
HAL Id: hal-00830122
https://hal.science/hal-00830122

Submitted on 4 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Least-squares methods for policy iteration
Lucian Busoniu, Alessandro Lazaric, Mohammad Ghavamzadeh, Rémi Munos,

Robert Babuska, Bart de Schutter

To cite this version:
Lucian Busoniu, Alessandro Lazaric, Mohammad Ghavamzadeh, Rémi Munos, Robert Babuska, et
al.. Least-squares methods for policy iteration. Reinforcement Learning: State of the Art, Springer,
pp.75-109, 2011. �hal-00830122�

https://hal.science/hal-00830122
https://hal.archives-ouvertes.fr

Least-Squares Methods for Policy Iteration

Lucian Buşoniu, Alessandro Lazaric, Mohammad Ghavamzadeh, Rémi Munos,

Robert Babuška, and Bart De Schutter

Abstract Approximate reinforcement learning deals with the essential problem of

applying reinforcement learning in large and continuous state-action spaces, by us-

ing function approximators to represent the solution. This chapter reviews least-

squares methods for policy iteration, an important class of algorithms for approxi-

mate reinforcement learning. We discuss three techniques for solving the core, pol-

icy evaluation component of policy iteration, called: least-squares temporal differ-

ence, least-squares policy evaluation, and Bellman residual minimization. We intro-

duce these techniques starting from their general mathematical principles and detail-

ing them down to fully specified algorithms. We pay attention to online variants of

policy iteration, and provide a numerical example highlighting the behavior of repre-

sentative offline and online methods. For the policy evaluation component as well as

for the overall resulting approximate policy iteration, we provide guarantees on the

performance obtained asymptotically, as the number of samples processed and iter-

ations executed grows to infinity. We also provide finite-sample results, which apply

when a finite number of samples and iterations are considered. Finally, we outline

several extensions and improvements to the techniques and methods reviewed.

Lucian Buşoniu, Alessandro Lazaric, Mohammad Ghavamzadeh, Rémi Munos

Team SequeL, INRIA Lille-Nord Europe, France,

{ion-lucian.busoniu,alessandro.lazaric, mohammad.ghavamzadeh,

remi.munos}@inria.fr
Robert Babuška, Bart De Schutter

Delft Center for Systems and Control, Delft University of Technology, The Netherlands,

{r.babuska, b.deschutter}@tudelft.nl
This work was performed in part while Lucian Buşoniu was with the Delft Center for Systems and

Control.

1

2 Buşoniu, Lazaric et al.

1 Introduction

Policy iteration is a core procedure for solving reinforcement learning problems,

which evaluates policies by estimating their value functions, and then uses these

value functions to find new, improved policies. In Chapter 2, the classical policy

iteration was introduced, which employs tabular, exact representations of the value

functions and policies. However, most problems of practical interest have state and

action spaces with a very large or even infinite number of elements, which precludes

tabular representations and exact policy iteration. Instead, approximate policy it-

eration must be used. In particular, approximate policy evaluation – constructing

approximate value functions for the policies considered – is the central, most chal-

lenging component of approximate policy iteration. While representing the policy

can also be challenging, an explicit representation is often avoided, by computing

policy actions on-demand from the approximate value function.

Some of the most powerful state-of-the-art algorithms for approximate policy

evaluation represent the value function using a linear parameterization, and obtain

a linear system of equations in the parameters, by exploiting the linearity of the

Bellman equation satisfied by the value function. Then, in order to obtain parameters

approximating the value function, this system is solved in a least-squares sample-

based sense, either in one shot or iteratively.

Since highly efficient numerical methods are available to solve such systems,

least-squares methods for policy evaluation are computationally efficient. Addition-

ally taking advantage of the generally fast convergence of policy iteration methods,

an overall fast policy iteration algorithm is obtained. More importantly, least-squares

methods are sample-efficient, i.e., they approach their solution quickly as the num-

ber of samples they consider increases This is a crucial property in reinforcement

learning for real-life systems, as data obtained from such systems are very expen-

sive (in terms of time taken for designing and running data collection experiments,

of system wear-and-tear, and possibly even of economic costs).

In this chapter, we review least-squares methods for policy iteration: the class

of approximate policy iteration methods that employ least-squares techniques at the

policy evaluation step. The review is organized as follows. Section 2 provides a

quick recapitulation of classical policy iteration, and also serves to further clarify

the technical focus of the chapter. Section 3 forms the chapter’s core, thoroughly

introducing the family of least-squares methods for policy evaluation. Section 4 de-

scribes an application of a particular algorithm, called simply least-squares policy

iteration, to online learning. Section 5 illustrates the behavior of offline and online

least-squares policy iteration in an example. Section 6 reviews available theoreti-

cal guarantees about least-squares policy evaluation and the resulting, approximate

policy iteration. Finally, Section 7 outlines several important extensions and im-

provements to least-squares methods, and mentions other reviews of reinforcement

learning that provide different perspectives on least-squares methods.

Least-Squares Methods for Policy Iteration 3

2 Preliminaries: Classical Policy Iteration

In this section, we revisit the classical policy iteration algorithm and some relevant

theoretical results from Chapter 2, adapting their presentation for the purposes of

the present chapter.

Recall first some notation. A Markov decision process with states s ∈ S and ac-

tions a ∈ A is given, governed by the stochastic dynamics s′ ∼ T (s,a, ·) and with

the immediate performance described by the rewards r = R(s,a,s′), where T is the

transition function and R the reward function. The goal is to find an optimal pol-

icy π∗ : S→ A that maximizes the value function V π(s) or Qπ(s,a). For clarity,

in this chapter we refer to state value functions V as “V-functions”, thus achieving

consistency with the name “Q-functions” traditionally used for state-action value

functions Q. We use the name “value function” to refer collectively to V-functions

and Q-functions.

Policy iteration works by iteratively evaluating and improving policies. At the

policy evaluation step, the V-function or Q-function of the current policy is found.

Then, at the policy improvement step, a new, better policy is computed based on this

V-function or Q-function. The procedure continues afterward with the next iteration.

When the state-action space is finite and exact representations of the value function

and policy are used, policy improvement obtains a strictly better policy than the

previous one, unless the policy is already optimal. Since additionally the number of

possible policies is finite, policy iteration is guaranteed to find the optimal policy in

a finite number of iterations. Algorithm 1 shows the classical, offline policy iteration

for the case when Q-functions are used.

1: input initial policy π0

2: k← 0

3: repeat

4: find Qπk {policy evaluation}

5: πk+1(s)← argmaxa∈A Qπk (s,a) ∀s {policy improvement}
6: k← k +1

7: until πk = πk−1

8: output π∗ = πk, Q∗ = Qπk

Algorithm 1: Policy iteration with Q-functions.

At the policy evaluation step, the Q-function Qπ of policy π can be found using

the fact that it satisfies the Bellman equation:

Qπ = Bπ
Q(Qπ) (1)

where the Bellman mapping (also called backup operator) Bπ
Q is defined for any

Q-function as follows:

[Bπ
Q(Q)](s,a) = Es′∼T (s,a,·)

{
R(s,a,s′)+ γQ(s′,π(s′))

}
(2)

4 Buşoniu, Lazaric et al.

Similarly, the V-function V π of policy π satisfies the Bellman equation:

V π = Bπ
V (V π) (3)

where the Bellman mapping Bπ
V is defined by:

[Bπ
V (V)](s) = Es′∼T (s,π(s),·)

{
R(s,π(s),s′)+ γV (s′)

}
(4)

Note that both the Q-function and the V-function are bounded in absolute value by

Vmax =
‖R‖∞
1−γ , where ‖R‖∞ is the maximum absolute reward. A number of algorithms

are available for computing Qπ or V π , based, e.g., on directly solving the linear

system of equations (1) or (3) to obtain the Q-values (or V-values), on turning the

Bellman equation into an iterative assignment, or on temporal-difference, model-

free estimation – see Chapter 2 for details.

Once Qπ or V π is available, policy improvement can be performed. In this con-

text, an important difference between using Q-functions and V-functions arises.

When Q-functions are used, policy improvement involves only a maximization over

the action space:

πk+1(s)← argmax
a∈A

Qπk(s,a) (5)

(see again Algorithm 1), whereas policy improvement with V-functions additionally

requires a model, in the form of T and R, to investigate the transitions generated by

each action:

πk+1(s)← argmax
a∈A

Es′∼T (s,a,·)
{

R(s,a,s′)+ γV (s′)
}

(6)

This is an important point in favor of using Q-functions in practice, especially for

model-free algorithms.

Classical policy iteration requires exact representations of the value functions,

which can generally only be achieved by storing distinct values for every state-

action pair (in the case of Q-functions) or for every state (V-functions). When some

of the variables have a very large or infinite number of possible values, e.g., when

they are continuous, exact representations become impossible and value functions

must be approximated. This chapter focuses on approximate policy iteration, and

more specifically, on algorithms for approximate policy iteration that use a class of

least-squares methods for policy evaluation.

While representing policies in large state spaces is also challenging, an explicit

representation of the policy can fortunately often be avoided. Instead, improved

policies can be computed on-demand, by applying (5) or (6) at every state where an

action is needed. This means that an implicit policy representation – via the value

function – is used. In the sequel, we focus on this setting, additionally requiring that

exact policy improvements are performed, i.e., that the action returned is always

an exact maximizer in (5) or (6). This requirement can be satisfied, e.g., when the

action space is discrete and contains not too large a number of actions. In this case,

Least-Squares Methods for Policy Iteration 5

policy improvement can be performed by computing the value function for all the

discrete actions, and finding the maximum among these values using enumeration.1

In what follows, wherever possible, we will introduce the results and algorithms

in terms of Q-functions, motivated by the practical advantages they provide in the

context of policy improvement. However, most of these results and algorithms di-

rectly extend to the case of V-functions.

3 Least-Squares Methods for Approximate Policy Evaluation

In this section we consider the problem of policy evaluation, and we introduce

least-squares methods to solve this problem. First, in Section 3.1, we discuss the

high-level principles behind these methods. Then, we progressively move towards

the methods’ practical implementation. In particular, in Section 3.2 we derive ideal-

ized, model-based versions of the algorithms for the case of linearly parameterized

approximation, and in Section 3.3 we outline their realistic, model-free implemen-

tations. To avoid detracting from the main line, we postpone the discussion of most

literature references until Section 3.4.

3.1 Main Principles and Taxonomy

In problems with large or continuous state-action spaces, value functions cannot be

represented exactly, but must be approximated. Since the solution of the Bellman

equation (1) will typically not be representable by the chosen approximator, the

Bellman equation must be solved approximately instead. Two main classes of least-

squares methods for policy evaluation can be distinguished by the approach they

take to approximately solve the Bellman equation, as shown in Figure 1: projected

policy evaluation, and Bellman residual minimization.

projected policy evaluation

Bellman residual
minimization, BRM

one-shot: least-squares
temporal difference, LSTD

iterative: least-squares
policy evaluation, LSPE

least-squares methods
for policy evaluation

Fig. 1 Taxonomy of the methods covered.

1 In general, when the action space is large or continuous, the maximization problems (5) or (6)

may be too involved to solve exactly, in which case only approximate policy improvements can be

made.

