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Abstract: Atmospheric pollutants concentration forecastsigm important issue in air quality
monitoring. Qualitair Corse, the organization rasgible for monitoring air quality in Corsica
(France), needs to develop a short-term prediatimael to lead its mission of information
towards the public. Various deterministic modelsefor local forecasting, but need important
computing resources, a good knowledge of atmosphamcesses and can be inaccurate
because of local climatical or geographical paldidties, as observed in Corsica, a
mountainous island located in the Mediterranean 8esaa result, we focus in this study on
statistical models, and particularly Artificial Nl Networks (ANNSs) that have shown good
results in the prediction of ozone concentratioa baur ahead with data measured locally. The
purpose of this study is to build a predictor raaly predictions of ozone 24 hours ahead in
Corsica in order to be able to anticipate pollutjpeaks formation and to take appropriate
preventive measures. Specific meteorological camdit are known to lead to particular
pollution event in Corsica (e.g. Saharan dust es)efitherefore, an ANN model will be used
with pollutant and meteorological data for openadibforecasting. Index of agreement of this
model was calculated with a one year test datagbteached 0.88.

Keywords. Air quality forecasting; Artificial Neural NetworkiMultilayer Perceptron; Ozone
concentration.

1. Introduction

Tropospheric ozone is a major air pollution probldroth for public health and for environment.
Ozone is not directly emitted by human activitigstroposphere, it is a secondary pollutant which
formation depends on a complex cycle [1,2]. Ozomeptioduced by atmospheric photochemical
reactions that need solar radiation. Its producisoilead by volatile organic compounds and nitrogen
oxides concentrations, both emitted by anthropageagtivities. Ozone concentration trend is
increasing due to the growth of emissions of iexprsors, and many countries are now equipped with
an air quality monitoring network which follows tbeone concentration at the ground-levels.

In France, this monitoring is performed by regiodal Quality Monitoring Agreed Associations
(AQMAA), thereby allowing the state to take appliafg measures to ensure a good air quality. Air
quality forecasting is an important tool that alfwuthorities to properly react in view to limit
anthropogenic pollutants emissions when a polluji@ak is predicted. AQMAAs use different
forecasting models, according to the charactesistictheir regions. Air quality forecasting models
have been reviewed recently [3,4]. In this revieatedministic models are distinguished from
statistical models. The principle of determinigtiodels is to solve differential equations that désc
atmospheric state. Those models are used in maoreraeconditions than statistical models but are
more complex and demand important computationaburees as well as a good knowledge of
atmospheric processes and pollutant sources. t®taltisnodels need local data of variables in
relationship with the predicted variable. They difficult to interpret but can outperform deternsini
models. Such models can be a good solution to dewelforecasting tool if pollution observed data
are available.



This work presents a dakesed forecasting model for the French island orsica This island is
seated in Mediterranean Seathe south of France arwest of Italy (Fig. 1)Corsici has an alpine
geography, with its highest ountair culminating at 2706m, and its averagjétude of 568m. Th

island has a Mediterranean cate and is exposed to winds such as SiroccMistral, whichconfer

on the island a complex metelogy and can bring pollution plums froftaly, France oAfrica. This

particular situation adds diffiulties to determinist air quality forecastinQualitair Corse is th

AQMAA in charge of air quali monitoringin Corsica Island.
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Fig. 1 - Position of the Corsica ishd in the occidentiMediterranean seand Corsica nf showing the
mountainous part of the island

In this study we use pollamt cata recorded by Qualitair Corse esolar radizion data from Météo
France, the French national:ather servic. We built a new predicting meel based orartificial
neural networkdrained with tlnse dati{see next section for detail$pr hourly 0zone concentratic
predictions 24 hours ahead/e will first introduce our model in section 2 bre presenting the de
operated by the mod#l sectior = Our experiments are shown in sectioand ‘heir result discussed
in section 5. he last part presd¢s the conclusiol of this study andome futureerspective.

2. Moddls

Artificial Neural Networks (ANNs) arestatistical models of artificial intelligerz family, ake to learn
complex relationships betwerinputs andoutputs. They wereeveloped soas to model how tr
human brain processes infornor in the 40s [5].

