A static signature verification system based on a cooperating neural networks architecture

Abstract : We are applying neural networks to the problem of handwritten signature verification. Our system is working on checks, so we can only use the static information (the image). This static information is used in three representations: geometrical parameters, outline and image. Our system is composed of several neural networks which cooperate together during the learning and decision phases. The performances in generalization, obtained with a large-scale database of 6000 signatures from real checks on random forgeries, are False Acceptance Rate (FAR) = 2% and False Rejection Rate (FRR) = 4%.
Type de document :
Article dans une revue
IJPRAI on Automatic Signature Verification, 1994, 8 (3), pp.679 - 692
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00829478
Contributeur : Image Greyc <>
Soumis le : mardi 4 juin 2013 - 09:53:20
Dernière modification le : jeudi 7 février 2019 - 17:40:23
Document(s) archivé(s) le : jeudi 5 septembre 2013 - 04:19:53

Fichier

IJPRAI-1994.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00829478, version 1

Citation

Hubert Cardot, Marinette Revenu, B. Victorri, M.-J. Revillet. A static signature verification system based on a cooperating neural networks architecture. IJPRAI on Automatic Signature Verification, 1994, 8 (3), pp.679 - 692. 〈hal-00829478〉

Partager

Métriques

Consultations de la notice

201

Téléchargements de fichiers

115