial basis. Using, an IDFT (Inv&iserete Fourier Transform) procedure Gauss
locations, one can evaluate the harmonic components ofedgonse X },, in the frequency domain (the size of the vector
{X},.is (2m+ 1) x npor). Then, one can express the associated displacerie(its,, in the time-domain (the size of the
vector{x(t)}, IS npor) by using an IDFT (Inverse Discrete Fourier Transform) maare. At this stage of process, we can
note that the velocitiegx(t) },, and acceleration§x(t)},, of the response can also be calculated.

Then using the analytical expression of the nonlinear f¢oce nonlinear operator) in time-domain (see expressidreng
in Equations (52), (53) and (54) as described in the neximefir the current study), one can estimate the associairlinmear
expressiong £, (t)}, of the system (the size of the vectfl,(¢)}, is npor). Then, the DFT (Discrete Fourier Transform)
algorithm allows the calculation of the harmonic composdit,, },, of the nonlinear force in the frequency domain. Finally,
the random vectoF () for the nonlinear force can be obtained by the expansion encttaos basis Equation (31) (i.e.
Fo(r) = Zj.v:po Frni,;¥;(£(7)) whereW;(£(7)) designates the polynomials of the basis). The size of theowd, (1) is
(2m+1) x N, x npor. The following diagram illustrates both the Alternate Fregcy-Time method with Probabilistic
Collocation:

IDFT

X(r) = S5 X 0(E(n)  — S, (X)), {x(t)}n
1

Fu(7) = 32775 Futy ¥ (€()) {Fada €5 {0}

It can be observed that the harmonic components of the resddfi},, in the frequency domain is an approximation of the
“exact” value ofX due to the evaluation via Gauss points. So, increasing the number of Gauss pointgssdidetter estimation
of the harmonic components of the respof3g},, in the frequency domain (i.e. a minimization of errors betwéhe vector
{X}, and the unknown quantifi). Moreover, it can be noted that the vector of displacemér(s)},, and the vector of the
nonlinear forcegfu(¢)}, in the time-domain and the harmonic componefis,; },, of the nonlinear force in the frequency
domain are also approximated expressions of the “exactiesbdfx(t), fn1(t) andFy; due to the previous process.

projection on¥ ;
%

2.2.3 Condensation process for the stochastic nonlinear problem

As previously explained by Sinou [17, 14], if a nonlinearatatinistic system consists ofradegree-of-freedom system with
nonlinear forces associated witlof these degrees-of-freedom, it may be of great interestéplonly the; nonlinear degrees-of-
freedom. The classical procedures of condensation on thinear degrees-of-freedom developed to treat this typeablem
are still applicable to the stochastic problem. So, theipresnonlinear Equation (35) is transformed by

f‘ln.ln iJl’n, nl :| ( Xln ) ( Fln ) ( 0 )
ST P - = = +{ =~ 46
|: Lnl,ln Lnl,nl an Fnl Fnl ( )
whereX;,, andX,,; contain then — ¢ linear degrees-of-freedom and thenonlinear degrees-of-freedom, respectively. Here,
we do not present the condensation procedure used to ob&iRdurier coefficients associated with the nonlinear amebli
elements of the complete system. We refer the interestetbrea the following paper [14] for more details.

After calculations, the determination of the Fourier comewtsX,,; associated with the nonlinear elements can be obtained by
considering the following condensed system

fieqxnl = Fnl + Feq (47)
with

i‘eq = f‘nl,nl - f‘nl,lnill;bl’lnilln,nl ; Feq = Fnl - ]--Alnl,l’n,]-tJ Fln (48)

-1
In,n>t
It should be noted that for a general nonlinear system, iceliteear degrees-of-freedom of the vecy,, can be transferred to
the vectorX,,; of the nonlinear degree-of-freedom without loosing theagahprocess presented previously. This operation can
be very interesting if keeping the physical linear degréé@edom is necessary for the study.

Moreover, the same condensation process can be applie@ tindar elements. After calculation, we obtain the follogyi
relations

f‘ln,lnxln = Fln - fJln,nl)tnl (49)



3 Numerical studies

In this section, in order to verify the suitability of the prmsed approach, we will present numerical example casesfonlinear
two-degrees-of-freedom model with different types of moeédrities and uncertainties.