6 Buşoniu, Lazaric et al.

Methods for projected policy evaluation look for a Q̂ that is approximately equal

to the projection of its backed-up version Bπ
Q(Q̂) on the space of representable Q-

functions:

Q̂≈Π(Bπ
Q(Q̂)) (7)

where Π : Q→ Q̂ denotes projection from the space Q of all Q-functions onto the

space Q̂ of representable Q-functions. Solving this equation is the same as mini-

mizing the distance between Q̂ and Π(Bπ
Q(Q̂)): 2

min
Q̂∈Q̂

∥∥∥Q̂−Π(Bπ
Q(Q̂))

∥∥∥ (8)

where ‖·‖ denotes a generic norm / measure of magnitude. An example of such a

norm will be given in Section 3.2. The relation (7) is called the projected Bellman

equation, hence the name projected policy evaluation. As will be seen in Section 3.2,

in the case of linear approximation (7) can in fact be solved exactly, i.e. with equality

(whereas in general, there may not exist a function Q̂ that when passed through Bπ
Q

and Π leads exactly back to itself).

Two subclasses of methods employing the principle of projected policy evalua-

tion can be further identified: one-shot methods that aim directly for a solution to the

projected Bellman equation; and methods that find a solution in an iterative fashion.

Such methods are called, respectively, least-squares temporal difference (LSTD)

(Bradtke and Barto, 1996; Boyan, 2002) and least-squares policy evaluation (LSPE)

(Bertsekas and Ioffe, 1996) in the literature. Note that the LSPE iterations are inter-

nal to the policy evaluation step, contained within the larger iterations of the overall

policy iteration algorithm.

Methods for Bellman residual minimization (BRM) do not employ projection,

but try to directly solve the Bellman equation in an approximate sense:

Q̂≈ Bπ
Q(Q̂)

by performing the minimization:

min
Q̂∈Q̂

∥∥∥Q̂−Bπ
Q(Q̂)

∥∥∥ (9)

The difference Q̂−Bπ
Q(Q̂) is called Bellman residual, hence the name BRM.

In the sequel, we will append the suffix “Q” to the acronym of the methods that

find Q-functions (e.g., LSTD-Q, LSPE-Q, BRM-Q), and the suffix “V” in the case of

V-functions. We will use the unqualified acronym to refer to both types of methods

collectively, when the distinction between them is not important.

2 In this equation as well as the others, a multistep version of the Bellman mapping Bπ
Q (or Bπ

V)

can also be used, parameterized by a scalar λ ∈ [0,1). In this chapter, we mainly consider the

single-step case, for λ = 0, but we briefly discuss the multistep case in Section 7.

Least-Squares Methods for Policy Iteration 7

3.2 The Linear Case and Matrix Form of the Equations

Until now, the approximator of the value function, as well as the norms in the min-

imizations (8) and (9) have been left unspecified. The most common choices are,

respectively, approximators linear in the parameters and (squared, weighted) Eu-

clidean norms, as defined below. With these choices, the minimization problems

solved by projected and BRM policy evaluation can be written in terms of matrices

and vectors, and have closed-form solutions that eventually lead to efficient algo-

rithms. The name “least-squares” for this class of methods comes from minimizing

the squared Euclidean norm.

To formally introduce these choices and the solutions they lead to, the state and

action spaces will be assumed finite, S = {s1, . . . ,sN}, A = {a1, . . . ,aM}. Neverthe-

less, the final, practical algorithms obtained in Section 3.3 below can also be applied

to infinite and continuous state-action spaces.

A linearly parameterized representation of the Q-function has the following form:

Q̂(s,a) =
d

∑
l=1

ϕl(s,a)θl = φ⊤(s,a)θ (10)

where θ ∈ Rd is the parameter vector and φ(s,a) = [ϕ1(s,a), . . . ,ϕd(s,a)]⊤ is a

vector of basis functions (BFs), also known as features (Bertsekas and Tsitsiklis,

1996).3 Thus, the space of representable Q-functions is the span of the BFs, Q̂ ={
φ⊤(·, ·)θ

∣∣θ ∈ Rd
}

.

Given a weight function ρ : S× A→ [0,1], the (squared) weighted Euclidean

norm of a Q-function is defined by:

‖Q‖2
ρ = ∑

i=1,...,N
j=1,...,M

ρ(si,a j)
∣∣Q(si,a j)

∣∣2

Note the norm itself, ‖Q‖ρ , is the square root of this expression; we will mostly use

the squared variant in the sequel.

The corresponding weighted least-squares projection operator, used in projected

policy evaluation, is:

Π ρ(Q) = argmin
Q̂

∥∥∥Q̂−Q

∥∥∥
2

ρ

The weight function is interpreted as a probability distribution over the state-action

space, so it must sum up to 1. The distribution given by ρ will be used to generate

samples used by the model-free policy evaluation algorithms of Section 3.3 below.

3 Throughout the chapter, column vectors are employed.

8 Buşoniu, Lazaric et al.

Matrix Form of the Bellman Mapping

To specialize projection-based and BRM methods to the linear approximation,

Euclidean-norm case, we will write the Bellman mapping (2) in a matrix form, and

then in terms of the parameter vector.

Because the state-action space is discrete, the Bellman mapping can be written

as a sum:

[Bπ
Q(Q)](si,a j) =

N

∑
i′=1

T (si,a j,si′) [R(si,a j,si′)+ γQ(si′ ,π(si′))] (11)

=
N

∑
i′=1

T (si,a j,si′)R(si,a j,si′)+ γ
N

∑
i′=1

T (si,a j,si′)Q(si′ ,π(si′)) (12)

for any i, j. The two-sum expression leads us to a matrix form of this mapping:

BBBπ
Q(QQQ) = RRR+ γTTT π QQQ (13)

where BBBπ
Q : RNM → RNM . Denoting by [i, j] = i +(j− 1)N the scalar index corre-

sponding to i and j,4 the vectors and matrices on the right hand side of (13) are

defined as follows:5

• QQQ ∈ RNM is a vector representation of the Q-function Q, with QQQ[i, j] = Q(si,a j).

• RRR ∈ RNM is a vector representation of the expectation of the reward function R,

where the element RRR[i, j] is the expected reward after taking action a j in state

si, i.e., RRR[i, j] = ∑N
i′=1 T (si,a j,si′)R(si,a j,si′). So, for the first sum in (12), the

transition function T has been integrated into RRR (unlike for the second sum).

• TTT π ∈ RNM×NM is a matrix representation of the transition function combined

with the policy, with TTT [i, j],[i′, j′] = T (si,a j,si′) if π(si′) = a j′ , and 0 otherwise. A

useful way to think about TTT π is as containing transition probabilities between

state-action pairs, rather than just states. In this interpretation, TTT π
[i, j],[i′, j′] is the

probability of moving from an arbitrary state-action pair (si,a j) to a next state-

action pair (si′ ,a j′) that follows the current policy. Thus, if a j′ 6= π(si′), then

the probability is zero, which is what the definition says. This interpretation also

indicates that stochastic policies can be represented with a simple modification:

in that case, TTT π
[i, j],[i′, j′] = T (si,a j,si′) ·π(si′ ,a j′), where π(s,a) is the probability

of taking a in s.

The next step is to rewrite the Bellman mapping in terms of the parameter vec-

tor, by replacing the generic Q-vector in (13) by an approximate, parameterized

Q-vector. This is useful because in all the methods, the Bellman mapping is always

4 If the d elements of the BF vector were arranged into an N×M matrix, by first filling in the first

column with the first N elements, then the second column with the subsequent N elements, etc.,

then the element at index [i, j] of the vector would be placed at row i and column j of the matrix.
5 Boldface notation is used for vector or matrix representations of functions and mappings. Ordi-

nary vectors and matrices are displayed in normal font.

Least-Squares Methods for Policy Iteration 9

applied to approximate Q-functions. Using the following matrix representation of

the BFs:

ΦΦΦ [i, j],l = ϕl(si,a j), ΦΦΦ ∈ R
NM×d (14)

an approximate Q-vector is written Q̂QQ = ΦΦΦθ . Plugging this into (13), we get:

BBBπ
Q(ΦΦΦθ) = RRR+ γTTT π ΦΦΦθ (15)

We are now ready to describe projected policy evaluation and BRM in the linear

case. Note that the matrices and vectors in (15) are too large to be used directly in

an implementation; however, we will see that starting from these large matrices and

vectors, both the projected policy evaluation and the BRM solutions can be written

in terms of smaller matrices and vectors, which can be stored and manipulated in

practical algorithms.

Projected Policy Evaluation

Under appropriate conditions on the BFs and the weights ρ (see Section 6.1 for a

discussion), the projected Bellman equation can be exactly solved in the linear case:

Q̂ = Π ρ(Bπ
Q(Q̂))

so that a minimum of 0 is attained in the problem min
Q̂∈Q̂

∥∥∥Q̂−Π(Bπ
Q(Q̂))

∥∥∥. In

matrix form, the projected Bellman equation is:

ΦΦΦθ = ΠΠΠ ρ BBBπ
Q(ΦΦΦθ)

= ΠΠΠ ρ(RRR+ γTTT π ΦΦΦθ)
(16)

where ΠΠΠ ρ is a closed-form, matrix representation of the weighted least-squares pro-

jection Π ρ :

ΠΠΠ ρ = ΦΦΦ(ΦΦΦ⊤ρρρΦΦΦ)−1ΦΦΦ⊤ρρρ (17)

The weight matrix ρρρ collects the weights of each state-action pair on its main diag-

onal:

ρρρ [i, j],[i, j] = ρ(si,a j), ρρρ ∈ R
NM×NM (18)

After substituting (17) into (16), a left-multiplication by ΦΦΦ⊤ρρρ , and a rearrangement

of terms, we obtain:

ΦΦΦ⊤ρρρΦΦΦ θ = γΦΦΦ⊤ρρρTTT π ΦΦΦ θ +ΦΦΦ⊤ρρρRRR

or in condensed form:

Aθ = γBθ +b (19)

with the notations A = ΦΦΦ⊤ρρρΦΦΦ , B = ΦΦΦ⊤ρρρTTT π ΦΦΦ , and b = ΦΦΦ⊤ρρρRRR. The matrices A and

B are in Rd×d , while b is a vector in Rd . This is a crucial expression, highlighting

10 Buşoniu, Lazaric et al.

that the projected Bellman equation can be represented and solved using only small

matrices and vectors (of size d×d and d), instead of the large matrices and vectors

(of sizes up to NM×NM) that originally appeared in the formulas.

Next, two idealized algorithms for projected policy evaluation are introduced,

which assume knowledge of A, B, and b. The next section will show how this as-

sumption can be removed.

The idealized LSTD-Q belongs to the first (“one-shot”) subclass of methods for

projected policy evaluation in Figure 1. It simply solves the system (19) to arrive at

the parameter vector θ . This parameter vector provides an approximate Q-function

Q̂π(s,a) = φ⊤(s,a)θ of the considered policy π . Note that because θ appears on

both sides of (19), this equation can be simplified to:

(A− γB)θ = b

The idealized LSPE-Q is an iterative algorithm, thus belonging to the second

subclass of projected policy evaluation methods in Figure 1. It also relies on (19),

but updates the parameter vector incrementally:

θτ+1 = θτ +α(θ ′τ+1−θτ)

where Aθ ′τ+1 = γBθτ +b
(20)

starting from some initial value θ0. In this update, α is a positive step size parameter.

