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across Retina Fundus Datasets
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K. W. Tobin Jr, Fellow Member, IEEE and E. Chaum, Member, IEEE

Abstract—In recent years, automated retina image analysis
(ARIA) algorithms have received increasing interest by the
medical imaging analysis community. Particular attention has
been given to techniques able to automate the pre-screening
of Diabetic Retinopathy (DR) using inexpensive retina fundus
cameras. With the growing number of diabetics worldwide, these
techniques have the potential benefits of broad-based, inexpensive
screening. The contribution of this paper is twofold: first, we
propose a straightforward pipeline from microaneurysm (an
early sign of DR) detection to automatic classification of DR
without employing any additional features; then, we quantify the
generalisation ability of the MA detection method by employing
synthetic examples and, more importantly, we experiment with
two public datasets which consist of more than 1,350 images
graded as normal or showing signs of DR. With cross-datasets
tests, we obtained results better or comparable to other recent
methods. Since our experiments are performed only on publicly
available datasets, our results are directly comparable with those
of other research groups.

I. INTRODUCTION

According to estimates of the World Diabetes Foundation,
439 million people will have diabetes mellitus worldwide by
2030. Diabetic Retinopathy (DR) is the leading cause of new
cases of blindness among diabetic patients. In the United states
alone, 25.8 million people are affected by diabetes mellitus,
and this number is projected to grow in the future[1]. Thus
effective and inexpensive methods to screen retina fundus
images are needed as this large number of patients threat-
ens to overwhelm conventional screening approaches. Since
high-quality mydriatic and non-mydriatic fundus cameras are
becoming the norm in many clinics, what is needed is a
proven highly sensitive automatic method to quickly pre-
screen patients before they even reach the ophthalmologist.
This will considerably reduce the time and cost of a visit,
thus increasing the likelihood of an early detection of DR in
diabetic patients and reduce blindness, since timely treatment
with laser therapy can reduce the development of severe vision
loss on 50% to 60% of cases [1].
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One of the earliest manifestation of DR are microaneurysms
(MAs). As shown in Fig. 1, they appear as small circular dots
of the same colour as the retina vasculature (i.e. blood vessels).
In fact, they are small, swollen capillaries which can leak
blood and fluid into the retina, leading to vision threatening
conditions due to other complications (e.g. exudates, macular
edema and hemorrhages). As such, automatic MAs analysis
detection by itself can be considered the key to trigger the
very first alarm for DR detection.

Other authors [2, 3] have presented automated retina im-
age analysis (ARIA) techniques for automatic DR detection.
In both cases the fundus images are processed by various
modules such as: quality verification, vessel segmentation,
red lesion detection and bright lesion detection. Then, the
output of the modules is combined and automatically classified
with a machine learning technique. An alternative approach is
taken by Agurto et al. [4] with a technique entirely based on
multiscale amplitude-modulation-frequency-modulation (AM-
FM) features that indirectly capture the retina condition by
characterising the retina texture as a whole.

In this paper, we present a streamlined ARIA algorithm for
automatic DR detection which only requires an initial MA
detection step. MA detection has been the topic of many
successful approaches which were recently evaluated on a
common dataset through the ROC challenge [5]. Our group
developed one of such algorithms which works at a very low
false positive rate thanks to an approach based on the Radon
transform [6]. We test various machine learning techniques
to attempt to classify the retina as normal or DR based on
the distribution of the MA detection output. These tests take
into consideration that fundus images have a great visual
variability (especially across different clinical settings) and the
generalisation ability of the algorithms need to be evaluated.

(b)(a)

Fig. 1. (a) Example of a retina fundus image with a MA magnified; (b)
Inverted green channel of (a) with MAs automatically detected.



This is possible thanks to the cross-dataset approach of the
various experiments.

In Section III we present an overview of the MA detection
method and we describe our DR classification approach; Sec-
tion II discusses the characteristics of the datasets employed;
Section IV-B presents the results; finally, Section V concludes
with a discussion of the results obtained.

II. MATERIALS

The design, implementation and testing of ARIA algorithms
requires high quality annotated data. In the literature, there
are some publicly available annotated datasets of retinal im-
ages which have different goals, characteristics, and levels of
completeness [7]. In this paper, we employed three different
datasets all containing mydriatic and non-mydriatic macula
centred colour fundus images mainly at 45 degrees of field of
view: ROC challenge [5], HEI-MED [8] and Messidor [9].

