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Abstract

We introduce a new identification method for general
causal convolution models of the form u 7→ h ∗ u =
H(∂t)u, where h is the impulse response of the sys-
tem, to be identified from measurement data. This
method is based on a suitable parameterization of op-
eratorH(∂t) deduced from the so-called diffusive rep-
resentation, devoted to state representations of such
integral operators. Following this approach, the com-
plex dynamic features of H(∂t) can be summarized
by a few numerical parameters on which the iden-
tification method will focus. The class of concerned
convolution operators includes rational as well as non
rational ones, even of complex nature. For illustra-
tion, we implement this method on a numerical ex-
ample.

1 Introduction

Identification of linear input-output convolution sys-
tems of the form:

u 7→ H(∂t)u, [H(∂t)u](t) =

∫ t

0

h(t− s)u(s)ds (1)

is all the more difficult as the operator H(∂t) = h∗(.)
is of complex nature, in general non rational. In-
deed, in cases where the associated transfer function
H(p) = (Lh)(p) is rational, the identification prob-
lem is classically tackled by means of well known
adapted methods, such as ARMAX for example. On
the other hand, systems with non rational transfer
functions H(p) are associated, in the time domain,

to infinite-dimensional state representations, which
makes the identification problem tricky.

As the operator H(∂t) is linear, it can be interest-
ing to work in the frequency domain; the unknown
object to be identified is then the symbol H(iω) of
the operator, that is the Fourier transform of its im-
pulse response h, which can be identified by means
of Fourier techniques. However, frequency identifi-
cation methods present some well-known shortcom-
ings. In particular, the so-identified symbol H(iω) is
in general ill adapted to the construction of efficient
time-realizations of the associated identified opera-
tor. Frequency methods are also incompatible with
real-time identification (and so with pursuit when the
symbol has the ability to evolve slowly). But above
all, the number of unknown numerical parameters is
in general excessive, which makes the problem sensi-
tive to measurement noises.

Time domain techniques, which do not present
such drawbacks, have also been developed for the
identification of such input-output linear models.
Among them, we can mention the approaches based
on the approximation of the non rational transfer
function by a rational one (by means for example
of the well-known Padé approximations). Neverthe-
less such approximations in general do not enable to
correctly represent from a small number of identified
numerical parameters some of the complex dynamic
phenomena present in many physical systems.

The proposed identification method is based on a
suitable parameterization of operator H(∂t) deduced
from the so-called diffusive representation [1, 2]. Ac-
cording to this approach, a wide class of integral
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causal operators (including both rational and non ra-
tional ones) can be studied and realized by means of
suitable state representations. In these state formu-
lations, a new mathematical object associated with
the operator is introduced: the so-called γ-symbol, in
general denoted by µ. When it exists, the γ-symbol
allows to realize the operator under consideration as
an output of a universal state representation of diffu-
sive nature, the state of which is namely the diffusive
representation of the input u, denoted ψu. As ψu

is a function of a continuous parameter ξ ∈ R, the
state representation is of infinite dimension. How-
ever, cheap and precise finite dimension approxima-
tions can be easily built, thanks to the diffusive na-
ture of the state equation, in such a way that only
a small number of unknown numerical parameters in
general suffices to get a good accuracy. As a conse-
quence, and because the output is expressed linearly
with respect to the γ-symbol µ, an approximate γ-
symbol can be identified from measurement data by
means of a simple least squares method.

Identifying the γ-symbol of a convolution operator
presents numerous advantages. First the so-identified
model can be expressed under the form of a stable
input-output state equation. Then, some recursive
identification algorithms, which are compatible with
real-time identification or even pursuit, can be easily
deduced. Finally, as for purely frequency methods,
the identification process can be used for rational as
well as non rational models without any distinction.

The paper is organized as follows. In section 2,
we briefly present a simplified version of the diffusive
representation approach. In sections 3, 4, we describe
the identification method in a general framework and
we give some indications for numerical implementa-
tions. In section 5, we finally test the method on a
simple example of non rational model and we com-
ment the obtained results, which allows us to high-
light the relevance of the approach.