Bellman Residual Minimization

Consider the problem solved by BRM-Q (9), specialized to the weighted Euclidean

norm used in this section:

min
Q̂∈Q̂

∥∥∥Q̂−Bπ
Q(Q̂)

∥∥∥
2

ρ
(21)

Using the matrix expression (15) for Bπ , this minimization problem can be rewritten

in terms of the parameter vector as follows:

min
θ∈Rd
‖ΦΦΦθ −RRR− γTTT π ΦΦΦθ‖2

ρ

= min
θ∈Rd
‖(ΦΦΦ− γTTT π ΦΦΦ)θ −RRR‖2

ρ

= min
θ∈Rd
‖Cθ −RRR‖2

ρ

where C = ΦΦΦ− γTTT π ΦΦΦ . By linear-algebra arguments, the minimizer of this problem

can be found by solving the equation:

C⊤ρρρC θ = C⊤ρρρRRR (22)

Least-Squares Methods for Policy Iteration 11

The idealized BRM-Q algorithm consists of solving this equation to arrive at θ , and

thus to an approximate Q-function of the policy considered.

It is useful to note that BRM is closely related to projected policy evaluation,

as it can be interpreted as solving a similar projected equation (Bertsekas, 2010b).

Specifically, finding a minimizer in (21) is equivalent to solving:

ΦΦΦθ = ΠΠΠ ρ(B̄BB
π
Q(ΦΦΦθ))

which is similar to the projected Bellman equation (16), except that the modified

mapping B̄BB
π
Q is used:

B̄BB
π
Q(ΦΦΦθ) = BBBπ

Q(ΦΦΦθ)+ γ(TTT π)⊤[ΦΦΦθ −BBBπ
Q(ΦΦΦθ)]

3.3 Model-Free Implementations

To obtain the matrices and vectors appearing in their equations, the idealized algo-

rithms given above would require the transition and reward functions of the Markov

decision process, which are unknown in a reinforcement learning context. More-

over, the algorithms would need to iterate over all the state-action pairs, which is

impossible in the large state-action spaces they are intended for.

This means that, in practical reinforcement learning, sample-based versions of

these algorithms should be employed. Fortunately, thanks to the special structure

of the matrices and vectors involved, they can be estimated from samples. In this

section, we derive practically implementable LSTD-Q, LSPE-Q, and BRM-Q algo-

rithms.

Projected Policy Evaluation

Consider a set of n transition samples of the form (si,ai,s
′
i,ri), i = 1, . . . ,n, where

s′i is drawn from the distribution T (si,ai, ·) and ri = R(si,ai,s
′
i). The state-action

pairs (si,ai) must be drawn from the distribution given by the weight function ρ .

For example, when a generative model is available, samples can be drawn inde-

pendently from ρ and the model can be used to find corresponding next states and

rewards. From an opposite perspective, it can also be said that the distribution of

the state-action pairs implies the weights used in the projected Bellman equation.

For example, collecting samples along a set of trajectories of the system, or along a

single trajectory, implicitly leads to a distribution (weights) ρ .

Estimates of the matrices A and B and of the vector b appearing in (19) and (20)

can be constructed from the samples as follows:

12 Buşoniu, Lazaric et al.

Âi = Âi−1 +φ(si,ai)φ
⊤(si,ai)

B̂i = B̂i−1 +φ(si,ai)φ
⊤(s′i,π(s′i))

b̂i = b̂i−1 +φ(si,ai)ri

(23)

starting from zero initial values (Â0 = 0, B̂0 = 0, b̂0 = 0).

LSTD-Q processes the n samples using (23) and then solves the equation:

1

n
Ânθ = γ

1

n
B̂nθ +

1

n
b̂n (24)

or, equivalently:
1

n
(Ân− γB̂n)θ =

1

n
b̂n

to find a parameter vector θ . Note that, because this equation is an approximation of

(19), the parameter vector θ is only an approximation to the solution of (19) (how-

ever, for notation simplicity we denote it in the same way). The divisions by n, while

not mathematically necessary, increase the numerical stability of the algorithm, by

preventing the coefficients from growing too large as more samples are processed.

The composite matrix (Â− γB̂) can also be updated as a single entity ̂(A− γB),

thereby eliminating the need of storing in memory two potentially large matrices Â

and B̂.

Algorithm 2 summarizes this more memory-efficient variant of LSTD-Q. Note

that the update of ̂(A− γB) simply accumulates the updates of Â and B̂ in (23), where

the term from B̂ is properly multiplied by −γ .

1: input policy to evaluate π , BFs φ , samples (si,ai,s
′
i,ri), i = 1, . . . ,n

2: ̂(A− γB)0← 0, b̂0← 0

3: for i = 1, . . . ,n do

4: ̂(A− γB)i← ̂(A− γB)i−1 +φ(si,ai)φ
⊤(si,ai)− γφ(si,ai)φ

⊤(s′i,π(s′i))

5: b̂i← b̂i−1 +φ(si,ai)ri

6: end for

7: solve 1
n

̂(A− γB)nθ = 1
n

b̂n

8: output Q-function Q̂π (s,a) = φ⊤(s,a)θ

Algorithm 2: LSTD-Q.

Combining LSTD-Q policy evaluation with exact policy improvements leads to

what is perhaps the most widely used policy iteration algorithm from the least-

squares class, called simply least-squares policy iteration (LSPI).

LSPE-Q uses the same estimates Â, B̂, and b̂ as LSTD-Q, but updates the pa-

rameter vector iteratively. In its basic variant, LSPE-Q starts with an arbitrary initial

parameter vector θ0 and updates using:

Least-Squares Methods for Policy Iteration 13

θi = θi−1 +α(θ ′i −θi−1)

where
1

i
Âiθ

′
i = γ

1

i
B̂iθi−1 +

1

i
b̂i

(25)

This update is an approximate, sample-based version of the idealized version (20).

Similarly to LSTD-Q, the divisions by i increase the numerical stability of the up-

dates. The estimate Â may not be invertible at the start of the learning process, when

only a few samples have been processed. A practical solution to this issue is to

initialize Â to a small multiple of the identity matrix.

A more flexible algorithm than (25) can be obtained by (i) processing more than

one sample in-between consecutive updates of the parameter vector, as well as by

(ii) performing more than one parameter update after processing each (batch of)

samples, while holding the coefficient estimates constant. The former modification

may increase the stability of the algorithm, particularly in the early stages of learn-

ing, while the latter may accelerate its convergence, particularly in later stages as

the estimates Â, B̂, and b̂ become more precise.

Algorithm 3 shows this more flexible variant of LSPE-Q, which (i) processes

batches of n̄ samples in-between parameter update episodes (n̄ should preferably be

a divisor of n). At each such episode, (ii) the parameter vector is updated Nupd times.

Notice that unlike in (25), the parameter update index τ is different from the sample

index i, since the two indices are no longer advancing synchronously.

1: input policy to evaluate π , BFs φ , samples (si,ai,s
′
i,ri), i = 1, . . . ,n

step size α , small constant δA > 0

batch length n̄, number of consecutive parameter updates Nupd

2: Â0← δAI, B̂0← 0, b̂0← 0

3: τ = 0

4: for i = 1, . . . ,n do

5: Âi← Âi−1 +φ(si,ai)φ
⊤(si,ai)

6: B̂i← B̂i−1 +φ(si,ai)φ
⊤(s′i,π(s′i))

7: b̂i← b̂i−1 +φ(si,ai)ri

8: if i is a multiple of n̄ then

9: for τ = τ, . . . ,τ +Nupd−1 do

10: θτ+1← θτ +α(θ ′τ+1−θτ), where 1
i
Âiθ

′
τ+1 = γ 1

i
B̂iθτ + 1

i
b̂i

11: end for

12: end if

13: end for

14: output Q-function Q̂π (s,a) = φ⊤(s,a)θτ+1

Algorithm 3: LSPE-Q.

Because LSPE-Q must solve the system in (25) multiple times, it will require

more computational effort than LSTD-Q, which solves the similar system (24) only

once. On the other hand, the incremental nature of LSPE-Q can offer it advantages

over LSTD-Q. For instance, LSPE can benefit from a good initial value of the pa-

rameter vector, and better flexibility can be achieved by controlling the step size.

14 Buşoniu, Lazaric et al.

Bellman Residual Minimization

Next, sample-based BRM is briefly discussed. The matrix C⊤ρρρC and the vector

C⊤ρρρRRR appearing in the idealized BRM equation (22) can be estimated from sam-

ples. The estimation procedure requires double transition samples, that is, for each

state-action sample, two independent transitions to next states must be available.

These double transition samples have the form (si,ai,s
′
i,1,ri,1,s

′
i,2,ri,2), i = 1, . . . ,n,

where s′i,1 and s′i,2 are independently drawn from the distribution T (si,ai, ·), while

ri,1 = R(si,ai,s
′
i,1) and ri,2 = R(si,ai,s

′
i,2). Using these samples, estimates can be

built as follows:

̂(C⊤ρρρC)i = ̂(C⊤ρρρC)i−1+

[φ(si,ai)− γφ(s′i,1,π(s′i,1))] · [φ⊤(si,ai)− γφ⊤(s′i,2,π(s′i,2))]

̂(C⊤ρρρRRR)i = ̂(C⊤ρρρRRR)i−1 +φ(si,ai)− γφ(s′i,2,π(s′i,2))

(26)

starting from zero initial values: ̂(C⊤ρρρC)0 = 0, ̂(C⊤ρρρRRR)0 = 0. Once all the sam-

ples have been processed, the estimates can be used to approximately solve (22),

obtaining a parameter vector and thereby an approximate Q-function.

The reason for using double samples is that, if a single sample (si,ai,s
′
i,ri) were

used to build sample products of the form [φ(si,ai)− γφ(s′i,π(s′i))] · [φ⊤(si,ai)−
γφ⊤(s′i,π(s′i))], such samples would be biased, which in turn would lead to a biased

estimate of C⊤ρρρC and would make the algorithm unreliable (Baird, 1995; Bertsekas,

1995).

The Need for Exploration

A crucial issue that arises in all the algorithms above is exploration: ensuring that

the state-action space is sufficiently covered by the available samples. Consider first

the exploration of the action space. The algorithms are typically used to evaluate

deterministic policies. If samples were only collected according to the current pol-

icy π , i.e., if all samples were of the form (s,π(s)), no information about pairs (s,a)
with a 6= π(s) would be available. Therefore, the approximate Q-values of such pairs

would be poorly estimated and unreliable for policy improvement. To alleviate this

problem, exploration is necessary: sometimes, actions different from π(s) have to

be selected, e.g., in a random fashion. Looking now at the state space, exploration

plays another helpful role when samples are collected along trajectories of the sys-

tem. In the absence of exploration, areas of the state space that are not visited under

the current policy would not be represented in the sample set, and the value function

would therefore be poorly estimated in these areas, even though they may be im-

portant in solving the problem. Instead, exploration drives the system along larger

areas of the state space.

Least-Squares Methods for Policy Iteration 15

Computational Considerations

The computational expense of least-squares algorithms for policy evaluation is typi-

cally dominated by solving the linear systems appearing in all of them. However, for

one-shot algorithms such as LSTD and BRM, which only need to solve the system

once, the time needed to process samples may become dominant if the number of

samples is very large.

The linear systems can be solved in several ways, e.g., by matrix inversion, by

Gaussian elimination, or by incrementally computing the inverse with the Sherman-

Morrison formula (see Golub and Van Loan, 1996, Chapters 2 and 3). Note also

that, when the BF vector φ is sparse, as in the often-encountered case of localized

BFs, this sparsity can be exploited to greatly improve the computational efficiency

of the matrix and vector updates in all the least-squares algorithms.