The ROC challenge dataset is composed of 100 images,
half of which has been annotated by 4 experts. The only
structures annotated are the small red lesions (MAs and round
haemorrhages). This dataset has been employed for training
the MAs detection algorithm.

The HEI-MED and Messidor dataset are composed respec-
tively of 169 and 1200 images acquired in different centres
and from patients of heterogeneous ethnic backgrounds. They
provide different types of image-level and lesion-level annota-
tions, however, we will be employing the DR diagnosis for our
DR analysis experiments. In the case of HEI-MED, a patient
is considered normal if no lesions were found and diagnosed
with DR if at least a MA was found by the expert. Messidor,
on the other hand, has a direct annotation of the DR condition
found together with a severity score.

III. MICROANEURYSMS DETECTION

A. Microaneurysms Detection - Method

In previous papers [10, 6], we have described two methods
for the MAs detection (and localisation) based on some
useful properties of the Radon transform [11]. It was found
that Gaussian-like structures such as MAs have a cliff-like
appearance in the Radon space of a local window. This
appearance is maintained in highly noisy conditions and in
windows containing other structures with high pixel values
(outliers). The latter aspect is particularly important because
MAs tend to appear very close to the retina vasculature and,
in the local window, the vasculature is generally much more
visible that the MAs by themselves.

While our first approach [10] relied on a fully rule-based
technique, we later discovered that the technique could be
considerably improved by compressing the Radon space into
a new set of compact features which were later classified
through Principal Component Analysis (PCA) and a non-linear
Support Vector Machine (SVM) [6]. This approach can be
quickly trained through an on-line machine learning strategy,
it does not require vessel segmentation and it keeps the image
pre-processing at a minimum. A summary of the method
follows, for a complete description refer to [6]:

1) Candidates selection: The aim of this initial phase is
to reduce the computational burden of the Radon analysis.
Essentially, it discards all the areas that cannot contain any
foreground structure (vessels, lesions, etc.) due to their low
intensity. This is accomplished through a fast background
subtraction operation, immediately followed by a colour nor-
malisation such that the resulting image can be described by a
given Gaussian distribution. The areas selected as candidates
are the ones above a very conservative scalar value employed
as threshold derived from 5 images from the ROC challenge
dataset.

2) Radon-based features: The Radon transform is calcu-
lated on a local sliding window across the green channel of
the original (resized) image. The window is centred on the
pixel with the highest local value. Since the local window has
a square shape (non-isometric support), each projection of the
Radon transform will accumulate an uneven number pixels,
which leads to coefficients biased towards certain projection
rays. Therefore each ray is normalised by the number of pixels
it crosses, thus obtaining Ri.

Each Ri is represented as the compact feature vector F i

which is computed as follows:

Ri
µ(x) =

1
φ ∑

φ

n=1 Ri(n,x) 0≤ x < ρ (1)

Ri
σ (x) =

√
1

φ−1 ∑
φ

n=1 [R
i(n,x)−Ri

µ(x)]2 0≤ x < ρ (2)

F i =
( d

dx Ri
µ

Ri
σ

)
(3)

where i is the index of a window, Ri is the window in
the normalized Radon space having on the horizontal axis
the different angles of projections and on the vertical one
the number of projections for each angle. φ is the number
of projection angles and ρ is the number of projection rays.

3) MAs classification: After normalisation, F i is projected
to a space of lower dimensionality via Principal Component
Analysis (PCA) [12]. The number of dimensions are selected
such that the 95% of the original data variance (of the
training set) is maintained. The feature vector with lower
dimensionality is then classified by a SVM with a radial basis
kernel and probabilistic output [13].

The probability of being a MA (Pma) is calculated as a
combination of the SVM probability and the average value at
the centre of the original window of the equalised image. The
probabilities are combined following the unnormalised Bayes
rule.