2 Diffusive formulation of

causal convolution opera-

tors

A complete statement of diffusive representation can
be found in [1]; a shortened one is presented in [2].
For various applications and questions relating to this
approach, we can refer for example to [3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13].

2.1 Principle

We consider a causal convolution operator defined,
on any continuous function u : R+ → R, by

u 7→
∫ t

0

h(t− s)u(s) ds. (2)

We denote H the Laplace transform of h and H(∂t)
the convolution operator defined by (2).
Let ut(s) = 1]−∞,t](s)u(s) be the restriction of u to

its past and ut(s) = ut(t− s) the so-called ”history”
of u. From causality of H(∂t), we deduce:

[H(∂t)(u− ut)](t) = 0 for all t; (3)

then, we have for any continuous function u:

[H(∂t)u](t)=
[

L−1 (H Lu)
]

(t)=
[

L−1
(

H Lut
)]

(t).
(4)

We define:

Ψu(t, p) := ep t
(

Lut
)

(p) = (Lut) (−p); (5)

by computation of ∂tLut, Laplace inversion and use
of (4), we then have:

Lemma 1 1. The function Ψu is solution of the dif-
ferential equation:

∂tΨ(t, p) = pΨ(t, p) + u, t > 0, Ψ(0, p) = 0. (6)

2. For any b > 0,

[H(∂t)u] (t) =
1

2iπ

∫ b+i∞

b−i∞

H(p)Ψu(t, p) dp. (7)
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Let γ be a closed1 simple arc in C
−; we denote

Ω+
γ the exterior domain defined by γ, and Ω−

γ the

complementary of Ω+
γ . By use of standard techniques

(Cauchy theorem, Jordan lemma), it can be shown:

Lemma 2 For γ such that H is holomorphic in Ω+
γ ,

if H(p) → 0 when |p| → ∞ in Ω+
γ , then:

[H(∂t)u] (t) =
1

2iπ

∫

γ̃

H(p)Ψu(t, p) dp, (8)

where γ̃ is any closed simple arc in Ω+
γ such that

γ ⊂ Ω−
γ̃ .

We now suppose that γ, γ̃ are defined by functions
of the Sobolev space2). W 1,∞

loc (R;C), also denoted γ,
γ̃ and such that, for simplicity:

γ(0) = 0. (9)

We also suppose that there exists αγ ∈]π2 , π[ and a ∈
R such that:

ei[−αγ , αγ ]R+ + a ⊂ Ω+
γ . (10)

By use of the convenient notation3 〈µ, ψ〉 =
∫

µψ dξ,
and under hypotheses of lemma 2, we have [1]:

Theorem 1 If the possible singularities of H on γ
are simple poles or branching points such that |H ◦ γ|
is locally integrable in their neighbourhood, then:

1. with µ̃ = γ̃′

2iπ H ◦ γ̃ and ψ̃(t, .) = Ψu(t, .) ◦ γ̃:

[H(∂t)u] (t) = 〈µ̃, ψ̃(t, .)〉; (11)

2. with4 γ̃n → γ in W 1,∞
loc and µ = γ̃′

2iπ limK ◦ γ̃n in
the sense of measures:

[H(∂t)u] (t) = 〈µ, ψ(t, .)〉 , (12)

where ψ(t, ξ) is solution of the following evolution
problem on (t, ξ) ∈ R

∗+×R (of diffusive type):

∂tψ(t, ξ) = γ(ξ)ψ(t, ξ) + u(t), ψ(0, ξ) = 0. (13)

1Possibly at infinity
2W

1,∞
loc

(R;C) is the topological space of measurable func-
tions f : R → C such that f, f ′ ∈ L∞

loc
(that is f and f ′ are

locally essentially bounded
3Note that in particular, when µ is atomic, that is µ =∑
k ak δξk , we have: 〈µ, ψ〉 =

∑
k ak ψ(ξk).

4This convergence mode means that on any bounded set P ,
γ̃n|P

− γ|P → 0 and γ̃′
n|P

− γ′
|P

→ 0 uniformly.