3.4 Bibliographical notes

The high-level introduction of Section 3.1 followed the line of (Farahmand et al,

2009). After that, we followed at places the derivations in Chapter 3 of (Buşoniu

et al, 2010a).

LSTD was introduced in the context of V-functions (LSTD-V) by Bradtke and

Barto (1996), and theoretically studied by, e.g., Boyan (2002); Konda (2002); Nedić

and Bertsekas (2003); Lazaric et al (2010b); Yu (2010). LSTD-Q, the extension to

the Q-function case, was introduced by Lagoudakis et al (2002); Lagoudakis and

Parr (2003a), who also used it to develop the LSPI algorithm. LSTD-Q was then

used and extended in various ways, e.g., by Xu et al (2007); Li et al (2009); Kolter

and Ng (2009); Buşoniu et al (2010d,b); Thiery and Scherrer (2010).

LSPE-V was introduced by Bertsekas and Ioffe (1996) and theoretically studied

by Nedić and Bertsekas (2003); Bertsekas et al (2004); Yu and Bertsekas (2009).

Its extension to Q-functions, LSPE-Q, was employed by, e.g., Jung and Polani

(2007a,b); Buşoniu et al (2010d).

The idea of minimizing the Bellman residual was proposed as early as in

(Schweitzer and Seidmann, 1985). BRM-Q and variants were studied for instance

by Lagoudakis and Parr (2003a); Antos et al (2008); Farahmand et al (2009), while

Scherrer (2010) recently compared BRM approaches with projected approaches. It

should be noted that the variants of Antos et al (2008) and Farahmand et al (2009),

called “modified BRM” by Farahmand et al (2009), eliminate the need for double

sampling by introducing a change in the minimization problem (9).

16 Buşoniu, Lazaric et al.

4 Online least-squares policy iteration

An important topic in practice is the application of least-squares methods to on-

line learning. Unlike in the offline case, where only the final performance matters,

in online learning the performance should improve once every few transition sam-

ples. Policy iteration can take this requirement into account by performing policy

improvements once every few transition samples, before an accurate evaluation of

the current policy can be completed. Such a variant is called optimistic policy itera-

tion (Bertsekas and Tsitsiklis, 1996; Sutton, 1988; Tsitsiklis, 2002). In the extreme,

fully optimistic case, the policy is improved after every single transition. Optimistic

policy updates were combined with LSTD-Q – thereby obtaining optimistic LSPI

– in our works (Buşoniu et al, 2010d,b) and with LSPE-Q in (Jung and Polani,

2007a,b). Li et al (2009) explored a non-optimistic, more computationally involved

approach to online policy iteration, in which LSPI is fully executed between con-

secutive sample-collection episodes.

Next, we briefly discuss the online, optimistic LSPI method we introduced in

(Buşoniu et al, 2010d), shown here as Algorithm 4. The same matrix and vector

1: input BFs φ , policy improvement interval L, exploration schedule,

initial policy π0, small constant δA > 0

2: k← 0, t = 0

3: ̂(A− γB)0← δAI, b̂0← 0

4: observe initial state s0

5: repeat

6: at ← πk(st) + exploration

7: apply at , observe next state st+1 and reward rt+1

8: ̂(A− γB)t+1← ̂(A− γB)t +φ(st ,at)φ
⊤(st ,at)− γφ(st ,at)φ

⊤(st+1,π(st+1))

9: b̂t+1← b̂t +φ(st ,at)rt+1

10: if t = (k +1)L then

11: solve 1
t

̂(A− γB)t+1θk = 1
t
b̂t+1 to find θk

12: πk+1(s)← argmaxa∈A φ⊤(s,a)θk ∀s
13: k← k +1

14: end if

15: t← t +1

16: until experiment finished

Algorithm 4: Online LSPI.

estimates are used as in offline LSTD-Q and LSPI, but there are important differ-

ences. First, online LSPI collects its own samples, by using its current policy to

interact with the system. This immediately implies that exploration must explicitly

be added on top of the (deterministic) policy. Second, optimistic policy improve-

ments are performed, that is, the algorithm improves the policy without waiting for

the estimates ̂(A− γB) and b̂ to get close to their asymptotic values for the current

policy. Moreover, these estimates continue to be updated without being reset after

the policy changes – so in fact they correspond to multiple policies. The underlying

Least-Squares Methods for Policy Iteration 17

assumption here is that A− γB and b are similar for subsequent policies. A more

computationally costly alternative would be to store the samples and rebuild the

estimates from scratch before every policy update, but as will be illustrated in the

example of Section 5, this may not be necessary in practice.

The number L of transitions between consecutive policy improvements is a cru-

cial parameter of the algorithm. For instance, when L = 1, online LSPI is fully

optimistic. In general, L should not be too large, to avoid potentially bad policies

from being used too long. Note that, as in the offline case, improved policies do not

have to be explicitly computed in online LSPI, but can be computed on demand.

5 Example: Car on the Hill

In order to exemplify the behavior of least-squares methods for policy iteration, we

apply two such methods (offline LSPI and online, optimistic LSPI) to the car-on-

the-hill problem (Moore and Atkeson, 1995), a classical benchmark for approxi-

mate reinforcement learning. Thanks to its low dimensionality, this problem can be

solved using simple linear approximators, in which the BFs are distributed on an

equidistant grid. This frees us from the difficulty of customizing the BFs or resort-

ing to a nonparametric approximator, and allows us to focus instead on the behavior

of the algorithms.

In the car-on-the-hill problem, a point mass (the ‘car’) must be driven past the

top of a frictionless hill by applying a horizontal force, see Figure 2, left. For some

initial states, due to the limited available force, the car must first be driven to the

left, up the opposite slope, and gain momentum prior to accelerating to the right,

towards the goal.

−1 −0.5 0 0.5 1
−0.4

−0.2

0

0.2

0.4

0.6

a

mg

p

H
(p

)

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

p

p
’

h(p,p’)

Fig. 2 Left: The car on the hill, with the “car” shown as a black bullet. Right: a near-optimal policy

(black means a =−4, white means a = +4, gray means both actions are equally good).

Denoting the horizontal position of the car by p, its dynamics are (in the variant

of Ernst et al, 2005):

p̈ =
a−9.81H ′(p)− ṗ2 H ′(p)H ′′(p)

1+[H ′(p)]2
(27)

18 Buşoniu, Lazaric et al.

where the hill shape H(p) is given by p2 + p for p < 0, and by p−1
√

1+5p2 for

p ≥ 0. The notations ṗ and p̈ indicate the first and second time derivatives of p,

while H ′(p) and H ′′(p) denote the first and second derivatives of H with respect to

p. The state variables are the position and the speed, s = [p, ṗ]⊤, and the action a is

the applied force. Discrete-time dynamics T are obtained by numerically integrating

(27) between consecutive time steps, using a discrete time step of 0.1 s. Thus, st and

pt are sampled versions of the continuous variables s and p. The state space is

S = [−1,1]× [−3,3] plus a terminal state that is reached whenever st+1 would fall

outside these bounds, and the discrete action space is A = {−4,4}. The goal is to

drive past the top of the hill to the right with a speed within the allowed limits, while

reaching the terminal state in any other way is considered a failure. To express this

goal, the following reward is chosen:

R(st ,at ,st+1) =






−1 if pt+1 <−1 or |ṗt+1|> 3

1 if pt+1 > 1 and |ṗt+1| ≤ 3

0 otherwise

(28)

with the discount factor γ = 0.95. Figure 2, right shows a near-optimal policy for

this reward function.

To apply the algorithms considered, the Q-function is approximated over the state

space using bilinear interpolation on an equidistant 13× 13 grid. To represent the

Q-function over the discrete action space, separate parameters are stored for the two

discrete actions, so the approximator can be written as:

Q̂(s,a j) =
169

∑
i=1

ϕi(s)θi, j

where the state-dependent BFs ϕi(s) provide the interpolation coefficients, with at

most 4 BFs being non-zero for any s, and j = 1,2. By replicating the state-dependent

BFs for both discrete actions, this approximator can be written in the standard form

(10), and can therefore be used in least-squares methods for policy iteration.

First, we apply LSPI with this approximator to the car-on-the-hill problem. A

set of 10000 random, uniformly distributed state-action samples are independently

generated; these samples are reused to evaluate the policy at each policy iteration.

With these settings, LSPI typically converges in 7 to 9 iterations (from 20 indepen-

dent runs, where convergence is considered achieved when the difference between

consecutive parameter vectors drops below 0.001). Figure 3, top illustrates a subse-

quence of policies found during a representative run. Subject to the resolution limi-

tations of the chosen representation, a reasonable approximation of the near-optimal

policy in Figure 2, right is found.

For comparison purposes, we also run an approximate value iteration algorithm

using the same approximator and the same convergence threshold. (The actual algo-

rithm, called fuzzy Q-iteration, is described in Buşoniu et al (2010c); here, we are

only interested in the fact that it is representative for the approximate value itera-

tion class.) The algorithm converges after 45 iterations. This slower convergence of

Least-Squares Methods for Policy Iteration 19

−1 0 1

−2

0

2

iter=1

−1 0 1

−2

0

2

iter=2

−1 0 1

−2

0

2

iter=5

−1 0 1

−2

0

2

iter=9

−1 0 1

−2

0

2

iter=1

−1 0 1

−2

0

2

iter=2

−1 0 1

−2

0

2

iter=20

−1 0 1

−2

0

2

iter=45

−1 0 1

−2

0

2

t=1 s

−1 0 1

−2

0

2

t=2 s

−1 0 1

−2

0

2

t=500 s

−1 0 1

−2

0

2

t=1000 s

Fig. 3 Representative subsequences of policies found by the algorithms considered. Top: offline

LSPI; middle: fuzzy Q-iteration; bottom: online LSPI. For axis and color meanings, see Figure 2,

right, additionally noting that here the negative (black) action is preferred when both actions are

equally good.

value iteration compared to policy iteration is often observed in practice. Figure 3,

middle shows a subsequence of policies found by value iteration. Like for the PI al-

gorithms we considered, the policies are implicitly represented by the approximate

Q-function, in particular, actions are chosen by maximizing the Q-function as in (5).

The final solution is different from the one found by LSPI, and the algorithms also

converge differently: LSPI initially makes large steps in the policy space at each

iteration (so that, e.g., the structure of the policy is already visible after the second

iteration), whereas value iteration makes smaller, incremental steps.

Finally, online, optimistic LSPI is applied to the car on the hill. The experiment

is run for 1000 s of simulated time, so that in the end 10000 samples have been

collected, like for the offline algorithm. This interval is split into separate learning

trials, initialized at random initial states and stopping when a terminal state has been

reached, or otherwise after 3 s. Policy improvements are performed once every 10

samples (i.e., every 1 s), and an ε-greedy exploration strategy is used (see Chapter

2), with ε = 1 initially and decaying exponentially so that it reaches a value of 0.1
after 350 s. Figure 3, bottom shows a subsequence of policies found during a repre-

sentative run. Online LSPI makes smaller steps in the policy space than offline LSPI

because, in-between consecutive policy improvements, it processes fewer samples,

which come from a smaller region of the state space. In fact, at the end of learning

LSPI has processed each sample only once, whereas offline LSPI processes all the

samples once at every iteration.

20 Buşoniu, Lazaric et al.

Figure 4 shows the performance of policies found by online LSPI along the on-

line learning process, in comparison to the final policies found by offline LSPI.