3.1 Description of the nonlinear model under study

Figure 3 shows the nonlinear two-degrees-of-freedom miodet used in the following. This minimal two-degrees-afedom
model is chosen due to its simplicity and to better undetsthe effects of uncertainties of various physical paramsételuding,
more specifically, the nonlinear elements of the system.

The equations of motion take the following form for this gyst

m 0 1 2¢c —c 1 2k —k x1 \ _ ( ficos(wit) fnlq
[O m]<i2>+{—c 26:|<j32>+|:—k 2k}<x2>_<fgsin(w2t) N fnia (50)
Two cases will be investigated for the excitation of the sgst The first one considers only one excitation of frequencgwith
fasin(wat) = 0). So the response of the nonlinear system is representedrasated Fourier series with; the fundamental
frequency. The second one considers that the global excitaf the system is composed by two external incommenserabl
frequenciesu; etws with
wa 1

Wi V2 o

Therefore the vector of the frequency basis is givenuby= [w; ws]T andk = [kq, ks]. So the bi-periodic motion of the
nonlinear system is an equivalent function of 2 time vagath a 2-dimensional time domain and it covers the invati@ois in
the phase space [7, 12].

fn1y @nd fr;, define the nonlinear contributions applied to the mecharsigstem. In the present study, various numerical
examples will be conducted. These cases were chosen to denaterthe robustness and efficiency of the stochastic meenli
method with respect to various types of nonlinearity (ragor non-regular).

The first one consider a cubic polynomial nonlinearity (segife 3(c)) given by

fair (t) = ka3 (t) (52)

wherek,,; defines the cubic nonlinear term angd(t) is the temporal displacement for the first degree-of-freedo
Secondly, a non-regular nonlinearity with contact to notegt states is investigated (see Figure 3(d)). The regfdadrce can
be estimated by the following relation

{fnu(t)z—klxl(t) it (a1 (8)] < Trim

Faia(8) = —ks1 (£) + sign(@1 (£) (ks — k )z i [21(5)] > T1im (3)

wherek; andk, define effective stiffnesses ang,, represents the clearance value.
The last case considers the rubbing phenomena with fridlisgipation mechanism and stick-slip motion [18, 19], kssitated
in Figures 3(b) and (e). The nonlinear forcks, (t) due to friction is expressed, according to the Coulomb law, a

(54)

frin(t) = —kg(z1(t) — 2(¢)) if adhesion state
fri1(t) = —pPsign(2(t)) if slip state

wherek; defines the contact stiffnesg,the constant friction coefficient? the normal contact load, andt) is the relative
displacement of the contact point.

The values of the physical parameters are given in Table 1.

3.2 Uncertainties in system

The uncertain parameters considered in the problem aredlfmving. As mentioned previously, they are expanded in a
Karhunen-Loeve expansion (Equation (28)) and the randarablas are taken all as Gaussian variables.
First, the linear stiffness is taken as random and is defised a

k= k(1 + k1) (55)

where¢; is one Gaussian random variable. Quandjtydesignates the variation coefficient of the random stiines
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Fig. 3: Two-degrees-of-freedom model with nonlineari{i@s2 DOFs model (b) friction model (c) cubic stiffness; (dhtact;
(e) friction.

To validate the efficiency of the stochastic nonlinear méthbe nonlinear parts of the two degree-of-freedom systéin w
also be random. For the first type of nonlinearity (cubic moedrity, see Figure 3(c)), we define a random nonlinednstk,,;
following:

Epi = Kt (1 + 01,,62) (56)

For the second type of nonlinearity (contact and no-corstates, see Figure 3(d)), we consider the paranietérat defines the
effective stiffness of the system in contact state as sgiitha

ko = Ea(1 + 0p,&3) (57)

Finally, in the frictional case (third nonlinear case, Hig3(e)), the random parameter which seems the most integest
the friction coefficientu. Indeed, this parameter can usually be unknown due to v&perating conditions or tribological
phenomena such as wear. Then, we can expand this parameter as

= ﬂ(l + 5#54) (58)
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Parameter Value

k 15000 N.nt!
m 1kg

c 1N.m st
bil 1N

f2 1N

ky 3000 N.nt!
P 10N

k1 5104 N.m~!
ko 5.1 N.m~!

