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We are applying neural networks to the problem of handwritten signature verifica-
tion. Our system is working on checks, so we can only use the static information (the
image). This static information is used in three representations: geometrical param-
eters, outline and image. Our system is composed of several neural networks which
cooperate together during the learning and decision phases. The performances in gen-
eralization, obtained with a large-scale database of 6000 signatures from real checks
on random forgeries, are False Acceptance Rate (FAR) = 2% and False Rejection
Rate (FRR) = 4%.
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1. INTRODUCTION
1.1. Presentation of the Problem

Individuals are frequently asked to prove their identity when writing official doc-
uments. This is done to stop them from using someone else’s signature and also
to stop them from disowning a document that they have previously acknowledged.
Texts are often typed, so it is not possible to verify these documents from the hand-
writing text. However, it is customary to append a mark verifying the author of the
document, thus showing that he agrees with the text of the document. Nowadays
this mark is generally a handwritten signature, so it would be useful to devise an au-
tomatic and reliable system for the verification of handwritten signatures appended
on the numerous documents which are produced daily.

A signature verification system would have a use in several applications, we will
focus on the verification of checks from the French Post Office.

Our goal is to detect rough forgeries, which are signatures written by someone
who is not imitating a genuine signature. Those rough forgeries are the most com-
monly found forgeries. Systems based on dynamic information (duration, speed of
the signing, ...) are able to detect good imitations. In our application however,
this dynamic information is lost because the image of the check contains only static
information.
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1.2. Use of Neural Networks

Signature verification achieved by human experts is a difficult task to model. To
solve this problem, Neural Networks (NNs) seem more appropriate than symbolic
methods:

— We think that the learning and the generalisation abilities of NNs would be helpful
to cope with the diversity and the variations of signatures.

= Once this learning is achieved (it can be done off-line), the response of a NN to
an input is extremely fast which is interesting because it is during the exploitation
phase (treating a flow of checks) that rapidity is necessary.

— It is possible to compare two images with NNs, a procedure which is difficult and
long with classical methods.

— Although it is not presently included in our system, it is possible to follow the
evolution of the signatures in time by regularly repeating the learning of the NNs
with more recent signatures.

2. HANDWRITTEN SIGNATURE VERIFICATION
2.1. Handwritten Signatures
Two types of signatures are distinguished:

— An American type, which are cursive signatures. In this case, verification systems
can use the presence of characters to help eliminating rough forgeries.
~ A European type, which are graphical signatures that must be processed globally.

Two kinds of information can be extracted from signatures:

~ Static information, generally acquired with a CCD camera, constitutes the image
of the signature. The acquisition can be done off-line, that is to say after the
appending of the signature.

— Dynamic information, acquired by a digitalisation device, contains the speed of
the signing, its duration, its acceleration, and the lifting of the pen (tip of the pen
no longer touching the support). It needs an on-line acquisition device while the
writer is signing.

We can also define pseudodynamic information corresponding to dynamic in-
formation obtained from static information: fluctuations of the line width give an
indication about the pressure exerted on the pen.

Our system works on European type signatures and only the static information
is used.

2.2. Signature Verification Systems

2.2.1. General view

Signature verification systems are usually divided into two modules (Fig. 1):
— an acquisition module

— a verification module
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Fig. 1. A signature verification system.

In systems based on statistical methods, the learning phase consists of building
the reference associated to each signatory. This reference can be several reference -
signatures or an average signature calculated from the reference signatures.

In the case of neural methods, the learning phase consists of showing signatures to
the NNs and of modifying its weights according to its response. Thus, the reference
is “contained” in the weights of the network, which is all the data we have to store.
This gives an advantage to our method because the amount of data about each
signatory does not increase according to the number of reference signatures used.

During the exploitation phase of systems based on statistical methods, the pre-
sented signature is compared with the reference of the supposed signatory. Then,
the system has to make a decision either to accept or to reject the signature accord-
ing to the result of this comparison.

In systems based on NNs, the decision is taken according to the response of the
NNs to the presented signature.

2.2.2. Global view of our verification system

Our verification system takes up the different elements of the general verification
system (see Sec. 1.2.1). Figure 2 gives an overview of our system.

2.3. Signature Representation

The image of a signature represents an important amount of data which is difficult
to process globally. That is the reason why it is common, as in other image inter-
pretation systems, to extract parameters that should be informative, discriminating
and stable for each signatory.! In our system, we have used three representations
of the signatures which will now be described.

We have used the pixel image itself as we felt this would be better than using a
more processed image because the processing, which aims at extracting significant
information, also removes some of the useful information. However, we cannot use
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Fig. 3. Outline of a signature.

the image without performing some pre-processing to reduce the amount of data,
which is too large to be processed straightaway. For example, our signature images
are coded on 1024 x 512 pixels on 256 grey levels.