B. Microaneurysms Detection - Generalisation Ability

We evaluate the performance of the algorithm on a synthetic
model of a MA with variable dimensions, proportions and
noise. The classifier is trained on only 5 representative images
from the ROC dataset. These tests quantify the generalisation
ability of the algorithm on different MAs. The model f is
based on a two dimensional normal distribution N with a
maximum height of α and with a support window of 17×17
pixels. The choice of the model was dictated by the general
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Fig. 2. Tests on Synthetic Microaneurysms. (a) MA detection in function of MA height; (b) MA detection in function of size; (c) MA detection in function
of not-proportional size changes (from circular MA to elongated vessel); (d) MA detection in function of two types of additive noise; (e) MA detection in
function of pepper noise with different heights.

consent among researchers that MAs mostly appear as 2-D
Gaussians [14].

N(x,µ,Σ) =
1

2π|Σ|1/2 e−
1
2 (x−µ)T Σ−1(x−µ) (4a)

f (x,µ,Σ,α) =
N(x,µ,Σ)
N(µ,µ,Σ)

α (4b)

where x is a two dimensional vector representing a coor-
dinate in the window; µ is a two dimensional vector always
containing the coordinate at the centre of the window [9 9]t

and Σ is the 2×2 covariance matrix.
Fig. 2(a) shows the detection performance as a function

of α with Σ =

[
2 0
0 2

]
. The results are themselves normally

distributed with a positive detection (i.e. MA prob. ≥ 0.5) with
0.045 ≤ α ≤ 0.225. Fig. 2(b) shows how the algorithm can
detect circular objects with a great range of sizes. The size

variation is simulated as a function of Σ with Σ=

[
σ 0
0 σ

]
and

a fixed height (α = 0.16). We obtained a positive detection for
0.3 ≤ σ ≤ 7.8. Fig. 2(c) shows how the classifier can detect
MAs that are not perfectly round, and when it stops doing so.
We have simulated a round MA that becomes more and more
elongated, up until it reaches a “vessel-like” appearance. This

is achieved by using Σ =

[
2 0
0 σ

]
, where σ goes from 0.1 to

50.
Fig. 2(d,e) shows various experiments for the detection

of MAs in a noisy environment. In all cases the following

parameters are used: α = 0.16 and Σ =

[
2 0
0 2

]
. On the x-

axis, the signal to noise ratio (SNR) measures the how much
the original signal has been affected by noise:

SNR =
(A f )

2

(A f n−A f )2 (5)

where A f is the sum of all pixels of the MA model, and
A f n is the sum of all pixels of the model affected by noise.

IV. DR SCREENING

A. DR Screening - Method

Our approach to DR diagnosis is entirely based on the
output of the MA detector previously described. This is
possible because the MAs are the very first manifestation of
DR, hence if they are successfully detected it is possible to
diagnose DR even in its mild form.

The first DR classification strategy implemented is the enu-
meration of MAs with an estimated probability (Pma) higher
than 0.5. An image is deemed to have DR if more than a th



number of MA are identified. By varying th, it is possible to
perform a ROC analysis, which will be used as a baseline for
the other tests. We note that this simple counting strategy does
not make full use of MA probability distribution. Therefore,
we estimate this distribution by calculating the histogram of
Pma for all the MAs identified in an image with Pma > 0.5. The
histogram bins are used as a feature vector and then classified
with various classification strategies. We chose classifiers that
covered the three different classification families described by
Jain et al. [15]: probabilistic (Naive Bayes), geometric (SVMs)
and tree-based (Random Forest). As a baseline, we report the
results of one of the simplest classification method available,
nearest neighbour.

Classifier Fe
at

ur
e

Se
t

2
bi

ns

3
bi

ns

4
bi

ns

5
bi

ns
Nearest Neighbour 0.687 0.708 0.683 0.668

Naive Bayes (Gaussian) 0.809 0.819 0.824 0.818
Naive Bayes (Parzen Win.) 0.823 0.829 0.833 0.831

SVM (linear kernel) 0.825 0.834 0.833 0.823
SVM (radial kernel) 0.825 0.831 0.833 0.830

Random Forests 0.806 0.781 0.792 0.758
The results are expressed as AUC for the 3-fold tests on HEI-MED.

TABLE I
DR CLASSIFIER/FEATURE SELECTION TESTS WITH HEI-MED AS TESTING

TARGET.