Definition 1 The measure µ defined in theorem 1 is
called the γ-symbol of operator H(∂t). The function
ψ solution of (14) is called the γ-representation of u.

Example 1 Note in particular that thanks to (15),
the Dirac measure δ is clearly a γ-symbol of the op-
erator u 7→

∫ t

0
u(s) ds, denoted ∂−1

t . We indeed have

(∂−1
t u)(t) = 〈δ, ψ(t, .)〉 = ψ(t, 0), with ∂tψ(t, 0) = u,

ψ(0, 0) = 0.

Beyond the measure framework, the general space
of γ-symbols is a quotient space of distributions, de-
noted ∆′

γ ; it is the topological dual of the topological
vector space ∆γ ∋ ψ(t, .) [1].

Thanks to the sector condition (10) verified by γ,
the state representation is of diffusive type; this prop-
erty allows to easily build cheap and precise numeri-
cal approximations of (14,15) as explained in section
2.4.

2.2 Summary

Given γ as defined above, the diffusive represen-
tation of an operator H(∂t) is the following state-
representation:

∂tψ(t, ξ) = γ(ξ)ψ(t, ξ) + u(t), ψ(0, .) = 0,(14)

(H(∂t)u)(t) = < µ,ψ(t, .) >∆′
γ ,∆γ

, (15)

where µ ∈ ∆′
γ is the γ-symbol of H(∂t); the main

conditions the operator has to satisfy to admit such
a representation are:

• H holomorphic in Ω+
γ , (16)

• H(p) → 0 when |p| → +∞ in Ω+
γ . (17)

2.3 Extension to higher order opera-

tors

Formulation (14,15) can be extended to operators of
the form H(∂t) = K(∂t) ◦ ∂nt where K(∂t) admits a
γ-symbol ν in ∆′

γ . We have (formally):

[K(∂t) ◦ ∂nt u](t) = 〈ν, ∂nt ψ(t, .)〉 , (18)

with ψ(t, ξ) solution of (14). In the particular case
where n = 1, (18) becomes:

[K(∂t) ◦ ∂t u](t) = 〈ν, γ ψ(t, .) + u(t)〉 . (19)
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2.4 About numerical approximations

The state equation (14) is infinite-dimensional. To
get numerical approximations, we consider a se-
quence ML of L-dimensional spaces of atomic mea-
sures on suitable meshes {ξLl }l=1:L on the variable
ξ; L-dimensional approximations µL of the γ-symbol
µ ∈ ∆′

γ are then defined in the sense of atomic mea-
sures, that is:

µL =
L
∑

l=1

µL
l δξL

l
, µL

l ∈ C. (20)

If ∪LML is dense in the topological space ∆′
γ (that

is, concretely, if ∪L{ξLl } is dense in R), then we can
have [1]:

〈

µL, ψ
〉

−→
L→+∞

〈µ, ψ〉 ∀ψ ∈ ∆γ ; (21)

we then deduce the following L-dimensional approx-
imate state formulation of H(∂t) (with γ-symbol µ):











∂tψ(t, ξ
L
l ) = γ(ξLl )ψ(t, ξ

L
l ) + u(t), l = 1 : L,

ψ(0, ξLl ) = 0,

[H(∂t)u](t) ≃
∑L

l=1 µ
L
l ψ(t, ξ

L
l ).

(22)

Note that in the particular case where H(∂t) =
K(∂t) ◦ ∂t with K(∂t) an operator which admits a γ-
symbol ν in ∆′

γ , an approximate state formulation of
operator H(∂t) is given, from (19), under the form:

H(∂t)u ≃
∑

l
γ(ξLl ) ν

L
l ψ(., ξ

L
l ) +

∑

l
νLl u. (23)

One of the properties of the approach presented
above is that most of non rational operators encoun-
tered in practice can be closely approximate with
small L (see for example [14]). In the context of iden-
tification of convolution models, this is a great ad-
vantage because only a few numerical parameters µL

l

have to be identified from experimental data, while
the property (21) ensures the well-posedness and the
robustness of the problem as soon as the operator to
be identified admits a γ-symbol in ∆′

γ .