ANNSs are numerical calculato whose structu is inspired by biological neurc mode An ANN has
a paralleldistributed structureind consists of a set of processing elementzd neurons or node
The ANN structure is comped of an input layer which receives data, output layer to ser
computel information, and oner several hidden layers linking the input antput layers

Applications of ANNsin atmospheric scienc were reviewed in the late 908]. They have often
been used as time serifsgecasting models, and show good results in ttomair [7]. There are
various types of ANN architecres which fit or different modeling patterné.ccording to the chose
architecture, all or a part of thieurons in a layer are connecwith all or a par of the neurons of tr
previous and next layer. Theimber of hidden layers and of neurons in elayer depends on tl
specific model, convergence :ed, generalization capability, physical proesand training data that
the network will simulate [8].

Among possible architecturesMultilayer Perceptron (MLP) is distinguied b its universal
approximator capabilities [9], @an find any smooth mesurable redaship beween predictars and



predictors variablesThis struture was used to predict dailgnaximum ozce concentration ar
compared to other statistical attods with better performances [8]. MLPasvalso used in the pe
decade to forecast hourly ozolevel for a 8h horizo[10,11]. More recentlysome works hae shown
that his neural network architturecould be used to malaecurate hourly priiction one day ahe:
[12,13]. Preliminary work witl ANN in Corsicaalready ledto a model forl hour ahead ozot
concentration prediction [14].

A formal neuron, elementaryinstituant of an ANNtransforms the int varizbles it receivs in an
output variable. Each input of a neuroris multiplicated by a specific weigh,. A biasb is added to
the sum of all productg w; anc the result becomes the argument ofribaron’; activation functiorf
which gives theoutput variable The mathematical equivalent of a neuron vitimputs is a function
of the type :

N
y=f|> w+b @)
i=1

MLP is a feedforward neuralhetwork constitued by several layers of nes, eactone receiving
inputs from the previous layeand communicatintheir outputs to the next yei (see Fig. 2). The
input layer consists of the inpdata, it is connected to an internal layer ofroas called hidden laye

There may be a variable nuer of these interconected hidden layerseTlastlayer of neurons is
called output layer angroduces the outputs (the network It is important to nte that the input laye

is not composed by neurons by input date

Input Hidden Qutput
layer layer layer

Fig. 2 - Shematicview of aMLP with 3 inputs, 4 hidden nodes aBautput:

Qutput

The value of weigths and biasefsa MLP is determined during a supervidedrning phase.urpose
of this learning phase to mirimise the mean squared error between theut of theMLP and a
target datasdby addapting nevork’s weigths and biases. During the learnstgf, input and target
training data sets are providamthe network. Thitraining algorithmsearches ie best weigls/biases
configuration to capture the uerlyinc relationship between inpand target da.

The forecasting nature of the del lies in the choice of input and tardata sefor the training phas

Those data sets form time se. The target set is created bkifting forward n time the¢ forecasted
time series. During the trainy, the networkwill try to find the best confiuration to reproduc
relationships between input d and future value of target di Mathematical quivalent of a traine
MLP is a simple notinear regerssion of inputs, shown in Eq. 2 for a networth one hidden lay:.

Nh Ni
y=9 Z{Wjo[Ef(Zle D(i"'bj)J"'boJ (2)

j=1 i=1

with i the index of inputs, andhe index o neurons in the hidden layer,

N; the number of inputs arid, the number of neurons in the hidden ls

x the inputs ang the output,

f andg respectivelythe activatin functions of hidden neurons ¢ of output neuon

w;; the weight between the inpuand the hidden neurgrandb; the bias in hiddn neurorj,

W, the weight betweehidden reuronj and the output neuron abglthe bias in 1€ output neuron.



To evaluate the performances of this model, we lawsimple persistence model, whose principle is to
retain the actual valueof a time series as a forecasted vafug@ee Eq. 3).