The outline of the signature (Fig. 3), that corresponds to the extreme vertical
points, is interesting because, although it is made of much less data compared to the
whole image, it keeps the global appearance of the signature ignoring local details.
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It cannot be used on its own because it is not informative for some signatures
(Fig. 4). Moreover, the outline is quite sensitive to the orientation of the signature.
In our system, we use the outline only for a first rough comparison.

Fig. 4. Signature with a non-informative outline.

Geometrical parameters can be extracted either from the image or from the
outline of the signature. These parameters are interesting because they constitute
a more concentrated piece of information making them easier to manipulate and
compare. Moreover, some geometrical parameters are invariant to rotation and
magnification, which is particularly convenient. The main difficulty is to choose
them so that they contain enough discriminative information and so that they
remain stable in spite of local or global distortions.

A significant study has been done by the SEPT (French Telecom Research
Centre)? to select twenty nine geometrical parameters, which include among oth-
ers: size of the signature, orientation of the strokes and inertia moments. These
parameters constitute, in our system, the most discriminant features for signature
representation.

Getting inspiration from handwritten character recognition, we might have also
considered using the number and the position of loops and intersections. But, for
the European signature type, these characteristics are not stable. Frequently a
stroke underlines or crosses the signature and the position of this stroke completely
modifies the number of loops and intersections.

2.4. The Database

Our system is a model of a real-scale system which would be able to work on 300 000
people. In order to develop and test our neuronal architecture, a large representative
database was needed and to constitute this database, 6000 checks were digitalized.

The image of the checks is binarized by an automatic and adaptive thresholding
method. For our application, the right lower quarter of the image, which contains
the signature, is extracted. The signature is often surcharged because banks apply
stamps on the checks, the machines that automatically fill in the check amount and
the date do it sometimes on the signature, and some signatures are written on the
surrounding inscriptions (date, address, numbers).

To reduce these alterations, a processing is applied to the image. For every check,
the position of every character line of the surrounding inscriptions is computed by
scanning all the lines of the image, from the left. From the position of the first
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character of each line, we compute the positions of the others, the size of all these
being the same, except 1 or 2 pixels. These positions are then fitted to the real
positions of the characters. In the same processing, we detect if the signature is
between two characters or on some of them. The right placed characters without
signature are suppressed when it is possible to reconstruct the signature. If recon-
struction is impossible, the character is mixed to the signature: that modification
of the signature is less important than if the rectangle is just suppressed without
reconstruction.

A rotation is applied to make the axis of inertia of the signature horizontal, and
a window is computed around the signature.

When studying the signature images after these operations, one will realize that
this automatic pre-processing is not flawless: there are problems with some sig-
natures which contain parasitic information that disturb the computation of the
window around the signature and the rotation operation. This operation entailed a
lot of work but still it could be improved.

3. DESCRIPTION OF THE VERIFICATION MODULE
3.1. Architecture of the Verification Module
3.1.1. Structure of the verification module

Our system is made up of three levels (Fig. 5). The first one is formed by two NNs
of the non-supervised Kohonen map type. These two NNs use as input, geomet-
rical parameters and outline respectively. Their function is to classify signatures
belonging to the signatories of the same set (for instance: a postal check centre) into
signature classes. The second level is also formed of two NNs, that are multilayer
networks using an error gradient backpropagation learning algorithm. One uses
as input geometrical parameters and the other the image of the signature. These
two NNs are specific to each signatory. The third level is formed only by one NN
of the backpropagation type. It takes as input the outputs of the previous NNs
and makes the final decision about whether to accept or reject the signature under
examination.

The links represent the cooperation existing between the NNs. They are all used
during the learning phase but only the links connected to the decision NN are also
used during the exploitation phase.

3.1.2. Building the training database

Some examples of genuine signatures and forgeries must be shown to the two NNs
on the second level during the learning phase. As one NN is associated to each
signatory, we can use the reference signatures for the genuine signatures. But, for
the forgeries we have to find some representative examples among the signatures of
other people. Several solutions to this problem could be considered:
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Fig. 5. The three levels of the verification module.

— The first consists in taking a few signatures from all the other people in the data-
base. However, this would be unsatisfactory because the learning phase becomes
too long when dealing with a real-scale database. Moreover, it would be necessary
to go over again the learning for all the signatories when a new signatory is added
to the database.

— The second possible solution involves presenting random values to the NNs in-
stead of the geometrical parameters of false signatures; we have tested this solution
because it simplifies the test protocols as the learning can be done independently
from the rest of the database. But it gives poor results because NNs have to learn to
differentiate the genuine signatures from everything within the representation space,
the dimension of which equals the number of inputs to the NN. In reality, the rep-
resentation space is much larger than the area where the genuine signatures can be
found, although they can be very different from one another and it is important to
limit the inputs of the NNs to the existing signatures only.