3 Identification of an operator

by means of its γ-symbol

We consider in the sequel the problem of identifica-
tion of the model:

H(∂t)u = x, (24)

where H(∂t) is an integral operator. The goal is to
build an estimation (if possible optimal) of the γ-
symbol of H(∂t) from (possibly noisy) measurements
um and xm of the input u and the associated output
x.

3.1 Principle

Let H(∂t) be a linear integral operator. We suppose
there exists n ∈ N and K(∂t) an operator admitting
a γ-symbol ν in ∆′

γ , such that H(∂t) = K(∂t) ◦ ∂nt .
We then have (see section 2):

x = H(∂t)u = 〈ν, ∂nt ψu〉 =
〈

ν, ψ∂n
t u

〉

. (25)

By denoting A∂n
t u the operator defined by:

A∂n
t u : ν 7−→

〈

ν, ψ∂n
t u

〉

, (26)

we get a new formulation, linear with respect to the
γ-symbol ν:

x = A∂n
t u ν, (27)

from which ν can be identified by classical least
squares methods. Indeed, from (possibly noisy) mea-
surements xm and um of the trajectories x and u, let
us consider the minimisation problem:

min
ν∈E

∥

∥A∂n
t um

ν − xm
∥

∥

2

F
, (28)

where E is a Hilbert subspace of ∆′
γ and F another

Hilbert space chosen a priori. The solution of this
problem then gives an (optimal) estimation ν∗ of the
unknown γ-symbol ν; it is expressed:

ν∗ = A†
∂n
t um

xm, (29)

where A†
∂n
t um

designates the pseudo-inverse[15] of op-
erator A∂n

t um
.
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Remark 1 For example, we can consider the space
F := L2(0;T ) with T > 0, and the associated norm:

‖f‖F =

(

∫ T

0

|f(t)|2 dt
)

1

2

. (30)

By denoting K∗(∂t) the operator with γ-symbol
ν∗ and H∗(∂t) = K∗(∂t) ◦ ∂nt , the identified model is
then written:

x = H∗(∂t)u, (31)

or, under diffusive representation:

{

∂tψ = γ ψ + ∂nt u, ψ(0, .) = 0

x =
〈

ν∗, ψ∂n
t u

〉

.
(32)

Remark 2 Recursive formulations of (29) can be es-
tablished under the form (see [7]):

ν∗t = ν∗t−∆t +Kt−∆t(xm −A∂n
t um

ν∗t−∆t)|[0,t]; (33)

such formulations allow real-time identification (or
even the pursuit of ν in case of slowly varying oper-
ators H(t, ∂t)).

3.2 On the bias of the estimator ν
∗

The exact (but unknown) value of ν is denoted ν0; it
verifies:

x = A∂n
t u ν0. (34)

We suppose in the sequel that ν0 ∈ E . In the
sense of the hilbertian norm of F , the estimator ν∗

of ν0 is optimal. Let suppose xm = x + ηx and
um = u + ηu with ηx and ηu two Gaussian noises
such that E [ηx] = E [ηu] = 0. If ηu 6= 0, the estima-

tor ν∗ is biased because A†
∂n
t um

depends on the mea-
surement noise. To mitigate this problem, it could be
interesting to consider some classical bias reduction
methods as the ones used in time-continuous system
identification.

Note that in the case where ηx = 0, we can get
an unbiased estimation by identifying the operator
H(∂t)

−1 with input x and output u instead of H(∂t).
If we suppose that there exists n ∈ N and K(∂t)

an operator admitting a γ-symbol ν ∈ ∆′
γ such that

H(∂t)
−1 = K(∂t) ◦ ∂nt , we indeed have:

u = H(∂t)
−1x = A∂n

t xν, (35)

and so we get, after identification:

ν∗ = A†
∂n
t xum. (36)

The identified model can then be written:

x = K∗(∂t)
−1 ◦ ∂−n

t u, (37)

that is, under diffusive representation:

{

∂tψ = γ ψ + u, ψ(0, .) = 0

x =
〈

(ν∗)−1#δn, ψu

〉

,
(38)

where (ν∗)−1, δn and (ν∗)−1#δn are the respective γ-
symbols of K∗(∂t)

−1, ∂−n
t and K∗(∂t)

−1 ◦ ∂−n
t . The

computation of (ν∗)−1#δn can be numerically per-
formed from ν∗ as shown in [16].