Tab. 1: Parameter values

Case 0 Fnt (NNM™3) 6k, (Nm™Y) 6k, 7 0, HBMorder HBMdim PCE order

1 2.5% 5.10° - - - - -
2 - 5.1C¢ 10% - - - -
2bis - 5.16 10% - - - -
2ter - 5.10° 10%

=

4bis - - - - - 04 5%
Ater - - - - - 0.5 5%

IN
1
1
1
1
1
o
w
O“I
SN
PRRPRRPRPRPRPOOWW
NNRPRRRPRRRRRR
WWWWWwowowowowow

Tab. 2: Sets of parameters for the case studies

3.3 Results

In this section, the relevance of the proposed Stochastiti-dimensional Harmonic Balance Method is demonstratedugh
different sets of parameters for which uncertainty valuesgaven in Table 2. Information concerning the order of chabe
order of the truncated Fourier series and the type of noatities are also given in this table.

Regarding the types of excitation applied to the two-degrfereedom system, we will first treat the case of mono-frecy
excitationw; (for cases 1, 2, 2bis, 2ter, 3, 4, 4bis, 4ter and 5) and therchses (case 6 and 7) with two external incommen-
surable frequencies; etws (with g—f = \/%). All the results are presented for the second degreeeafdiomz,. For the case
with a mono-frequency excitation, the general StochastittiMlimensional Harmonic Balance Method will be reseitto the
Stochastic Harmonic Balance Method that corresponds teithglification of the Stochastic-MHBM with only one-dimemsal
excitation.

To validate the Stochastic Multi-dimensional Harmonicdele Method, all the calculations are compared to thosenauta
from the combination of the classical deterministic Mulimensional Harmonic Balance Method that has been prelyioas
idated in [10, 14] and the Monte Carlo simulations. Figuregresents the global computational procedure for both toet#
Carlo simulations and the Stochastic Multi-dimensionafrhiznic Balance Method. For the reference soluti¢Xs; s, (for
i =1,...,N)computed from the Monte Carlo simulations with the detaistic Multi-dimensional Harmonic Balance Method,
N samples of the random vect{)g(r)}i (fori = 1,..., N) are considered. The number of sampléss taken equal to 1000
for the present study. As indicated in Figure 4, the resitsined via of the Stochastic Multi-dimensional Harmonaldhce
Method that are expressed on the basis of chaos are posgsextusing the formulation of the truncated stochastiauuym
responsé((T) given in Equation (30). The same samp{gsT)}i are then used for the evaluation of Hermite polynomials as in
dicated in Figure 4. This allows us to obtain the nonlineammns{X} _ (fori =1,..., N) that will be compared

i(Stochastic-HBM
to the previous reference solutiomx}i(Mcs). We recall that the stochastic dynamic respof({e) given in Equation (30)
has been previously calculated via the Stochastic Multietisional Harmonic Balance Method without specificatiotheke
samples.

For all results, the order of chaos is set at 3 due to the fattgreliminary studies, not presented here, for variougs of
chaos led to the conclusion that an order 3 is sufficient fohease.
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N samples Stochastic Multi-Dimensional
{&(1)}i Harmonic Balance Method
fori=1,..,.N (see previous algorithm)

|
[X = [XT XT ... X]Tvp}T]

I

( Evaluation of N values of Hermite polynomials
L with {£(7)}, (fori=1,...,N)

Monte Carlo Simulations
with Multi-Dimensional [ X = ZNp X;W;(£(7)) ]
Harmonic Balance Method

Non-linear responses Non-linear responses
{X}z(MCS) {X}i(Stochastic-HBM)
fori=1,..,.N fori=1,...N

Fig. 4. Computational procedure for both the Monte Carlowdations and the Stochastic Multi-dimensional HarmonitaBee
Method