— In the third solution, we take a sample of genuine signatures from other people to
represent the false signatures. These false signatures are chosen randomly among
the reference signatures of the other signatories. Results are better than with the
second solution but we have noticed some differences when the random generator
was initialised with different values. Globally, on all signatories, the results were
about the same, but when analyzing more precisely the results for a given person,
significant variations can be noticed. We concluded that the choice of false signa-
tures had some influence on the learning of the NNs, and that a random choice,
although being a good solution, is certainly not the best one.
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The question we have to answer is: which false signatures should be learned, for
a given person, in order to optimize the learning phase? We noticed an improve-
ment in the results when we reduced the space of signatures from randomly-made
signatures to real ones. So we continued in this way and tried to reduce the space
of signatures used for learning: the idea was to present to the NNs, false signatures
that resembled the genuine ones of a given person. Figure 6 summarizes how the
representations space was gradually reduced.

Whole space of the signatures representations

Area of the signatures database

Area of the genuines for a signatory

Area of the forgeries that resemble the genuines

Fig. 6. Reducing the size of the representation space.

To determine whether a false signature is close to a genuine signature of a given
person, we use a Kohonen map; it classifies signatures into a predefined number
of classes. The false signatures, used in the learning of the NN associated to each
signatory, are chosen among the false signatures that have been classified in the
same class as most of the genuine signatures of that person.

3.1.3. Cooperation within the verification module

Two types of cooperation® are used in our verification module:

The first one, of the “modulation” type, establishes cooperation between NNs of
the first level and NNs of the second level. The former performs a rough classification
of the signatures of the learning base, in order to improve the learning of the latter.

The second type of cooperation of the so-called “associative” type, is achieved
by a third level which takes as its inputs the outputs of the NNs from the two first
levels, and makes the decision whether to accept or reject the signature. Details
about this NN are given in Sec. 3.4.

3.2. The First Level of Our Verification Module

The goal of this layer is to perform an initial classification, using the geometrical
parameters and the outline of the signature. We build one NN for the parameters,
and one for the outline. Both NNs work on the whole set of signatories, as we aim
to classify each signature in comparison with all the others.
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As the number of signatories can be very large, it is impossible to have as many
classes as signatories, which would have enabled supervised learning. So, we have
to limit the number of classes of each NN. In the case of a real-scale application,
this number of classes would be much smaller than the number of signatories and
we would notice that several people share the same class and that a signatory can
be classified in more than one class.

We cannot make a prior forecast about which signatories are to be found in
the same class. That is the reason why it is difficult to use a supervised learning
method, in which we would tell the NN, for each reference signature, which class
it is to choose. So, we decided on a type of NN enabling non-supervised learning.
In this case, during the learning phase, the NN has to group all the signatures it
judges quite similar to one another into the same class.

To implement this scheme, we chose the most current type of NN that enables
unsupervised learning: the Kohonen self-organising network,* which will now be
described. In our system, the Kohonen NN has as many input cells as the number
of components of the data vector, i.e. 29 for geometrical parameters and 400 for
the outline (400 equals twice the width of the outline). The output layer has two
dimensions of the same size. The number of output cells is chosen experimentally
below 50 (49, 36 or 25). This number of output cells corresponds to the number of
classes in which the NN will classify the signatures. The input cells are all connected
to the output cells.

The way we use those NNs can be decomposed in three stages:

— First, the learning of the weights with the reference signatures.

— Second, the determination of the associated class for each signatory. It is the
most frequent class given by the NN when each reference signature of a signatory
is presented to it.

— Third, the verification stage. The signature is presented to the NN, if it is classified
in the associated class of the signatory the activation value of the corresponding cell
is transmitted to the decision NN otherwise 0 is transmitted to it.

As we have seen before, the classification done in this level helps with the choice
of the forgeries used for the training of the NNs on the second level.

3.3. The Second Level of Our Verification Module
3.3.1. Multilayer network working on the geometrical parameters

This network has an input layer of 29 cells corresponding to the 29 geometrical pa-
rameters, an output layer with a unique cell and a variable number of hidden layers.
The learning phase is done using the error gradient backpropagation algorithm.®
Cells of one layer are completely connected to the cells of the next layer. The
transfer function is a sigmoid.

The final structure of this NN was decided, following the results obtained when
using it independently from the other NNs of the verification module. We achieved
the best results when the multilayer network possessed no hidden layer. This may
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seem surprising when you know that hidden layers enable NNs to delimit classes
more precisely. In reality, hidden layers improve rote learning of the signatures but
diminish generalization capabilities. Those generalization capabilities are particu-
larly interesting as they enable the NNs to give correct answers, even when they
have never learnt the input signature.