3.3 Prefiltering with an invertible

convolution operator

The identification model (27) can be equivalently
transformed by composition with any invertible
causal convolution operator Q(∂t). Indeed we have:

Q(∂t)x = Q(∂t) ◦H(∂t)u = H(∂t) ◦Q(∂t)u; (39)

by denoting x̃ = Q(∂t)x and ũ = Q(∂t)u, the model
is then rewritten:

x̃ = H(∂t)ũ. (40)

When applying the identification method to model
(40), the estimator of ν0 is written:

ν∗ = A†
∂n
t ũm

x̃m, (41)

with ũm = Q(∂t)um and x̃m = Q(∂t)xm.

When n > 1, such a transformation is necessary;
otherwise, due to unbounded high frequency amplifi-
cation resulting from operator ∂nt , the high frequency
noise present in the term ∂nt um would make the iden-
tification quite impossible. When n = 1, we use the
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formulation (19) instead of (18); thus, the term ∂tum
is not involved and the noise is not amplified.
So to avoid high frequency noise amplification, the
operator Q(∂t) has to be chosen in such a way that
high frequencies are sufficiently attenuated, without
amplifying low and middle ones, that is:

|Q(iω)| ∼
H.F

1

ωn
, |Q(iω)| ∼

L.F
1; (42)

basically, it behaves like a nth order low-pass filter.
We simply consider in the sequel the transfer func-
tion:

Q(p) =
σn

(p+ σ)n
, (43)

where σ > 0 (the cut-off frequency) will be chosen

in such a way that
∥

∥A∂n
t ũm

ν − x̃m
∥

∥

2

F
is ”as small as

possible”.
Note that the transfer function Q(p) could also be

optimized in order to minimize the estimation error.

3.4 Case of multiple measured trajec-

tories

Consider a set of input trajectories uj , j = 1 : J
and the associated output trajectories xj = H(∂t)u

j .
Let ujm and xjm be some measurements of uj and xj .
Then, without any change of notations, model (27)
can be extended to the general case of multiple tra-
jectories simply by defining:

u = (u1, ..., uJ)T , x = (x1, ..., xJ)T , (44)

um = (u1m, ..., u
J
m)

T , xm = (x1m, ..., x
J
m)

T , (45)

and A∂n
t u : ν 7−→







< ν, ψ∂n
t u1 >
...

< ν, ψ∂n
t uJ >






. (46)

4 Numerical formulation

In this section, we show how to numerically solve
the problem (28). For that, we first have to choose
the contour γ on which the problem is based. Then,
the discretization of the variable ξ leads to a time
continuous approximate problem of finite dimension.
Finally, we discretize the problem in the time variable

t and get the numerical solution by classical pseudo
inversion of a matrix.

4.1 Discrete measurement data

We consider J solutions (uj , xj), j = 1 : J of (24) and
a discretization {tk}k=0:K of the variable t defined by:

t0 = 0; tk = tk−1 +∆tk, k = 1 : K. (47)

We will denote in the sequel T = tK .

Let {uj,km , xj,km }k=0:K,j=1:J be some sets of discrete
data with uj,km and xj,km the respective measurements
of uj and xj at time tk. We also denote ujm and xjm
the time continuous measurement trajectories such
that ujm(tk) = uj,km and xjm(tk) = xj,km .

