A Comparison of Explicit and Implicit Graph Embedding Methods for Pattern Recognition

Abstract : In recent years graph embedding has emerged as a promising solution for enabling the expressive, convenient, powerful but computa tional expensive graph based representations to benefit from mature, less expensive and efficient state of the art machine learning models of statistical pattern recognition. In this paper we present a comparison of two implicit and three explicit state of the art graph embedding methodologies. Our preliminary experimentation on different chemoinformatics datasets illustrates that the two implicit and three explicit graph embedding approaches obtain competitive performance for the problem of graph classification.
Type de document :
Communication dans un congrès
9th IAPR - TC 15 workshop on Graph Based Repesentations in Pattern Recognition, May 2013, Vienne, Austria. pp.81, 2013
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00829226
Contributeur : Benoit Gaüzère <>
Soumis le : lundi 8 juillet 2013 - 16:25:33
Dernière modification le : jeudi 7 février 2019 - 15:43:27
Document(s) archivé(s) le : mardi 4 avril 2017 - 15:00:18

Fichier

GbR2013_011.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00829226, version 1

Citation

Donatello Conte, Jean-Yves Ramel, Nicolas Sidère, Muhammad Muzzamil Luqman, Benoit Gaüzère, et al.. A Comparison of Explicit and Implicit Graph Embedding Methods for Pattern Recognition. 9th IAPR - TC 15 workshop on Graph Based Repesentations in Pattern Recognition, May 2013, Vienne, Austria. pp.81, 2013. 〈hal-00829226〉

Partager

Métriques

Consultations de la notice

396

Téléchargements de fichiers

1466