The performance is measured by the average empirical return over an equidistant

grid of initial states, evaluated by simulation with a precision of 0.001; we call this

average return “score”. Despite theoretical uncertainty about its convergence and

near-optimality, online LSPI empirically reaches at least as good performance as the

offline algorithm (for encouraging results in several other problems, see our papers

(Buşoniu et al, 2010d,b) and Chapter 5 of (Buşoniu et al, 2010a)). For complete-

ness, we also report the score of the – deterministically obtained – value iteration

solution: 0.219, slightly lower than that obtained by either version of LSPI.

0 500 1000
−0.4

−0.2

0

0.2

0.4

S
c
o
re

t [s]

online LSPI, mean

95% confidence bounds

offline LSPI, mean score

95% confidence bounds

Fig. 4 Evolution of the policy score in online LSPI, compared with offline LSPI. Mean values with

95% confidence intervals are reported, from 20 independent experiments.

The execution time was around 34 s for LSPI, around 28 s for online LSPI, and

0.3 s for value iteration. This illustrates the fact that the convergence rate advantage

of policy iteration does not necessarily translate into computational savings – since

each policy evaluation can have a complexity comparable with the entire value it-

eration. In our particular case, LSPI requires building the estimates of A, B and b

and solving a linear system of equations, whereas for the interpolating approxima-

tor employed, each approximate value iteration reduces to a very simple update of

the parameters. For other types of approximators, value iteration algorithms will be

more computationally intensive, but still tend to require less computation per iter-

ation than PI algorithms. Note also that the execution time of online LSPI is much

smaller than the 1000 s simulated experiment duration.

6 Performance Guarantees

In this section we review the main theoretical guarantees about least-squares meth-

ods for policy evaluation and policy iteration. We first discuss convergence proper-

ties and the quality of the solutions obtained asymptotically, as the number of sam-

ples processed and iterations executed grows to infinity. Then, probabilistic bounds

Least-Squares Methods for Policy Iteration 21

are provided on the performance of the policy obtained by using a finite number of

samples and iterations.

6.1 Asymptotic Convergence and Guarantees

While theoretical results are mainly given for V-functions in the literature, they di-

rectly extend to Q-functions, by considering the Markov chain of state-action pairs

under the current policy, rather than the Markov chain of states as in the case of V-

functions. We will therefore use our Q-function-based derivations above to explain

and exemplify the guarantees.

Throughout, we require that the BFs are linearly independent, implying that the

BF matrix ΦΦΦ has full column rank. Intuitively, this means there are no redundant

BFs.

Projected Policy Evaluation

In the context of projected policy evaluation, one important difference between the

LSTD and LSPE families of methods is the following. LSTD-Q will produce a

meaningful solution whenever the equation (19) has a solution, which can happen

for many weight functions ρ . In contrast, to guarantee the convergence of the basic

LSPE-Q iteration, one generally must additionally require that the samples follow

ρπ , the stationary distribution over state-action pairs induced by the policy consid-

ered (stationary distribution of π , for short). Intuitively, this means that the weight

of each state-action pair (s,a) is equal to the steady-state probability of this pair

along an infinitely-long trajectory generated with the policy π . The projection map-

ping 6 Π ρπ
is nonexpansive with respect to the norm ‖·‖ρπ weighted by the station-

ary distribution ρπ , and because additionally the original Bellman mapping Bπ
Q is a

contraction with respect to this norm, the projected Bellman mapping Π ρπ
(Bπ

Q(·))
is also a contraction.7

Confirming the LSTD is not very dependent on using ρπ , Yu (2010) proved that

with a minor modification, the solution found by LSTD converges as n→ ∞, even

when one policy is evaluated using samples from a different policy – the so-called

off-policy case. Even for LSPE, it may be possible to mitigate the destabilizing ef-

fects of violating convergence assumptions, by controlling the step size α . Further-

more, a modified LSPE-like update has recently been proposed that converges with-

out requiring that Π ρ(Bπ
Q(·)) is a contraction, see Bertsekas (2010b, 2011). These

types of results are important in practice because they pave the way for reusing

6 A projection mapping Π ρπ
applied to a function f w.r.t. a space F returns the closest element in

F to the function f , where the distance is defined according to the L2 norm and the measure ρπ .
7 A mapping f (x) is a contraction with factor γ < 1 if for any x,x′, ‖ f (x)− f (x′)‖ ≤ γ ‖x− x′‖.
The mapping is a nonexpansion (a weaker property) if the inequality holds for γ = 1.

22 Buşoniu, Lazaric et al.

samples to evaluate different policies, that is, at different iterations of the overall PI

algorithm. In contrast, if the stationary distribution must be followed, new samples

have to be generated at each iteration, using the current policy.

Assuming now, for simplicity, that the stationary distribution ρπ is used, and thus

that the projected Bellman equation (19) has a unique solution (the projected Bell-

man operator is a contraction and it admits one unique fixed point), the following

informal, but intuitive line of reasoning is useful to understand the convergence of

the sample-based LSTD-Q and LSPE-Q. Asymptotically, as n→ ∞, it is true that
1
n
Ân → A, 1

n
B̂n → B, and 1

n
b̂n → b, because the empirical distribution of the state-

action samples converges to ρ , while the empirical distribution of next-state samples

s′ for each pair (s,a) converges to T (s,a,s′). Therefore, the practical, sample-based

LSTD-Q converges to its idealized version (19), and LSTD-Q asymptotically finds

the solution of the projected Bellman equation. Similarly, the sample-based LSPE-

Q asymptotically becomes equivalent to its idealized version (20), which is just an

incremental variant of (19) and will therefore produce the same solution in the end.

In fact, it can additionally be shown that, as n grows, the solutions of LSTD-Q and

LSPE-Q converge to each other faster than they converge to their limit, see Yu and

Bertsekas (2009).

Let us investigate now the quality of the solution. Under the stationary distribu-

tion ρπ , we have (Bertsekas, 2010b; Tsitsiklis and Van Roy, 1997):

∥∥∥Qπ − Q̂π
∥∥∥

ρπ
≤ 1√

1− γ2

∥∥∥Qπ −Π ρπ
(Qπ)

∥∥∥
ρπ

(29)

where Q̂π is the Q-function given by the parameter θ that solves the projected Bell-

man equation (19) for ρ = ρπ . Thus, we describe the representation power of the ap-

proximator by the distance

∥∥∥Qπ −Π ρπ
(Qπ)

∥∥∥
ρπ

between the true Q-function Qπ and

its projection Π ρπ
(Qπ). As the approximator becomes more powerful, this distance

decreases. Then, projected policy evaluation leads to an approximate Q-function Q̂π

with an error proportional to this distance. The proportion is given by the discount

factor γ , and grows as γ approaches 1. Recently, efforts have been made to refine

this result in terms of properties of the dynamics and of the set Q̂ of representable

Q-functions (Scherrer, 2010; Yu and Bertsekas, 2010).

Bellman Residual Minimization

The following relationship holds for any Q-function Q, see e.g. Scherrer (2010):

‖Qπ −Q‖ρπ ≤ 1

1− γ

∥∥Q−Bπ
Q(Q)

∥∥
ρπ (30)

and with ρπ the stationary distribution. Consider now the on-policy BRM solution

– the Q-function Q̂π given by the parameter that solves the BRM equation (22) for

Least-Squares Methods for Policy Iteration 23

ρ = ρπ . Because this Q-function minimizes the right-hand side of the inequality

(30), the error

∥∥∥Qπ − Q̂π
∥∥∥

ρπ
of the solution found is also small.

Comparing projected policy evaluation with BRM, no general statements can

be made about the relative quality of their solution. For instance, in the context of

policy evaluation only, Scherrer (2010) suggests based on an empirical study that

projected policy evaluation may outperform BRM more often (for more problem

instances) than the other way around; but when it fails, it may do so with much

larger errors than those of BRM. For additional insight and comparisons, see, e.g.,

Munos (2003); Scherrer (2010).

Approximate Policy Iteration

A general result about policy iteration can be given in terms of the infinity norm, as

follows. If the policy evaluation error

∥∥∥Q̂πk −Qπk

∥∥∥
∞

is upper-bounded by ε at every

iteration k ≥ 0 (see again Algorithm 1), and if policy improvements are exact (ac-

cording to our assumptions in Section 2), then policy iteration eventually produces

policies with a performance (i.e., the corresponding value function) that lies within

a bounded distance from the optimal performance (Bertsekas and Tsitsiklis, 1996;

Lagoudakis and Parr, 2003a) (i.e., the optimal value function):

limsup
k→∞

‖Qπk −Q∗‖∞ ≤
2γ

(1− γ)2
· ε (31)

Here, Q∗ is the optimal Q-function and corresponds to the optimal performance, see

Chapter 2. Note that if approximate policy improvements are performed, a similar

bound holds, but the policy improvement error must also be included in the right

hand side.

An important remark is that the sequence of policies is generally not guaran-

teed to converge to a fixed policy. For example, the policy may end up oscillating

along a limit cycle. Nevertheless, all the policies along the cycle will have a high

performance, in the sense of (31).

Note that (31) uses infinity norms, whereas the bounds (29) and (30) for the

policy evaluation component use Euclidean norms. The two types of bounds cannot

be easily combined to yield an overall bound for approximate policy iteration. Policy

iteration bounds for Euclidean norms, which we will not detail here, were developed

by Munos (2003).

Consider now optimistic variants of policy iteration, such as online LSPI. The

performance guarantees above rely on small policy evaluation errors, whereas in the

optimistic case, the policy is improved before an accurate value function is avail-

able, which means the policy evaluation error can be very large. For this reason, the

behavior of optimistic policy iteration is theoretically poorly understood at the mo-

ment, although the algorithms often work well in practice. See Bertsekas (2010b)

24 Buşoniu, Lazaric et al.

and Section 6.4 of Bertsekas and Tsitsiklis (1996) for discussions of the difficulties

involved.

6.2 Finite-Sample Guarantees

The results reported in the previous section analyze the asymptotic performance of

policy evaluation methods when the number of samples tends to infinity. Nonethe-

less, they do not provide any guarantee about how the algorithms behave when only

a finite number of samples is available. In this section we report recent finite-sample

bounds for LSTD and BRM and we discuss how they propagate through iterations

in the policy iteration scheme.

While in the previous sections we focused on algorithms for the approximation

of Q-functions, for sake of simplicity we report here the analysis for V-function ap-

proximation. The notation and the setting is exactly the same as in Section 3.2 and

we simply redefine it for V-functions. We use a linear approximation architecture

with parameters θ ∈ Rd and basis functions ϕi, i = 1, . . . ,d now defined as a map-

ping from the state space S to R. We denote by φ : S→Rd , φ(·) = [ϕ1(·), . . . ,ϕd(·)]⊤
the BF vector (feature vector), and by F the linear function space spanned by the

BFs ϕi, that is F =
{

fθ |θ ∈ Rd and fθ (·) = φ⊤(·)θ
}

. We define F̃ as the space

obtained by truncating the functions in F at Vmax (recall that Vmax gives the max-

imum return and upper-bounds any value function). The truncated function f̃ is

equal to f (s) in all the states where | f (s)| ≤ Vmax and it is equal to sgn(f (s))Vmax

otherwise. Furthermore, let L be an upper bound for all the BFs, i.e., ‖ϕi‖∞ ≤ L

for i = 1, . . . ,d. In the following we report the finite-sample analysis of the policy

evaluation performance of LSTD-V and BRM-V, followed by the analysis of policy

iteration algorithms that use LSTD-V and BRM-V in the policy evaluation step. The

truncation to Vmax is used for LSTD-V, but not for BRM-V.