X(t + 24) = x(t) (3)

It takes sense since we are making predictionsoRdstahead and the ozone concentration time series
has a periodical component of 24 hours. All comiioria were executed using Matl&b

3. Data

The air pollution data used in this study was messand collected by Qualitair Corse, the AQMAA
responsible for air pollution monitoring in Corsicdhe association has nine fixed automatic
monitoring stations which are distributed over tiséeand (Table 1 and Fig. 3). Corsica is a
mountainous island and most of the population cotmates on the coasts. Ajaccio and Bastia are the
two biggest cities, and the two main populationifmsFor public health purposes, air quality
monitoring focuses on those two regions that galegn the majority of the population and the main
emission sources of the island.

La Marana

-3/ prvenaco

ZEEPiataniccia;
v

Ajaccio

Fig. 3 - Monitoring stations in Corsiog@ase map provided by IGN)

The stations are classified into five categoriesfit, urban, suburban, industrial and rural meiasu
several atmospheric pollutants (N@zone, S§ small (PM2.5) and large (PM10) particles. We have
one station of the four first types in Ajaccio @aistia and a rural one in Venaco (centre of Coysica

Table 1
M easuring stationsin Corsica

Height above mean

Area Stations Category sea level (m) Measured pollutants
Giraud Urban 60 N©O;PM10 SQ
) Montesoro Suburban 47 N@; PM2.5
Bastia . .
St Nicolas Traffic 5 N@PM10
La Marana Industrial 15 NGD; PM10 SQ
Venaco Venaco Rural 653 N©@; PM10 PM2.5
Canetto Urban 39 N{OO; PM10 SQ
o Sposata Suburban 60 NO;
Ajaccio ) o )
Piataniccia Industrial 30 NGD; PM10 SQ
Diamant Traffic 12 NQPM10

In this paper, we only used pollutant data recoraethe two urban and the two suburban stations:
Canetto and Sposata in Ajaccio and Giraud and Montein Bastia. Those stations are representative
of population exposure to air pollutants in the teies. Five years of data were available for this

study, between the beginning of 2008 and the er#DdP. Global solar radiation data were provided

by Météo France. Other meteorological variablesewercorded at Sposata station and Montesoro
station.



All data were hourly averagemeasures are done evid0 seconds,idomatic tations ser averaged
data every 15 minutes ancethnourly averages are calculated). Endogenou exogenous data we
used as inputs of the netwc Exogenous data were pollution and we: data. Because of its
important role in the ozone pductioncycle [1], nitrogen dioxide concentrath (NC;) measured by
the station was used. Metewgical variables (wind force, wind directionlobal solar radiatic,
temperature and precipitationalled below MET dataset) are known to influe ozone concentratic
[2] andwere included into the <ogenous data s

We use Qconcentration hour time series shifted of 24 time steps as targitaset, representings
concentration al+24. When ditaare inputted into the network in view meake en hourly prediction
ath+24, several values of eacbserved predictor at dirent time lag are pased to the hidden laye
Those lags were chosen usiAgerage Mutual Information (AMI, see Eqg. 4Mutual informatiol
(measured in bits) ia quantitatre measure of statisticdependence between  datast.

N, P(Xi,Yj)
AMI(xy) =SS P(x, yi)log— 217
(x.y) gijz:l ( yj)ogp(xi)P(yj)

with x andy two time series,

n andm the numbers of claso compute time series distributic

i andj indexes of classes,

P(x;) the probability to have value within clasi,

P(y;) the probability to havg value witlin clasg,

P(xi,y;) the probability to have value within clasi andy value within clas$.

We calculated AMI between {&oncentration time series 24 hours in adwv and input data tirr
series for every lag between nd72 hours in order to find with which labe predictor time serie
shared the most information w O; concentration at+24. Fig 4 shows AMI o O; concentration and
wind direction. Periodical peks show the n¢stationarity of time seriesAlthough MLP is ¢
stationary estimator, it suited or nor-stationary cases on short horizon.