3.3.2. Multilayer shared weights NN (MSWNN) working on the image

In traditional multilayer NNs, all the neurons of a layer are completely connected to
the neurons of the next layer and associated with each connection is a weight. In the
case of multilayer shared weights NNs,® we only keep local connections to a neuron
(Fig. 7) and we use shared weights, i.e. weights common to several connections.

X SR
s \ . . mask = 5%

1/
/

target plane
source plane

Fig. 7. Principle of shared weights.

To increase the NN efficiency, we use several planes for each layer (Fig. 8). Each
plane of a layer “sees” the same data and thus does the same work. Each plane
has a mask, whose initial weight values are chosen randomly at the beginning of
the learning phase. As the initial mask values are different, each plane converges
towards a different “view” of the data, thus extracting different features.

Figure 8 shows the final structure of our MSWNN which contains 2 planes for
the first hidden layer, i.e. 2 masks 3 x 3, and 5 planes for the second layer, i.e. 5
masks 5 x 5.

3.4. The Third Level of Our Verification Module

In our first experimentation,” the decision phase only consisted of merging the
boolean (true — false) outputs of each NN. Thanks to the size of our database
(6000 signatures), we could then improve our decision strategy by introducing a
multilayer NN, whose output was any number between 0 and 1, proportional to
the similarity between the tested signature and reference signatures. This achieves
the same result as asking an expert to give his advice. His answer may take the
form, “1 think these signature do not resemble each other”. For the final decision,
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Fig. 8. Architecture of our MSWNN.
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Fig. 9. The decision NN.

the answers of experts are weighted by a “confidence coefficient” | corresponding to
the fact that the answers of some experts play a more important part in the final
decision than the answers of others.

Figure 9 shows the fifth NN, which takes the final decision about whether to ac-

decision.

cept or reject the signature. The weights of this NN are the same for all signatories.
The NN takes as its inputs the outputs of the four former NNs and has only one
output cell, the value of which is compared to a threshold, in order to make the
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4. RESULTS

To evaluate the performances of a verification system, two rates are generally com-
puted: the false rejection rate (FRR) and the false acceptance rate (FAR). Those
verification systems use a parameter, called the decision threshold in order to mod-
ify the hypersurface. Practically, with most of the representations used, classes
cannot be separated. Then the choice of the decision threshold follows one of the
following criteria:

— minimizing the average of FAR and FRR.
— keeping one of the two rates below a desired rate (for instance FAR lower than

1%).

Error rates
N
AR FRR
FRR
FAR —— .
Threshold 7 Decision threshold

Fig. 10. Choice of a decision threshold based on a criterion.

In order to test our system, we have used a database of 6000 signatures extracted
from real checks done by over 300 signatories. This database has been divided into
two parts: the training database and the testing database. In real-scale functioning,
it is not the learned signatures that will be verified but new ones, so it is important
to strictly separate the two parts of the database. In our system, the training
database is composed of 6 genuine signatures and 30 random forgeries for each
signatory, the rest of the database constitutes the testing database. The database
does not include imitations.

The performance in generalization are summed up in the following table (Fig. 11).
The first row gives the FRR corresponding to a FAR, of 2% and the second row the
FRR corresponding to a FAR below 1%.

FAR FRR
20% 40 %
09 % 7.4 %

Fig. 11. Results of the complete system.
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5. CONCLUSION

We have devised an architecture that enables the cooperation between various NNs
using different representations of handwritten signatures namely geometrical pa-
rameters, outline and image of the signature. Part of this architecture is specific
to each signatory and another part global to the set of signatories. Two types of
cooperation are brought into play, fusion of results obtained when working on the
different representations of signatures, and improvement of the learning phase of
multi-layer NNs. This improvement in the learning phase is thanks to the selection
of sample forgeries that more closely resemble genuine signatures than randomly
selected ones and this is in turn thanks to a first classification performed by non-
supervised Kohonen NNs.

Our research is directed towards an industrial application that can deal with
millions of signatures from hundreds of thousands of signatories. This would imply
strong constraints upon the size of the data to be stored for each signatory and as
our present system only needs about 300 values for each signatory, this would be
acceptable for a large-scale application.

Our results can be compared with others® taking into account that our applica-
tion has been developed and tested on a large-scale database. This database was
built by the digitalization of 6000 postal checks from more than 300 signatories.
The use of real data and a large database validates our system under almost normal
conditions.

Finally, it will be possible to combine our verification module with the module
developed by the SEPT which is based on statistical methods, because the decision
level of our system can easily take into account results from other sources. As the
methods used by the SEPT are very different from our approach, we should improve
the global performance of the system, although we use the same representation of
signatures.
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