Pathwise LSTD

Let π be the current policy and V π its V-function. Let (st ,rt) with t = 1, . . . ,n be

a sample path (trajectory) of size n generated by following the policy π and ΦΦΦ =
[φ⊤(s1); . . . ;φ⊤(sn)] be the BF matrix defined at the encountered states, where “;”

denotes a vertical stacking of the vectors φ⊤(st) in the matrix. Pathwise LSTD-V

is a version of LSTD-V obtained by defining an empirical transition matrix T̂TT as

follows: T̂TT i j = 1 if j = i+1, j 6= n, otherwise T̂TT i j = 0. When applied to a vector s =

[s1, . . . ,sn]
⊤

, this transition matrix returns (T̂TT s)t = st+1 for 1≤ t < n and (T̂TT s)n = 0.

The rest of the algorithm exactly matches the standard LSTD and returns a vector θ
as the solution of the linear system Aθ = γBθ +b, where A = ΦΦΦ⊤ΦΦΦ , B = γΦΦΦ⊤T̂TT ΦΦΦ ,

and b = ΦΦΦ⊤RRR. Similar to the arguments used in Section 6.1, it is easy to verify that

the empirical transition matrix T̂TT results in an empirical Bellman operator which is

a contraction and thus that the previous system always admits at least one solution.

Least-Squares Methods for Policy Iteration 25

Although there exists a unique fixed point, there might be multiple solutions θ .

In the following, we use θ̂ to denote the solution with minimal norm, that is θ̂ =
(A− γB)+b, where (A− γB)+ is the Moore-Penrose pseudo-inverse of the matrix

A− γB.8

For the pathwise LSTD-V algorithm the following performance bound has been

derived in (Lazaric et al, 2010b).

Theorem 1. (Pathwise LSTD-V) Let ω > 0 be the smallest eigenvalue of the Gram

matrix G ∈Rd×d , Gi j =
∫

φ⊤i (x)φ j(x)ρ
π(dx). Let assume that the policy π induces

a stationary β -mixing process (Meyn and Tweedie, 1993) on the MDP at hand with

a stationary distribution ρπ 9. Let (st ,rt) with t = 1, . . . ,n be a path generated by

following policy π for n > nπ(ω,δ) steps, where nπ(ω,δ) is a suitable number of

steps depending on parameters ω and δ . Let θ̂ be the pathwise LSTD-V solution

and f̃θ̂ be the truncation of its corresponding function, then: 10

|| f̃θ̂ −V π ||ρπ ≤ 2√
1− γ2

(
2
√

2||V π −Π ρπ
V π ||ρπ + Õ

(
L||θ ∗||

√
d log1/δ

n

))

+
1

1− γ
Õ

(
VmaxL

√
d log1/δ

ωn

)
(32)

with probability 1−δ , where θ ∗ is such that fθ∗ = Π ρπ
V π .

In the following we analyze the main terms of the previous theorem.

• ||V π −Π ρπ
V π ||ρπ : this term is the approximation error and it only depends on

the target function V π and how well the functions in F can approximate it. This

can be made small whenever some prior knowledge about V π is available and

the BFs are carefully designed. Furthermore, we expect it to decrease with the

number d of BFs but at the cost of increasing the other terms in the bound. As

it can be noticed, when n goes to infinity, the remaining term in the bound is
4
√

2√
1−γ2
||V π−Π ρπ

V π ||ρπ which matches the asymptotic performance bound (29)

of LSTD up to constants.

• Õ

(
VmaxL

√
d log1/δ

ωn

)
: this is the first estimation error and it is due to bias in-

troduced by the fact that the pathwise LSTD-V solution is computed on a finite

number of random samples. As it can be noticed, this term decreases with the

number of samples as n−1/2 but it also depends on the number of BFs d in F ,

the range of the BFs L, and the range of the V-functions on the MDP at hand. The

8 Note that whenever a generic square matrix D is invertible D+ = D−1.
9 Roughly speaking, a fast mixing process is such that starting from an arbitrary initial distribution

and following the current policy, the state probability distribution rapidly tends to the stationary

distribution of the Markov chain.
10 For simplicity, in the Õ terms we omit constants, logarithmic factors in d and n, and the depen-

dency on the characteristic parameters of the β -mixing process.

26 Buşoniu, Lazaric et al.

term also shows a critical dependency on the smallest eigenvalue ω of the model-

based Gram matrix G. Whenever the BFs are linearly independent and the matrix

G is well-conditioned under the stationary distribution ρπ , ω is guaranteed to be

far from 0.

• Õ

(
L||θ ∗||

√
d log1/δ

n

)
: this is the second estimation error and similarly to the

previous one, it decreases with the number of samples. This estimation error does

not depend on the smallest eigenvalue ω but it has an additional dependency on

||θ ∗||which in some cases might add a further dependency on the dimensionality

of F and could be large whenever the BFs are not linear independent under the

stationary distribution ρπ .

The previous bound gives a better understanding of what are the most relevant

terms determining the quality of the approximation of LSTD (most notably some

properties of the function space). Furthermore, the bound can also be used to have

a rough estimate of the number of samples needed to achieve a certain desired ap-

proximation quality. For instance, let us assume the approximation error is zero and

an error level ε is desired (i.e., || f̃θ̂ −V π ||ρπ). In this case, the bound suggests that

n should be bigger than (1− γ)−2V 2
maxL2d/ε2 (where here we ignore the terms that

are not available at design time such as ||θ ∗|| and ω).

Pathwise LSTD-V strictly requires the samples to be generated by following the

current policy π (i.e., it is on-policy) and the finite-sample analysis bounds its per-

formance according to the stationary distribution ρπ . Although an asymptotic anal-

ysis for off-policy LSTD exists (see Section 6.1), to the best of our knowledge no

finite-sample result is available for off-policy LSTD. The closest result has been

obtained for the modified Bellman residual algorithm introduced by Antos et al

(2008), which is an off-policy algorithm which reduces to LSTD when linear spaces

are used. Nonetheless, the finite-sample analysis reported by Antos et al (2008) does

not extend from bounded to linear spaces and how to bound the performance of off-

policy LSTD is still an open question.

Bellman Residual Minimization

We now consider the BRM-V algorithm, which finds V-functions. Similar to BRM-

Q (see Section 3.2) n samples (si,s
′
i,1,ri,1,s

′
i,2,ri,2) are available, where si are drawn

i.i.d. from an arbitrary distribution µ , (s′i,1,ri,1) and (s′i,2,ri,2) are two independent

samples drawn from T (si,π(si), ·), and ri,1,ri,2 are the corresponding rewards. The

algorithm works similarly to BRM-Q but now the BFs are functions of the state

only. Before reporting the bound on the performance of BRM-V, we introduce:

Cπ(µ) = (1− γ)||(I− γPπ)−1||µ , (33)

which is related to the concentrability coefficient (see e.g. Antos et al (2008)) of

the discounted future state distribution starting from µ and following policy π , i.e.,

(1− γ)µ(I− γπ)−1 w.r.t. µ . Note that if the discounted future state distribution is

Least-Squares Methods for Policy Iteration 27

not absolutely continuous w.r.t. µ , then Cπ(µ) = ∞. We can now report the bound

derived by Maillard et al (2010).

Theorem 2. (BRM-V) Let n ≥ nπ(ω,δ) be the number of samples drawn i.i.d. ac-

cording to an arbitrary distribution µ and ω be the smallest eigenvalue of the model-

based Gram matrix G ∈ Rd×d , Gi j =
∫

φ⊤i (x)φ j(x)µ(dx). If θ̂ is the BRM-V solu-

tion and fθ̂ the corresponding function, then the Bellman residual is bounded as:

|| fθ̂ −Bπ
V fθ̂ ||2µ ≤ inf

f∈F
|| f −Bπ

V f ||2µ + Õ

(
1

ξ 2
π

L4R2
max

√
d log1/δ

n

)
,

with probability 1− δ , where ξπ = ω(1−γ)2

Cπ (µ)2 . Furthermore, the approximation error

of V π is:

||V π − fθ̂ ||2µ ≤
(

Cπ (µ)

1− γ

)2
(

(1+ γ||Pπ ||µ)2 inf
f∈F
||V π − f ||2µ + Õ

(
1

ξ 2
π

L4R2
max

√
d log1/δ

n

))
.

We analyze the first statement of the previous theorem.

• || fθ̂ −Bπ
V fθ̂ ||2µ : the left-hand side of the bound is the exact Bellman residual of

the BRM-V solution fθ̂ . This result is important to show that minimizing the em-

pirical Bellman residual (i.e., the one computed using only the two independent

samples (s′i,1,ri,1) and (s′i,2,ri,2)) on a finite number of states si leads to a small

exact Bellman residual on the whole state space S.

• inf f∈F || f − Bπ
V f ||2µ : this term is the smallest Bellman residual that can be

achieved with functions in the space F and it plays the role of the approxi-

mation error. Although difficult to analyze, it is possible to show that this term

can be small for the specific class of MDPs where both the reward function and

transition kernel are Lipschitz (further discussion can be found in (Munos and

Szepesvári, 2008)).

• Õ

(
1

ξ 2
π

L4R2
max

√
d log1/δ

n

)
: this is the estimation error. As it can be noticed, un-

like in LSTD bounds, here the squared loss is bounded and the estimation error

decreases with a slower rate of O(n−1/2). Beyond the dependency on some terms

characteristic of the MDP and the BFs, this term also depends on the inverse of

the smallest eigenvalue of the Gram matrix computed w.r.t. the sampling distri-

bution µ . Although this dependency could be critical, ω can be made big with a

careful design of the distribution µ and the BFs.

The second statement does not introduce additional relevant terms in the bound.

We postpone the discussion about the term Cπ(µ) and a more detailed comparison

to LSTD to the next section.

28 Buşoniu, Lazaric et al.

Policy Iteration

Up until now, we reported the performance bounds for pathwise-LSTD-V and

BRM-V for policy evaluation. Next, we provide finite-sample analysis for policy

iteration algorithms, LSPI and BRM-PI, in which at each iteration k, pathwise-

LSTD-V and, respectively, BRM-V are used to compute an approximation of V πk .

In particular, we report performance bounds by comparing the value of the policy

returned by these algorithms after K iterations, V πK , and the optimal V-function,

V ∗. In order to derive performance bounds for LSPI and BRM-PI, one needs to first

relate the error after K iterations, ||V ∗−V πK ||, to the one at each iteration k of these

algorithms, and then replace the error at each iteration with the policy evaluation

bounds of Theorems 1 and 2. Antos et al (2008) (Lemma 12) derived the following

bound that relates ||V ∗−V πK ||σ to the error at each iteration k

||V ∗−V πK ||σ ≤
4γ

(1− γ)2

(√
Cσ ,ν max

0≤k<K
||Vk−B

πk
V Vk||ν + γ

K−1
2 Rmax

)
, (34)

where Vk is the approximation returned by the algorithm of the value function V πk

at each iteration, σ and ν are any measures over the state space, and Cσ ,ν is the

concentrability term from Definition 2 of Antos et al (2008). It is important to note

that there is no assumption in this bound on how the sequence Vk is generated.

Before reporting the bounds for pathwise-LSPI and BRM-PI, it is necessary to make

the following assumptions.

Assumption 1 (Uniform stochasticity) Let µ be a distribution over the state space.