3.3.1 Case 1: uncertainty in the linear stiffness

For case 1, we consider a random variatiod o= 2.5% for the stiffness properties of the mechanical system (dsated in
Equation (55)). All the other physical parameters are kegteinistic and a mono-excitation of frequengyis applied on
the nonlinear system. The nonlinear term is chosen of tyéccstiffness contribution in this first case. Figures 5 shbe
Frequency Response Functions for the random global narliesponse and thex super-harmonic component (far= 1 and

n = 3) for both Monte-Carlo Simulation and the Stochastic Harmnd@alance Method. A very good agreement is obtained
between the results from the MCS and the Stochastic-HBM.xp&&ed, the random parameter influences not onlylthe
response (see Figures 5(c,d)), but also 3xeresponse (see Figures 5(e,f)). Even if uncertainty is ¢hioed initially into
one linear term (i.e. linear stiffness of the system), duthtononlinear behavior of the system and the coupling betwee
linear contribution and the nonlinear operator defined iud&pn (52), uncertainty is also found on the nonlinear texia
the Alternate Frequency-Time method with Probabilistidi@mtion. Moreover, this first example illustrates thetfwat the
Stochastic Harmonic Balance Method is able to predict tiana of the global nonlinear response and the super-harmonic
components around the reversal curve of the Frequency Resgpaunction (betweel2 H z and14 H z as shown in Figures 5(a,b)
for the global nonlinear response and in Figures 5(c,d) atfiifor thel x and3x super-harmonic components, respectively). It
is recalled that this phenomena is only due to the harderffagtef the nonlinearity. This result of monitoring the dwtion of
the random nonlinear response around the turning pointssipte due to the fact that the pulsation frequency is cemsiito

be random, as previously introduced in Equation (32).

3.3.2 Cases 2, 2bis and 2ter: uncertainty in the nonlinear cubic stiffness

In this subsection, we are interested in the effect of viaat on the cubic stiffness. We focus our attention on thases
with different values of the mean cubic stiffnesg (case 2:k,; = 5.108N.m™3; case 2bisk,; = 5.10°N.m~3 and case
2ter: k,; = 5.1010N.m*%). All the other physical parameters are kept determinestid a mono-excitation of frequency is
applied on the nonlinear system. It is recalled that ingreghe nonlinear cubic stiffness increases the hardenatigior of
the mechanical system (i.e. the Frequency Response Farsttaws a more curved peak frequency and a more abrupt turning
point). Variation ofd,,, = 10% on the cubic term is considered (as previously introducdegjnation (56)).

Figures 6 present the results obtained by the Stochastid-HigEd MCS approaches for the three cases (note that each curve
is indicated by the number of the associated cases 2, 2biepin2Figures 6(a) and 6(b)). In all cases, the nonlineaatsieh
is mainly due to first harmonic component even if the harmonic component is visible aroursdi > for case 2ter (with
kn = 5.101°N.m~ s) Moreover, Figure 6(d) clearly indicates that the harmonic component is not negligible: we can
see the appearance of peaks with more or less strong hagdeffi@tt for cases 2, 2bis or 2ter. The results obtained by MCS
approach for thd x and3x harmonic components are not presented in this paper due taththat they are similar to those
obtained by the Stochastic-HBM (given in Figures 6(c) ard))6(
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Then, Figure 7 shows a zoom of the evolutions of the randoporese of the x and3x harmonic component around the first
frequency peak (betwed H z and16 H z). Some samples computed from the MCS and Stochastic-HBMtemen in Figure

7. We recall that the Stochastic-HBM results that are exgg@®n the basis of chaos are post-processed using the &tiromul

of the truncated stochastic dynamic response given in kquéB0)) with the samples previously used by the Monte-€arl
simulations. The remarks previously stated remain valigedect correlation between the Stochastic-HBM and MCaltes
(for each random solution of thex harmonic components) is observed even if the hardeningtéff@ery strong. These results
clearly demonstrate the efficiency of the Stochastic-HBM.

Finally, as illustrated in Figures 6 and 7, the response efrtbnlinear system is not unique for some excitation freqissn
Over a range of frequencies near the resonance, the systetal@one of three possible response levels. For exampés th
possible nonlinear responses with low amplitude or posdiiih amplitude coexist in the intervals3; 17)Hz and[33; 55| H z

for a given frequency. Here, we clearly show that the Stait#BM approach is able to find the nonlinear solution in the
vicinity of the initial conditions (given by the previouslcalation). So, all the FRF curve with low and high amplitudeponses
can be depicted by the Stochastic-HBM approach. Moreoversee the evolution of the second resonance peak to the right
due to uncertainty in the nonlinear cubic stiffness. As fesly explained, this phenomena reflects the fact that etian

of the nonlinear cubic stiffness induces not only an evolutf the nonlinear response amplitudes but also a variatighe
fundamental frequency of the nonlinear system. This is dribeomost difficult aspects to be captured by uncertaintyhoes$
being applied to nonlinear systems. Here, it can be obsahatdhe Stochastic-HBM approach is able to find the response
amplitudes due to the fact that the pulsation frequencyiisiciered to be random, as proposed in Equation (32). Allrdsslts
allows us to conclude on the robustness of the global SttichtdBM approach with the Alternate Frequency-Time metkagith
Probabilistic Collocation.