In Table I, a variable number of histogram bins and clas-
sifiers belonging to different families are evaluated on the
HEI-MED dataset with a 3-fold evaluation. We note that
AUCs do not show significant changes, this is probably due
to the low dimensionality and compactness of the samples.
The classifier/feature set employed in the testing phase have
been highlighted in bold. During this phase it was noted that
some FP MAs were identified on the optic nerve (ON) area
where the presence of MAs is physiologically impossible. By
employing the automatic ON localisation technique described
by Tobin et al. [16], we identify the ON area and remove any
MAs present. After the ON removal, the average performance
improvement was estimated at ∼0.01 of AUC.

B. DR Screening - Results

Fig. 3 shows the baseline results obtained by counting
the MAs on each image. In both datasets the results are
surprisingly good for such a simple classification technique.
However, it should be remembered that the MA detector
introduced is particularly competitive at a low false positive
rate which is a desirable characteristic of many DR pre-
screening systems.

Fig. 4 shows the tests performed with the best performing
classifier/feature sets. In Fig. 4(a), the classifiers are trained
on the Messidor and tested on HEI-MED. The best perfor-
mance are obtained by the Naive Bayes classifier with Parzen
window to estimate the samples distribution and a feature
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Fig. 3. ROC curve for the DR diagnosis by counting the number of MAs
only.

vector with 3 bins. The improvements in comparison with the
baseline classification are not substantial, a 0.008 points of
AUC. Fig. 4(b) shows the tests on the 1200 images of the
Messidor dataset (with HEI-MED as training set). The best
performing feature set/classifier are the same as the previous
test. However, the improvement in comparison to the baseline
is more pronounced: 0.13 AUC. This is even more significant
considering the size of this dataset. In Fig. 5, the classifier
trained on the full HEI-MED dataset is tested on a subset
of Messidor images, e.g. the healthy and the ones showing a
high risk of DR. This experiment evaluates the performance
of the classifier for the cases that are very urgent. The AUC
obtained is 0.95, a performance considerably higher than the
one obtained when the mild DR cases are considered.

Agurto et al. [4] were the first group that published the
results of a DR screening algorithm employing the Messidor
dataset, but they only used 400 of the images in the set (the
ones labelled as Lariboisière in the original metadata). In their
tests they obtained a AUC of 0.84, which is already lower
in comparison to our results on the complete set (AUC of
0.854). For a fairer comparison, we tested our best performing
classifier/feature set on the Lariboisière subset training it on
the HEI-MED dataset. The result obtained improved even
further, as an AUC of 0.879 was achieved.

More recently, Sánchez et al. [3] perform a thorough eval-
uation of their ARIA system on the full Messidor dataset
and compared it with the diagnosis of other two experts.
The authors obtained a sensitivity of 0.92 at 0.5 specificity,
which is only slightly higher than ours, i.e. 0.91 sensitivity
at 0.5 specificity. However, our results are comparable with
the performance of the two human experts, i.e. a sensitivity of
0.91 and 0.94 at 0.5 specificity.

Being based almost entirely on the MAs segmentation, the
time required by this classification technique is negligible (<
1 second) once the MAs are segmented.
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Fig. 4. ROC curves for the DR diagnosis.
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Fig. 5. ROC curve comparing the DR diagnosis for various level of DR.

V. CONCLUSIONS AND DISCUSSION

In this paper, we have presented a streamlined ARIA algo-
rithm for automatic DR detection which only requires an initial
MA detection step. The MAs detector, which was already
evaluated on the ROC dataset [6], has been quantitatively
assessed via a synthetic model of MAs. Then, the DR detection
algorithm was tested on two independent datasets obtaining
results better or in line with methods tested on the same
datasets.

However, our approach has the advantage of requiring
features uniquely derived from a single MAs detector, without
employing other lesion detectors or image-wide features with
obvious computational advantages. In fact, the total time
required to generate a complete screening diagnosis (from

an unseen image) is ∼12 seconds per image on a 1.6 GHz
machine with 4 GB of RAM in a Matlab implementation. This
aspect leaves to the method untapped potential which can be
easily harnessed via additional features.

In order to effectively test the feasibility of these techniques
in a healthcare environment, tests with datasets much larger
than the ones used need to be performed and compared with
the performance of retina experts. Nevertheless, the use of
three independent public datasets make a strong point about
the effectiveness of the algorithms.
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