There exists a constant C, such that for all s ∈ S and for all a ∈ A, T (s,a, ·) is

uniformly dominated by µ(·), i.e., T (s,a, ·)≤Cµ(·).
This assumption guarantees that there is not state-action pair whose transition to

the next state is too much concentrated to a limited set of states. It can be easily

shown that under this assumption, Cπ(µ) defined in Eq. 33 and the concentrability

term Cσ ,µ , for any σ , are both upper-bounded by C. We may now report a bound for

BRM-PI when Assumption 1 holds for the distribution µ used at each iteration of

the algorithm.

Theorem 3. For any δ > 0, whenever n≥ n(δ/K) with n(δ/K) is a suitable number

of samples, with probability 1− δ , the empirical Bellman residual minimizer fθk

exists for all iterations 1 ≤ k < K, thus the BRM-PI algorithm is well defined, and

the performance V πK of the policy πK returned by the algorithm is such that:

||V ∗−V πK ||∞ ≤ Õ

(
1

(1− γ)2

(
C3/2EBRM(F)+

√
C

ξ

(d log(K/δ)

n

)1/4
+ γK/2

))
,

where EBRM(F) = supπ∈G (F) inf f∈F || f −V π ||µ , G (F) is the set of all greedy

policies w.r.t. the functions in F , and ξ = ω(1−γ)2

C2 ≤ ξπ , π ∈ G (F).

In this theorem, EBRM(F) looks at the smallest approximation error for the V-

function of a policy π , and takes the worst case of this error across the set of policies

Least-Squares Methods for Policy Iteration 29

greedy in some approximate V-function from F . The second term is the estimation

error and it contains the same terms as in Theorem 2 and it decreases as Õ(d/n).
Finally, the last term γK/2 simply accounts for the error due to the finite number of

iterations and it rapidly goes to zero as K increases.

Now we turn to pathwise-LSPI and report a performance bound for this algo-

rithm. At each iteration k of pathwise-LSPI, samples are collected by following a

single trajectory generated by the policy under evaluation, πk, and pathwise-LSTD

is used to compute an approximation of V πk . In order to plug in the pathwise-

LSTD bound (Theorem 1) in Eq. 34, one should first note that ||Vk−B
πk
V Vk||ρπk ≤

(1+ γ)||Vk−V πk ||ρπk . This way instead of the Bellman residual, we bound the per-

formance of the algorithm by using the approximation error Vk−V πk at each itera-

tion. It is also important to note that the pathwise-LSTD bound requires the samples

to be collected by following the policy under evaluation. This might introduce severe

problems in the sequence of iterations. In fact, if a policy concentrates too much on

a small portion of the state space, even if the policy evaluation is accurate on those

states, it might be arbitrary bad on the states which are not covered by the current

policy. As a result, the policy improvement is likely to generate a bad policy which

could, in turn, lead to an arbitrary bad policy iteration process. Thus, the following

assumption needs to be made here.

Assumption 2 (Lower-bounding distribution) Let µ be a distribution over the state

space. For any policy π that is greedy w.r.t. a function in the truncated space F̃ ,

µ(·) ≤ κρπ(·), where κ < ∞ is a constant and ρπ is the stationary distribution of

policy π .

It is also necessary to guarantee that with high probability a unique pathwise-

LSTD solution exists at each iteration of the pathwise-LSPI algorithm, thus, the

following assumption is needed.

Assumption 3 (Linear independent BFs) Let µ be the lower-bounding distribution

from Assumption 2. We assume that the BFs φ(·) of the function space F are lin-

early independent w.r.t. µ . In this case, the smallest eigenvalue ωµ of the Gram

matrix Gµ ∈ Rd×d w.r.t. µ is strictly positive.

Assumptions 2 and 3 (plus some minor assumptions on the characteristic param-

eters of the β -mixing processes observed during the execution of the algorithm)

are sufficient to have a performance bound for pathwise-LSPI. However, in order to

make it easier to compare the bound with the one for BRM-PI, we also assume that

Assumption 1 holds for pathwise-LSPI.

Theorem 4. Let us assume that at each iteration k of the pathwise-LSPI algorithm,

a path of size n > n(ωµ ,δ) is generated from the stationary β -mixing process with

stationary distribution ρk−1 = ρπk−1 . Let V−1 ∈ F̃ be an arbitrary initial V-function,

V0, . . . ,VK−1 (Ṽ0, . . . ,ṼK−1) be the sequence of V-functions (truncated V-functions)

generated by pathwise-LSPI after K iterations, and πK be the greedy policy w.r.t. the

truncated V-function ṼK−1. Then under Assumptions 1–3 and some assumptions on

30 Buşoniu, Lazaric et al.

the characteristic parameters of the β -mixing processes observed during the execu-

tion of the algorithm, with probability 1−δ , we have:

||V ∗−V πK ||∞ ≤ Õ

(
1

(1− γ)2

(√Cκ

1− γ
ELSTD(F)+

κ
√

C
√

ωµ

(d log(K/δ)

n

)1/2
+ γK/2

))
,

where ELSTD(F) = supπ∈G (F̃) inf f∈F || f −V π ||ρπ and G (F̃) is the set of all greedy

policies w.r.t. the functions in F̃ .

Note that the initial policy π0 is greedy in the V-function V−1, rather than being

arbitrary; that is why we use the index −1 for the initial V-function.

Comparing the performance bounds of BRM-PI and pathwise-LSPI we first no-

tice that BRM-PI has a poorer estimation rate of O(n−1/4) instead of O(n−1/2).
We may also see that the approximation error term in BRM-PI, EBRM(F), is less

complex than that for pathwise-LSPI, ELSTD(F), as the norm in EBRM(F) is only

w.r.t. the distribution µ while the one in ELSTD(F) is w.r.t. the stationary distri-

bution of any policy in G (F̃). The assumptions used by the algorithms are also

different. In BRM-PI, it is assumed that a generative model is available, and thus,

the performance bounds may be obtained under any sampling distribution µ , specif-

ically the one for which Assumption 1 holds. On the other hand, at each iteration of

pathwise-LSPI, it is required to use a single trajectory generated by following the

policy under evaluation. This can provide performance bounds only under the sta-

tionary distribution of that policy, and accurately approximating the current policy

under the stationary distribution may not be enough in a policy iteration scheme, be-

cause the greedy policy w.r.t. that approximation may be arbitrarily poor. Therefore,

we may conclude that the performance of BRM-PI is better controlled than that of

pathwise-LSPI. This is reflected in the fact that the concentrability terms may be

controlled in the BRM-PI by only choosing a uniformly dominating distribution µ
(Assumption 1), such as a uniform distribution, while in pathwise-LSPI, we are re-

quired to make stronger assumptions on the stationary distributions of the policies

encountered at the iterations of the algorithm, such as being lower-bounded by a

uniform distribution (Assumption 2).

7 Further Reading

Many extensions and variations of the methods introduced in Section 3 have been

proposed, and we unfortunately do not have the space to describe them all. Instead,

in the present section, we will (non-exhaustively) touch upon some of the highlights

in this active field of research, providing pointers to the literature for the reader

interested in more details.

As previously mentioned in Footnote 2, variants of approximate policy evaluation

that employ a multistep Bellman mapping can be used. This mapping is parameter-

Least-Squares Methods for Policy Iteration 31

ized by λ ∈ [0,1), and is given, e.g., in the case of Q-functions by:

Bπ
Q,λ (Q) = (1−λ)

∞

∑
t=0

λ t(Bπ
Q)t+1(Q)

where (Bπ
Q)t denotes the t-times composition of Bπ

Q with itself. In this chapter, we

only considered the single-step case, in which λ = 0, but in fact approximate policy

evaluation is often discussed in the general λ ∈ [0,1) case, see e.g. Nedić and Bert-

sekas (2003); Yu (2010); Bertsekas and Ioffe (1996); Yu and Bertsekas (2009) and

also the discussion of the so-called TD(λ) algorithm in Chapter 2. Note that in the

original LSPI, a nonzero λ would prevent sample reuse; instead, at every iteration,

new samples would have to be generated with the current policy. However, Thiery

and Scherrer (2010) recently introduced an extension of LSPI to general λ ∈ [0,1),
which does not impose this requirement.

Nonparametric approximators are not predefined, but are automatically con-

structed from the data, so to a large extent they free the user from the difficult task of

designing the BFs. A prominent class of nonparametric techniques is kernel-based

approximation, which was combined, e.g., with LSTD by Xu et al (2005, 2007);

Jung and Polani (2007b); Farahmand et al (2009), with LSPE by Jung and Polani

(2007a,b), and with BRM by Farahmand et al (2009). The related framework of

Gaussian processes has also been used in policy evaluation (Rasmussen and Kuss,

2004; Engel et al, 2005; Taylor and Parr, 2009). In their basic form, the compu-

tational demands of kernel-based methods and Gaussian processes grow with the

number of samples considered. Since this number can be large in practice, many

of the approaches mentioned above employ kernel sparsification techniques to limit

the number of samples that contribute to the solution (Xu et al, 2007; Engel et al,

2003, 2005; Jung and Polani, 2007a,b).

Closely related to sparsification is the technique of regularization, which controls

the complexity of the solution (Farahmand et al, 2009; Kolter and Ng, 2009). For

instance, to obtain a regularized variant of LSTD, a penalty term can be added to

the projected policy evaluation problem (8) to obtain:

min
Q̂∈Q̂

[∥∥∥Q̂−Π(Bπ
Q(Q̂))

∥∥∥+βν(Q̂)
]

where β is a positive regularization coefficient and ν is a penalty function that grows

with the complexity of Q̂ (e.g., a norm of the approximator’s parameter vector). Note

that Farahmand et al (2009) also add a similar regularization term to the projection

Π , and additionally discusses a regularized version of BRM.

In an effort to reduce the computational costs of LSTD, so-called incremental

variants have been proposed, in which only a few of the parameters are updated at a

given iteration (Geramifard et al, 2006, 2007).

A generalized, scaled variant of LSPE, discussed e.g. by Bertsekas (2010b), can

be obtained by first rewriting the LSPE update (20) into the equivalent form (assum-

ing A is invertible):

32 Buşoniu, Lazaric et al.

θτ+1 = θτ −αA−1[(A− γB)θτ −b]

and then replacing A−1 by a more general scaling matrix Γ :

θτ+1 = θτ −αΓ [(A− γB)θτ −b]

For appropriate choices of Γ and α , this algorithm converges under more general

conditions than the original LSPE.

In the context of BRM, Antos et al (2008) eliminated the requirement of double

sampling by modifying the minimization problem solved by BRM. They showed

that single-sample estimates of the coefficients in this modified problem are unbi-

ased, while the solution stays meaningful.

We also note active research into alternatives to least-squares methods for policy

evaluation and iteration, in particular, techniques based on gradient updates (Sutton

et al, 2009b,a; Maei et al, 2010) and on Monte Carlo simulations (Lagoudakis and

Parr, 2003b; Dimitrakakis and Lagoudakis, 2008; Lazaric et al, 2010a).

While an extensive tutorial such as this one, focusing on a unified view and theo-

retical study of policy iteration with LSTD, LSPE, and BRM policy evaluation, has

not been available in the literature until now, these methods have been treated in vari-

ous recent books and surveys on reinforcement learning and dynamic programming.

For example, the interested reader should know that Chapter 3 of (Buşoniu et al,

2010a) describes LSTD-Q and LSPE-Q as part of an introduction to approximate re-

inforcement learning and dynamic programming, that (Munos, 2010) touches upon

LSTD and BRM, that Chapter 3 of (Szepesvári, 2010) outlines LSTD and LSPE

methods, and that (Bertsekas, 2010b,a) concern to a large extent these two types of

methods.