4.2 Choice of contour γ

The operator K(∂t) = H(∂t)◦∂−n
t is supposed to ad-

mit a γ-symbol ν in ∆′
γ , which implies, from lemma

2, that K is analytic in Ω+
γ . So, all the singularities

of K have to be inside the domain Ω−
γ delimited by

γ. However, as the operator H(∂t) is unknown, so
is the position of the singularities of K. As a conse-
quence, the contour γ will be chosen in such a way

that the domain Ω−
γ is sufficiently big to contain all

the singularities of K. In practice, we often take a
contour of sector type (see figure 1):

γ(ξ) = |ξ| ei sign(ξ)(π
2
+α), (48)

with α ∈]0, π2 ] small enough.
If the identification results are good with a small an-
gle α, then we can iterate the process with a greater
α. Note that in practice, available informations about
the operator H(∂t) to be identify can help us in the
choice of γ.

Remark 3 Note however that the more γ is close to
the axis iR (stability limit axis), the finer (and so the
more expensive numerically) the discretization in ξ
has to be in order to get a good approximation of the
model.
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Figure 1: Examples of contours γ

4.3 Approximate problem of finite di-

mension

We consider a discretization {ξl}l=1:L of the variable
ξ, and the approximation ofH(∂t)u

j = A∂n
t uj ν given

by (see paragraph 2.4):

[

A∂n
t uj ν

]

(t) ≃
L
∑

l=1

νLl ψ∂n
t uj (t, ξl), with ν

L
l ∈ C.

(49)
The time-continuous approximate model can then be
written:

L
∑

l=1

νLl ψ∂n
t uj (t, ξl) = xj(t), (50)

that is, under matrix form:

Ψ∂n
t u ν

L = x, (51)

where u and x are defined by (44), νL = (νL1 , ..., ν
L
L)

T ,
and Ψ∂n

t u : t ∈ [0, T ] −→ Ψ∂n
t u(t) with Ψ∂n

t u(t) the
J-by-L matrix defined by:

[

Ψ∂n
t u(t)

]

j,l
= ψ∂n

t uj (t, ξl). (52)

This leads to the minimization problem:

min
ν∈CL

∥

∥Ψ∂n
t u ν − x

∥

∥

2

F
, (53)

with F := (L2(0;T ))J and:

‖f‖2F =

J
∑

j=1

∫ T

0

∣

∣f j(t)
∣

∣

2
dt. (54)

Note that the available data {uj,km , xj,km } allow
to correctly approximate the frequency response

H(iω) only in the frequency band
[

2π
tK
, 2π
2 max{∆tk}

]

.

Consequently, the band [ξ1, ξL] covered by the
ξ−discretization will be chosen in such a way that
[

2π
tK
, 2π
2max{∆tk}

]

⊂ |γ ([ξ1, ξL])|. In the particular

case of sector contours of the form (48), we have
|γ(ξ)| = |ξ|; so, by noting that |γ(ξ)| can be con-
sidered as a cut-off frequency (associated with the
input-output realization ∂tψ = γ(ξ)ψ + u), we can
state the practical condition:

[ 2π
tK
, 2π
2max{∆tk}

] ⊂ [min |γ (ξl) |,max |γ(ξl)|] . (55)

Some further indications about the choice of the dis-
cretization points ξl can be found in [1].

4.4 Time discretization

By means of suitable quadrature of the integral, prob-
lem (53) is approximated by:

min
ν∈CL

‖Aum
ν − xm‖2CJ×K , (56)

with:

• ‖z‖2
CJ×K =

∑J
j=1

∑K
k=1 |cj,k|

2
∆tk,

• xm = (x1,1m , ..., x1,Km , x2,1m , ..., xJ,1m , ..., xJ,Km )T ,

• and Aum
the matrix defined by:

Aum
=











Ψ1

...
ΨJ











where Ψj
k,l = ψl,k

∂n
t u

j
m

is an approximation of the

diffusive representation of ∂nt u
j
m at ξ = ξl and
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t = tk, deduced from numerical integration of
the state equation of ψ

∂n
t u

j
m

, namely:











Ψj
k,l = eγ(ξl)∆tk Ψj

k−1,l +
eγ(ξl)∆tk − 1

γ(ξl)
∂nt u

j,k−1
m ,

Ψj
0,l = 0

(57)

The solution of (56) is then given by:

ν∗ = A†
um

xm, (58)

with:

A†
um

= (A∗
um
DAum

)−1A∗
um
D, (59)

D = diag(∆t1, ...,∆tK). (60)

Remark 4 The above minimization problem can
sometimes be ill conditioned: as usual, a penalization
term can judiciously be added, so that (59) becomes:

A†
um

= (A∗
um
DAum

+ εJ)−1A∗
um
D, (61)

with ε a small positive parameters and J a suitable
matrix (for example the identity one).