3.3.3 Case 3: uncertainty in the contact nonlinear stiffness

For case 3, the nonlinear term is chosen to be the contactiontact behavior and we are interested in the effect of etian

on this nonlinear element @}, = 5% (Equation (57)). All the other physical parameters are ldgierministic and a mono-
excitation of frequency; is applied on the nonlinear system.

Figures 8(a) presents the results obtained by the StocHdBiM approach. Zooms near the first and second resonan&s pea
are illustrated in Figures 8(b) by applying the StochaktigM and MCS approaches. As previously indicated in secti@i23
only some samples computed from the MCS and Stochastic-H®@Manpared. The remarks previously stated remain valid: a
perfect correlation between the Stochastic-HBM and MC8lte¢for each random solution of thex harmonic components) is
observed even if the hardening effect is very strong. Theselts clearly demonstrate the efficiency of the Stoch&sBM.

These comparisons allow us to validate the methodologygseg in this study. As previously explained, we observetdha
variation of the contact nonlinear stiffness induces arwgian of the resonance frequency.

In the vicinity of the resonance peaks, one observes theicl$ehavior and characteristic of nonlinear systemhb wgintact: a
break of slope of the resonance peak is observed due to tigtiosm between the non contact state and contact stat&igaees
8(b) for example). Moreover, variation of the contact siif$s induces a variability of the resonance frequency ahiftao§the
resonance peaks to the right. Here again, using the Stact#8M approach, it is possible to describe the multiple lnwear
solutions with low or high amplitudes in the interval betwé#2.3; 13.3] H z (see Figure 8(b), top figure) af@il.7; 31.9]H z (see
Figure 8(b), bottom figure) for a given frequency. This destoates once again the effectiveness and robustness afdpesed
Stochastic-HBM approach.

3.3.4 Cases 4, 4bis and 4ter: uncertainty in the friction element

In this subsection, we focus our attention on the two-degfefeeedom system with a the friction nonlinear elemens pe-
viously explained, one of the most interesting parametéetoandom is the friction coefficiept So we investigate the effect
of variations on the friction coefficie, = 5% on three cases with different values of the mean frictiorffament 7z (case 4:
7 = 0.3 ; case 4bis;z = 0.4 and case 4ter = 0.5). All the other physical parameters are kept determiniztid a mono-
excitation of frequency; is applied on the nonlinear system.

Figures 9 illustrated the Frequency Response Functionseofandom global nonlinear response for cases 4, 4bis andhyite
applying the Stochastic-HBM. Zooms of the random nonlirreaponses (for only thirty selected samples) around theesfird
second resonance peaksl(5; 14] Hz and[31; 34] H z, respectively) for both the Stochastic-HBM and MCS metham@splot-
ted in Figures 9(b,c,d) for different mean friction coeffiots with the same uncertainty quantty = 5%. By comparing the
Stochastic-HBM results with those estimated by Monte Camoulations, we can first notice that the efficiency of thecBastic-
HBM approach is validated in the case of a nonlinear friciieement.

Then, we note the global progressive frequency shift of #smnance peaks due to the mean friction coefficient with doé a
tional uncertainty quantity,, = 5% (cases 4 to 4ter). This phenomenum reflects the fact thememnlieffect of friction has
usually a softening effect on system dynamic.