(4)

A
01
Lag=1h
£ Lag=25h Lag = 45h
0.08 -
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Lag in input time series (in hours)
Fig 4 - AMI of wind direction and)zone concentration at h+24, with the tree latgned to be passed as ing

The weekdaydring informaticn related to human activiti that impact theair quality (working or
non-working days). As suctemporal variabls havebeen shown to improvair quality forecastin
with ANNs [15], we chosé¢o use weekday number (1 for Monday to 7 for day)in this work. As
proposed in several studigg12], we also used periodical variables represe the cycle of passir
hours: sin(zh/24) et cos(2h/24). Those three time indices are below referre Tl datase

Both endogenous and exoous data may present several missing es due to measu

interruptions.Those missing vlues areproblematic they cannot be processhby tre model, which
mathematical operations are ined for real values. All missinwere replacedy the mean value of
the variable at the same day ae year and same h.. Other methods for dealy with missing value

have been reviewed [16], amdll be investigated in further work.

Before computation all inputs were normalized betwee-1 and 1. This measure avoic
ovarepresentation of one pretor in the prediction because of values range.



4. Experiments

We built an ANN model based on the MLP, using emthmgs and exogenous data. Levenberg-
Marquardt algorithm was used to train the netwargut data were delayed of 24 hours, to train the
network to a 24 hours ahead forecasting model.

There are various parameters to settle when creativMLP, the number of layers, the number of
neurons of each layer, the activation function eiinons. With one single hidden layer, a MLP is able
to model non-linear relationships between inputs @uputs. We used a one hidden layer MLP, since
we observed that adding a second hidden layer didintreased performance. We used various
numbers of neurons in the hidden layer and retainedonfiguration with the best results: 12 hidden
neurons. The output layer was composed of oneesinglron for one single output. Activation
function is a hyperbolic tangent function for thidden layer and a linear function for the neuron of
the output layer.

It is important to avoid over-fitting the trainim@ta, to ensure the network generalisation capdeity
that reason, we used the early-stopping methodaett iteration of the training phase, performances
of the model are tested on an independent settaf thee validation set. When this performance stops
increasing during 6 iterations in a row, the leagnphase is interrupted although training perforctean
score keeps growing. Trained MLP is then evaluatéid another independent data set, the test set, in
order to quantify prediction error. Three yearslafa composed the training set and validation esid t
sets were each composed of one year of data.

Performance was evaluated during the training pidgtbethe Mean Squared Error (MSE). During the
test phase we calculated Root Mean Squared ErfdiSE, normalised Root Mean Squared Error
(nRMSE), Mean Absolute Error (MAE) and Index of Agment (IA) which are reported below (Egs.
5 to 6). IA was introduced as an error indicesadué for forecasting model evaluation [17]. It rasg
between 0 (worst) and 1 (best) and representsetpeed to which prediction is error-free.

N
N N (2
MSE:%Z(Q -p) RMSE:\/%Z(Q -p) nRMSE= |=16 )

i=1

z:\il( Pi—G )2
Y. (p 0l +[o, -olf

with N the number of samples antheir index,
o, andp; observed and predicted concentrations,
o the global average of observed concentrations.

MAE=%i|q—pi| IA=1- (6)
i=1

We investigated four different input data configuras for data recorded in Canetto, Sposata,
Montesoro and Giraud station using successively:

-endogenous data ¢§@oncentration),

-endogenous and exogenous pollution dataD,),

-endogenous and exogenous pollution and meteooalbdata (G+tNO,+MET),

-endogenous and exogenous pollution and time isdiog-NO,+T]1),

-endogenous and exogenous data and time indigetN(@+MET+T]I)

at lags determined using AMI (see Eq. 4 in previgertior).

5. Results

Results of persistence and MLP models with differeputs are shown in Table 2. Each experiment
with MLP (network training + test) was run sevemds and we gave the average values of error
indices, to study the relationship between predicind performances. Those results are globally
close to other works ong@oncentration forecasting 24 hours in advance ANINS [12]. We can see
that performances of the model are enhanced bwdd@ion of NQ, meteorological variables and



time indices as input. However, this improvememais quite small (about 1% for nRMSE for all
stations).