5 Validation on a simple nu-

merical example

In this section, we implement the method presented
above on a simple example in order to validate it and
highlight its efficiency.

5.1 Model under consideration

We consider the operatorH(∂t) with Laplace-symbol:

H(p) =

√
p

p+ 1
. (62)

We have:

• H is holomorphic in C \ R−,

• H(p) → 0 when |p| → +∞ in C \ R−.

So, with the contour γ defined by (see figure 1):

γ(ξ) = − |ξ| , (63)

operator H(∂t) admits a γ-symbol (denoted µ) and
therefore a diffusive realization.

5.2 Data

The data {uj,km , xj,km } used for identification are ob-
tained by numerical simulation of the diffusive real-
ization of H(∂t)u = x, with L = 120 discretization
points ξl geometrically spaced between ξ1 = 10−1 and
ξL = 103, and γ defined by (63). We take J = 1 (that
is only one measurement set is available).
In figure 2, the Bode diagram of the frequency re-

sponse of the so-approximate operator is compared
to the one of the theoretical operator with symbol
H(p). Note that the approximation is quasi exact in
the frequency band [10−1, 103] covered by the mesh
{ξl}.
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Figure 2: Bode diagrams of the theoretical operator

H(∂t) = ∂
1

2

t ◦ (∂t + 1)−1 and of the approximate one
used for the simulation of data.

The time discretization {tk}k=0:K is defined by:

tk = k∆t, (64)

with K = 150 000 and ∆t = 10−3. The input is
a Dirac impulse at time t = 0, that is u = δt=0,
associated with the discrete input {uk}k=0:K defined
by:

uk =

{

1 if k = 0
0 otherwise.

(65)
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The associated discrete output is denoted {xk}k=0:K .
The input trajectory is supposed to be known (with-
out noise) and the (discrete) output measured tra-
jectory under consideration is obtained from {xk} by
addition of numerical white noise ηkx with standard
deviation σx, that is:

ukm = uk, xkm = xk + ηkx. (66)

5.3 Quantitative evaluation of identi-

fication errors

In order to estimate the accuracy of the identification
of H(iω), we consider the following quantities E and
Esup:

E =

∑

i

∣

∣

∣

∣

L
∑

l=0

µ∗
l

iωj − γ(ξl)
−H(iωj)

∣

∣

∣

∣

∆ωj

ωj

∑

j |H(iωj)|
∆ωj

ωj

≃

∫ ω2

ω1

1

ω

∣

∣

∣

∣

L
∑

l=0

µ∗
l

iω − γ(ξl)
−H(iω)

∣

∣

∣

∣

dω

∫ ω2

ω1

1

ω
|H(iω)| dω

(67)

and

Esup = supωj

∣

∣

∣

∣

L
∑

l=0

µ∗
l

iωj − γ(ξl)
−H(iωj)

∣

∣

∣

∣

|H(iωj)|

≃ supω

∣

∣

∣

∣

L
∑

l=0

µ∗
l

iω − γ(ξl)
−H(iω)

∣

∣

∣

∣

|H(iω)| .