So it can be concluded that all these results are consisténthve trends already known on the dissipative effects ddgdtion.
These cases also demonstrate the possibility of includnugiainties aspects to better characterize the dynarhiavioer of
nonlinear systems with friction by using the StochasticNHBiethod.
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3.3.5 Case 5: uncertainties for both the linear stiffness and the contact nonlinear stiffness

In order to demonstrate the efficiency of the Stochastic-H@#lcedure described above, this subsection of the papsstre
the cases in which uncertain quantities come from two par@mestudied previously: the first one concerns the stiffrveish
the meank = 15000Nm~! and a variation coefficient of, = 2.5%. The second uncertain quantity is the stiffness of the
contact/non-contact element with the mean stifffless= 5000Nm ' and a variation coefficient ofx, = 5%. A mono-
excitation of frequency is applied on the nonlinear system.
We recall that in this case the cost of calculation may betgrdhan in the previous cases since it is directly linkedv®riumber
of polynomials and consequently to the order of chaos andtingber of random parameters.
Figures 10 illustrate all the Frequency Response Funcaarpes for the nonlinear response amplitudes obtained ing tise
MCS and Stochastic-HBM approaches. The results from bothads are in very good agreement. As explained previously
in sections 3.3.1 and 3.3.3, variations of physical paramsdeads to changes for both the resonance peak frequamdehke
dynamic response of the system around the peak frequencies.

In comparison with the previous results obtained in sest®B.3 and illustrated in Figures 8, it can be seen that fieetsfon
the response from uncertainties on the linear stiffnesgmater than those on the effective stiffness of the cofdathe values
of physical parameters given in Table 2 for cases 3 and 5. Soiéthe variation coefficient of the effective contactfst#ssiy,
is greater than the linear stiffnegg, it may be concluded that the variations of nonlinear araght are mainly due to the effects
of uncertainty on the linear stiffness. However, whatetierlevels of uncertainty, it is recalled that the variatioefficient ofd;,
affects also the nonlinear response of the system, as p®lyidemonstrated in section 3.3.3.
In conclusion, this example demonstrated the robustnetbe@tochastic-HBM approach when uncertain quantitiesecioom
two parameters.

3.3.6 Case 6: uncertainty in the linear stiffness with incommensurable multi-excitations

For this case, the two-degree-of-freedom system is sudijeit two external incommensurable frequencigset wo (with
5—? = %). The two-degree-of-freedom has a deterministic effectiontact stiffness (i.ek, = 5.103Nm—1) and a varia-
tion coefficient ofdo, = 2.5% for the stiffness of the mechanical system.

At first, we propose to focus on the overall quasi-periodspanse of the system. Figure 11(a) and 11(b) illustrate libigad)
nonlinear amplitudes obtained by using the MCS and the &githMHBM, respectively. We can note an important vapiati
of all the resonance frequencies and the associated anhgsitu

To better visualize these results and to propose a mordetktaialysis of the contribution of each ordgr, k3], the responses
of orders[ky, k2] = [0, 1] and[k1, k2] = [1, 0] are given in Figures 11(c,d) and 11(e,f), respectively. \Wice a similar enlarge-
ment of the operating area for all the contributions of osdéerhis fact can be explained by the addition of uncertaimtyhe
linear stiffness that induces a relatively similar effexthe responses of different orddks, k2] = [1,0] and [k, k2] = [0, 1],
as indicated in Equation (35). As previously explained iatise 3.3.3, the classical characteristic of a nonlineatesy with
contact is observed: a break of slope of the first and secosmhasce peaks (aroutitll.8; 12.4]Hz and [16.4;17.7]H z) is
observed due to the transition between the non contactatateontact state. The same phenomena is also visible fdmitde
peak resonances 32 H z with a less marked feature. For these three resonance pgatestainty in the linear stiffness of the
two degree-of-freedom induces a variation of the resonfreceiency and a shift of the three resonance peaks to the Higine
again, using the Stochastic-MHBM, it is possible to desctiie three possible nonlinear responses due to the haglefféct,
with low or high amplitudes in the interval betwefr2.4; 13.1)Hz and[17.7; 18.7] H z for a given frequency.

The comparison of the random nonlinear response from theh@gtic-MHBM (with AFTPC) and the reference one evalu-
ated by the simulations of Monte-Carlo and the Multi-dimenal Harmonic Balance method, validates the StochastitBM
methodology for a mechanical system with non-regular maarity and subjected to two incommensurable multi-eKoits.

3.3.7 Case 7: uncertainty in the friction element with incommensurable multi-excitations

For case 7, the nonlinear term is chosen to be the frictioriaifiace (as previously indicated in section 3.3.4) andrwestigate
the effect of a variation on the friction coefficied)f = 5% with the mean value of the friction coefficiemt= 0.4. All the other
physical parameters are kept deterministic and the malggtitation of incommensurable frequencigsetw, (with g—f = %)

is applied on the system.