Table 2
Error indices
Station ) _Model RMSE NRMSE MAE_3 IA*
(with input datasets)  (ug.M") (%) (ng.n)
Persistence 21.26 36.58 16.26 0.85
MLP (Os) 17.94 30.44 14.30 0.86
MLP (O:+NO,) 17.81 30.21 14.23 0.87
Canetto MLP (@+NO,+MET) 17.41 29.54 13.85 0.87
MLP (Os+NO,+TI) 17.31 29.37 13.66 0.88
MLP (Os+NO+MET+TI) 17.32 29.39 13.74 0.88
Persistence 20.44 34.03 15.63 0.85
MLP (Os) 17.50 28.35 13.88 0.85
MLP (Os+NO,) 17.44 28.24 13.80 0.85
Sposata MLP (@NO,+MET) 16.99 27.52 13.40 0.86
MLP (Os+NO»+TI) 17.19 27.84 13.57 0.86
MLP (Os+NO+MET+TI) 16.90 27.38 13.31 0.87
Persistence 19.46 25.60 14.73 0.81
MLP (Os) 17.19 22.69 13.39 0.79
MLP (O:+NO,) 16.89 22.22 13.12 0.80
Giraud MLP (Q+NO,+MET) 16.78 22.14 13.01 0.80
MLP (Os+NO»+TI) 16.61 21.92 1292 081
MLP (Os+NO+MET+TI) 16.53 21.81 12.82 0.81
Persistence 18.51 24.23 14.04 0.84
MLP (Os) 16.30 21.20 12.61 0.83
MLP (O3+NO,) 16.30 20.92 1241 084
Montesoro  MLP (@-NO,+MET) 16.06 20.90 12.39 0.84
MLP (Os+NO»+TI) 15.96 20.77 12.32 084

MLP (Os+#NO,+MET+TI) 15.90 20.69 12.30 0.84

1A is dimensionlesBest results written in bold

RMSE improvement due to addition of meteorologidata in input dataset is slightly better for
suburban stations (0.24 ug’rfor Montesoro and 0.45 pg-hfor Sposata) than for the corresponding
urban station (0.10 pg:tfor Giraud and 0.40 pg:frfor Canetto). The reason can be that those data
are recorded in the suburban stations. Suburbanraag also be less influenced by pollutant sources
than urban station, and thus relatively more depetsdto meteorology.

In term of NRMSE, the mean gain between the persist model and the best MLP is upper than 5%.
MLP models as persistence model perform better witltions from Bastia than from Ajaccio,
regardless of the setting. 1A follows an oppostkesne. This phenomenon could be the consequence
of two different ozone concentration dynamics. &jacand Bastia are two coastal cities and are
exposed to sea and land breezes. At night, ozonesotration in Bastia stay high while it drops in
Ajaccio as expected in normal conditions. This doude the consequence of two different
configurationsvis-a-vis nocturnal ozone income from rural areag do the land breeze. Ozone
concentration range is therefore larger in Ajacaibich could explain a bigger RMSE for all models
while the better 1A seems to show that the modeds raore precise than in Bastia where ozone
dynamics seems to be more complex.

For this station, the persistence model has evachesl the same IA than the MLP, though RMSE of
the neural network stays better. Other meteorobdgiariables that could help the network to leden t



nocturnal ozone behavior, as atmospheric boundamsr-Ithickness or other wind data in the region
(i.e. output of weather forecasting models) cowddblpful to improve the predictions.

6. Conclusion

A MLP model was built to forecast;@oncentration 24 hours ahead at two urban sit€oisica. The
neural network was trained with pollution and mesdagical data, in addition to temporal variablies.
showed good results, its performances were belfien those of the persistence model used as
reference.

This first work on air quality forecasting at harizh+24 with Corsican data helped to prepare the
building of an operational forecasting model ablel¢tect pollution event. In further work, we iy

to improve our predictions by several ways: we ¥atus on the data pretreatment: alternative way to
treat missing data will be investigated, we willlwen predictions with time series made stationary
and we will consider input data selection with gsal/enethods as genetic algorithms or AMI.

After those results, it seems interesting to us& neeteorological variables that could represent
specific dynamics of pollution concentration in ttveo cities. Finally, other pollutant forecasting
models, for N@ or fine particles concentration, will also be istigated.
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