(68)

5.4 Case where the exact µ0 is in the

solution space E
In order to validate the method, we identify the op-
erator H(∂t) with the same contour γ and the same
discretization points {ξl} than the ones used for the
simulation of data. In such a case, there exists (a
unique) µ0 ∈ E such that Au µ0 = x and so, the
identified solution µ∗ should be equal to µ0, up to
some negligible numerical errors.
The results obtained on the one hand without any

measurement noise (ηkx = 0), and one the other hand

with standard deviation of the measurement noise
σx = 10−4 are given in figure 3. In the two cases,
the frequency response is well identified in the fre-
quency band accessible by the data and the ξl, that
is [ 2π

K ∆t
, 2π
2∆t

] = [4.19×10−2, 3.14×103]. In the noise
free case, the Bode diagrams of the identified opera-
tor and of the one used for the simulation of the data
are even superimposed.
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Figure 3: Validation of the identification

method in the ideal case : (a) and (b): Magnitude
(dB) and phase (degree) of the frequency responses of

H(∂t) = ∂
1

2

t ◦ (∂t + 1)−1, of its approximation under
diffusive representation and of the identified opera-
tor in the case without and with measurement noise
(σx = 10−4) - (c): Graphs of µ0 and µ∗.

To quantify the identification error on µ, we intro-
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σx E Esup Eµ ε
0 7.3121× 10−15 1.3064× 10−6 0.0065 10−16

10−7 6.6201× 10−13 9.0663× 10−5 0.0142 10−14

10−6 6.3046× 10−12 7.7146× 10−4 0.0895 10−13

10−5 5.3474× 10−11 0.0107 0.1218 10−12

10−4 6.7330× 10−10 0.0673 0.6314 10−11

10−3 3.2136× 10−9 0.3872 1.1134 10−10

Table 1: Comparison of the values of E, Esup and Eµ

for different values of the standard deviation σx of
the measurement noise.

duce the following quantity:

Eµ =
‖µ∗ − µ0‖2

‖µ0‖2
=

∑

l

∣

∣

∣
µ∗,L
l − µL

0,l

∣

∣

∣

∑

l

∣

∣

∣
µL
0,l

∣

∣

∣

. (69)

The values of E, Esup and Eµ are given in table 1 for
different values of σx. The value of the used condi-
tioning parameter ε (see (61)) is also given. When
σx → 0+, we clearly have H∗(iω) → H(iω) (in the
accessible frequency band [ 2π

K ∆t
, 2π
2∆t

]) and µ∗ → µ0

(when there is no measurement noise, the graphs of
the identified µ∗ and of µ0 are perfectly superim-
posed). Note also that, as expected, the larger the
measurement noise is, the greater the value of the
conditioning parameter ε has to be.

5.5 General case

In general, due to approximation errors, there does
not exist5 any µ0 in E such that Au µ0 = x .
So the operator H(∂t) is now identified with a con-

tour γ different from the one used for the simulation
of the data, namely:

γ(ξ) = |ξ| e 3iπ
4

sign(ξ). (70)

We take L = 140 points of ξ-discretization ξl geo-
metrically spaced between ξ1 = 10−1 and ξL = 103.
The output measurement noise has standard devia-
tion σx = 10−4 and the penalisation term is ε = 10−6.

5Of course, thanks to approximation properties, there exists
some µ such that Au µ ≃ x.

The Bode diagram of the identified operator and
the graph of µ∗ are given in figure 4. As expected,
the identification is less accurate than in the previous
case. The results however remain of good quality,
with H∗(iω) very close to H(iω) (in the accessible
frequency band). We have finally:

E = 6.0210× 10−10, Esup = 0.1499. (71)

6 Conclusion

As a first attempt to identify non rational convolu-
tion models by use of the method presented in section
3, the numerical results obtained in section 5 can be
considered as convincing, from both points of view of
implementation simplicity and accuracy. So, it can be
envisaged to implement this method in aim of identi-
fying some unknown complex convolution operators
involved in various physical problems. Some of these
complex operators are studied in ideal cases for ex-
ample in [13, 17].

Several questions must be studied in order to im-
prove the results presented in this paper. For exam-
ple, among the most significant ones, the involved
hilbertian norms should be judiciously chosen and
adapted to the specific properties of the class of mod-
els under consideration. Indeed, this choice is crucial
in terms of sensitivity with respect to perturbations
of any nature. It can also be shown that the mea-
surement noise induces some estimation bias, which
should be significantly reduced by appropriate treat-
ments. These problems will be tackled in a further
work.
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