Chapter 8 of this book presents a more general view over the field of approximate

reinforcement learning, without focusing on least-squares methods.

References

Antos A, Szepesvári Cs, Munos R (2008) Learning near-optimal policies with Bellman-residual

minimization based fitted policy iteration and a single sample path. Machine Learning

71(1):89–129

Baird L (1995) Residual algorithms: Reinforcement learning with function approximation. In: Pro-

ceedings 12th International Conference on Machine Learning (ICML-95), Tahoe City, US, pp

30–37

Bertsekas DP (1995) A counterexample to temporal differences learning. Neural Computation

7:270–279

Bertsekas DP (2010a) Approximate dynamic programming, update of Chapter 6 in

volume 2 of the book Dynamic Programming and Optimal Control. Available at

http://web.mit.edu/dimitrib/www/dpchapter.html

Bertsekas DP (2010b) Approximate policy iteration: A survey and some new methods. Tech. Rep.

LIDS 2833, Massachusetts Institute of Technology, Cambridge, US

Least-Squares Methods for Policy Iteration 33

Bertsekas DP (2011) Temporal difference methods for general projected equations. IEEE Transac-

tions on Automatic Control 56, to appear.

Bertsekas DP, Ioffe S (1996) Temporal differences-based policy iteration and applications in neuro-

dynamic programming. Tech. Rep. LIDS-P-2349, Massachusetts Institute of Technology, Cam-

bridge, US, available at http://web.mit.edu/dimitrib/www/Tempdif.pdf

Bertsekas DP, Tsitsiklis JN (1996) Neuro-Dynamic Programming. Athena Scientific

Bertsekas DP, Borkar V, Nedić A (2004) Improved temporal difference methods with linear func-

tion approximation. In: Si J, Barto A, Powell W (eds) Learning and Approximate Dynamic

Programming, IEEE Press

Boyan J (2002) Technical update: Least-squares temporal difference learning. Machine Learning

49:233–246

Bradtke SJ, Barto AG (1996) Linear least-squares algorithms for temporal difference learning.

Machine Learning 22(1–3):33–57

Buşoniu L, Babuška R, De Schutter B, Ernst D (2010a) Reinforcement Learning and Dynamic

Programming Using Function Approximators. Automation and Control Engineering, Taylor &

Francis CRC Press

Buşoniu L, De Schutter B, Babuška R, Ernst D (2010b) Using prior knowledge to accelerate online

least-squares policy iteration. In: 2010 IEEE International Conference on Automation, Quality

and Testing, Robotics (AQTR-10), Cluj-Napoca, Romania

Buşoniu L, Ernst D, De Schutter B, Babuška R (2010c) Approximate dynamic programming with

a fuzzy parameterization. Automatica 46(5):804–814

Buşoniu L, Ernst D, De Schutter B, Babuška R (2010d) Online least-squares policy iteration for

reinforcement learning control. In: Proceedings 2010 American Control Conference (ACC-10),

Baltimore, US, pp 486–491

Dimitrakakis C, Lagoudakis M (2008) Rollout sampling approximate policy iteration. Machine

Learning 72(3):157–171

Engel Y, Mannor S, Meir R (2003) Bayes meets Bellman: The Gaussian process approach to tem-

poral difference learning. In: Proceedings 20th International Conference on Machine Learning

(ICML-03), Washington, US, pp 154–161

Engel Y, Mannor S, Meir R (2005) Reinforcement learning with Gaussian processes. In: Pro-

ceedings 22nd International Conference on Machine Learning (ICML-05), Bonn, Germany, pp

201–208

Ernst D, Geurts P, Wehenkel L (2005) Tree-based batch mode reinforcement learning. Journal of

Machine Learning Research 6:503–556

Farahmand AM, Ghavamzadeh M, Szepesvári Cs, Mannor S (2009) Regularized policy iteration.

In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) Advances in Neural Information Pro-

cessing Systems 21, MIT Press, pp 441–448

Geramifard A, Bowling MH, Sutton RS (2006) Incremental least-squares temporal difference

learning. In: Proceedings 21st National Conference on Artificial Intelligence and 18th Inno-

vative Applications of Artificial Intelligence Conference (AAAI-06), Boston, US, pp 356–361

Geramifard A, Bowling M, Zinkevich M, Sutton RS (2007) iLSTD: Eligibility traces & conver-

gence analysis. In: Schölkopf B, Platt J, Hofmann T (eds) Advances in Neural Information

Processing Systems 19, MIT Press, pp 440–448

Golub GH, Van Loan CF (1996) Matrix Computations, 3rd edn. Johns Hopkins

Jung T, Polani D (2007a) Kernelizing LSPE(λ). In: Proceedings 2007 IEEE Symposium on Ap-

proximate Dynamic Programming and Reinforcement Learning (ADPRL-07), Honolulu, US,

pp 338–345

Jung T, Polani D (2007b) Learning RoboCup-keepaway with kernels. In: Gaussian Processes in

Practice, JMLR Workshop and Conference Proceedings, vol 1, pp 33–57

Kolter JZ, Ng A (2009) Regularization and feature selection in least-squares temporal difference

learning. In: Proceedings 26th International Conference on Machine Learning (ICML-09),

Montreal, Canada, pp 521–528

Konda V (2002) Actor-critic algorithms. PhD thesis, Massachusetts Institute of Technology, Cam-

bridge, US

34 Buşoniu, Lazaric et al.

Lagoudakis M, Parr R, Littman M (2002) Least-squares methods in reinforcement learning for

control. In: Methods and Applications of Artificial Intelligence, Lecture Notes in Artificial

Intelligence, vol 2308, Springer, pp 249–260

Lagoudakis MG, Parr R (2003a) Least-squares policy iteration. Journal of Machine Learning Re-

search 4:1107–1149

Lagoudakis MG, Parr R (2003b) Reinforcement learning as classification: Leveraging modern

classifiers. In: Proceedings 20th International Conference on Machine Learning (ICML-03),

Washington, US, pp 424–431

Lazaric A, Ghavamzadeh M, Munos R (2010a) Analysis of a classification-based policy iteration

algorithm. In: Proceedings 27th International Conference on Machine Learning (ICML-10),

Haifa, Israel, pp 607–614

Lazaric A, Ghavamzadeh M, Munos R (2010b) Finite-sample analysis of LSTD. In: Proceedings

27th International Conference on Machine Learning (ICML-10), Haifa, Israel, pp 615–622

Li L, Littman ML, Mansley CR (2009) Online exploration in least-squares policy iteration. In: Pro-

ceedings 8th International Joint Conference on Autonomous Agents and Multiagent Systems

(AAMAS-09), Budapest, Hungary, vol 2, pp 733–739

Maei HR, Szepesvári C, Bhatnagar S, Sutton RS (2010) Toward off-policy learning control with

function approximation. In: Proceedings 27th International Conference on Machine Learning

(ICML-10), Haifa, Israel, pp 719–726

Maillard OA, Munos R, Lazaric A, Ghavamzadeh M (2010) Finite-sample analysis of Bellman

residual minimization. vol 13, pp 299–314

Meyn S, Tweedie L (1993) Markov chains and stochastic stability. Springer–Verlag

Moore AW, Atkeson CR (1995) The parti-game algorithm for variable resolution reinforcement

learning in multidimensional state-spaces. Machine Learning 21(3):199–233

Munos R (2003) Error bounds for approximate policy iteration. In: Proceedings 20th International

Conference (ICML-03), Washington, US, pp 560–567

Munos R (2010) Approximate dynamic programming. In: Markov Decision Processes in Artificial

Intelligence, Wiley

Munos R, Szepesvári Cs (2008) Finite time bounds for fitted value iteration. Journal of Machine

Learning Research 9:815–857

Nedić A, Bertsekas DP (2003) Least-squares policy evaluation algorithms with linear function

approximation. Discrete Event Dynamic Systems: Theory and Applications 13(1–2):79–110

Rasmussen CE, Kuss M (2004) Gaussian processes in reinforcement learning. In: Thrun S, Saul

LK, Schölkopf B (eds) Advances in Neural Information Processing Systems 16, MIT Press

Scherrer B (2010) Should one compute the Temporal Difference fix point or minimize the Bellman

Residual? the unified oblique projection view. In: Proceedings 27th International Conference

on Machine Learning (ICML-10), Haifa, Israel, pp 959–966

Schweitzer PJ, Seidmann A (1985) Generalized polynomial approximations in Markovian decision

processes. Journal of Mathematical Analysis and Applications 110(2):568–582

Sutton R, Maei H, Precup D, Bhatnagar S, Silver D, Szepesvari Cs, Wiewiora E (2009a) Fast

gradient-descent methods for temporal-difference learning with linear function approximation.

In: Proceedings 26th International Conference on Machine Learning (ICML-09), Montreal,

Canada, pp 993–1000

Sutton RS (1988) Learning to predict by the method of temporal differences. Machine Learning

3:9–44

Sutton RS, Szepesvári Cs, Maei HR (2009b) A convergent O(n) temporal-difference algorithm for

off-policy learning with linear function approximation. In: Koller D, Schuurmans D, Bengio Y,

Bottou L (eds) Advances in Neural Information Processing Systems 21, MIT Press, pp 1609–

1616

Szepesvári Cs (2010) Algorithms for Reinforcement Learning. Morgan & Claypool Publishers

Taylor G, Parr R (2009) Kernelized value function approximation for reinforcement learning.

In: Proceedings 26th International Conference on Machine Learning (ICML-09), Montreal,

Canada, pp 1017–1024

Least-Squares Methods for Policy Iteration 35

Thiery C, Scherrer B (2010) Least-squares λ policy iteration: Bias-variance trade-off in control

problems. In: Proceedings 27th International Conference on Machine Learning (ICML-10),

Haifa, Israel, pp 1071–1078

Tsitsiklis JN (2002) On the convergence of optimistic policy iteration. Journal of Machine Learning

Research 3:59–72

Tsitsiklis JN, Van Roy B (1997) An analysis of temporal difference learning with function approx-

imation. IEEE Transactions on Automatic Control 42(5):674–690

Xu X, Xie T, Hu D, Lu X (2005) Kernel least-squares temporal difference learning. International

Journal of Information Technology 11(9):54–63

Xu X, Hu D, Lu X (2007) Kernel-based least-squares policy iteration for reinforcement learning.

IEEE Transactions on Neural Networks 18(4):973–992

Yu H (2010) Convergence of least squares temporal difference methods under general conditions.

In: Proceedings 27th International Conference on Machine Learning (ICML-10), Haifa, Israel,

pp 1207–1214

Yu H, Bertsekas DP (2009) Convergence results for some temporal difference methods based on

least squares. IEEE Transactions on Automatic Control 54(7):1515–1531

Yu H, Bertsekas DP (2010) Error bounds for approximations from projected linear equations.

Mathematics of Operations Research 35(2):306–329

Index

approximate policy iteration, 4

optimistic, 16

basis function, 7

Bellman equation, 3

projected, see projected Bellman equation

Bellman residual minimization, 6, 10

exploration, 14

least-squares policy evaluation, 10

least-squares policy iteration, 12

online, 16

least-squares temporal difference, 10

policy evaluation, 3

least-squares, see least-squares policy

evaluation

projected, see projected policy evaluation

policy improvement, 4

policy iteration, 3

approximate, see approximate policy

iteration

least-squares, see least-squares policy

iteration

projected Bellman equation, 6

projected policy evaluation, 6

37