Figure 12(a,c,e) show the results for the nonlinear quasbdic responses and the responses of orflgrs:;] = [0, 1] and
[k1, k2] = [1,0] by applying the Stochastic-MHBM (with AFTPC). Zooms aretfdd in Figures 12(b,d,f) with adding the
Monte Carlo simulations. As previously explained in set®03.2, only some samples are plotted that shows in Fig@@sd,f)
the correlation between the MCS and Stochastic-HBM resDite to the frictional nonlinear element, a softening ffeith a
small shift of the first and second resonance peak$2&tz and17H z) is detected. Once again, this observation is consistent
with the trends already known on the dissipative effectstduéction. As previously observed in section 3.3.4, unagty on
the coefficient of friction induces small variation for bdtie response amplitudes of all harmonic components andtuemted
frequencies.

The remarks previously stated on the efficiency and robgstoéthe proposed Stochastic-MHBM remain still valid in tase

15



of the two degree-of-freedom with uncertainty in the noaéinfrictional interface and subjected to multiple incormsigrable
frequencies: this allows us to conclude on the robustnetizeobtochastic-MHBM with AFTPC to estimate the random quasi
periodic response and overall contributions of harmonics.

4 Conclusion

In this paper, a study devoted to calculating the randomineat dynamical response of a two degree-of-freedom systigm
regular and non-regular nonlinearities is presented. Dubéd fact that the use of classical methods for nonlineaesys with
uncertainties can be rather expensive and requires caabiéeresources both in terms of computation time and datage,
a new concept called the Stochastic Multi-dimensional HenicBalance (Stochastic-MHBM) is proposed and discus$ee.
main originality and objective of this technique are to extrthe quasi-periodic stochastic behavior of mechanigstesms by
using approximations. The principal idea is to replace thetsstic nonlinear responses and the stochastic nonfimreas in the
dynamical systems by constructing linear functions sudkoasier series on the chaos basis. The comparison of thégésmm
this stochastic nonlinear approach and the reference onghioing the simulations of Monte Carlo and the Multi-dirsemal
Harmonic Balance method, for different cases of unceisnvalidates the proposed methodology. In particulavas shown
that the process is able to capture all the possible respewsls when the response of the nonlinear system is not eniqu

In conclusion, the proposed method offers a powerful tegpimaifor nonlinear systems with uncertainties and various no
linearities. Future work to be considered consists of apglyhis new stochastic nonlinear method for complex systand
practical cases in the field of mechanical engineering.
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Fig. 5: Frequency Response Functions of the random nomlieasponse for case 1: (a,c,e) MCS (plots in grey); (b,ddgBastic-
HBM (plots in red); deterministic response (black); (a,mt@l nonlinear response; (c,d)x harmonic component ; (e,f) 3
harmonic component.
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Fig. 6: Frequency Response Functions of the random nomliesponse for cases 2, 2bis and 2ter: (a) MCS (plots in gfieyo,d)
Stochastic-HBM (plots in red); deterministic responseach); (a,b) global nonlinear response; (cxlharmonic component ;
(d) 3 x harmonic component.
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Fig. 7: Zoom of the Frequency Response Functions of the rantmlinear response for cases 2, 2bis and 2ter. MCS (plots in
grey); Stochastic-HBM (plots in red); deterministic reape (black); (a) x harmonic component; (b)8 harmonic component.
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Fig. 8: Frequency Response Functions of the random nomliasponse for case 3: (a) Stochastic-HBM (plots in red)Z@mms
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Fig. 9: Frequency Response Functions of the random nomliesponse for cases 4, 4bis and 4ter: Stochastic-HBM (piots
red); MCS (grey); deterministic response (black); (a) casén) Zooms of the FRF for case 4; (c) Zooms of the FRF for case
4bis; (d) Zooms of the FRF for case 4ter.
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Fig. 10: Frequency Response Functions of the random namliiesponse for case 5: (a) MCS (plots in grey); (b) Stoctasti
HBM (plots in red); deterministic response (black).
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Fig. 11: Frequency Response Functions of the random nauliresponse for cases 6: (a,c,e) MCS (plots in grey); (b,d,f)
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Fig. 12: Frequency Response Functions of the random nanliesponse for case 7: (a,c,e) Stochastic-HBM (plots i red
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