Experimental validation of an eddy current probe dedicated to the multi-frequency imaging of bore holes

Pierre-Yves Joubert, Eric Vourc’H, Vincent Thomas

To cite this version:

HAL Id: hal-00829024
https://hal.archives-ouvertes.fr/hal-00829024
Submitted on 1 Jun 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
EXPERIMENTAL VALIDATION OF AN EDDY CURRENT PROBE DEDICATED TO THE MULTI-FREQUENCY IMAGING OF BORE HOLES

P.-Y. JOUBERT1, E. VOURC’HI, V. THOMAS1
1IEF, CNRS UMR 8622, Univ Paris Sud-P11, Bât 220, F-91405 Orsay Cedex, France
2SATIE, ENS Cachan, CNRS, UniverSud, 61 Av. du Président Wilson, 94235 CACHAN Cedex, France

1. Introduction

The demand for faster non destructive evaluations (NDE) of conductive structures and for the accurate characterization of the defects that may be detected is a motivation toward the development of eddy current (EC) imaging systems. These systems aim at providing an automated, quantitative and accurate diagnosis of the inspected parts, starting from the collected EC data. To do so, they require that i) a dedicated probe provides accurate and relevant EC data, ii) accurate and computationally efficient modeling algorithms are derived so as to model the physical interactions between the part and the EC probe iii) the inverse problem can be solved, i.e. the quantitative estimation of the defect within the inspected part is carried out, starting from the collected EC data and using the modeling algorithms. However, inverse problems in eddy current NDE are known to be “ill posed” [1,2], meaning that the solution may not be unique or may even not exist. This problem is made worse by the incompleteness of the EC data that are available [3] when conventional EC probes are used. In order to overcome this major drawback, the first step consists in providing more relevant EC data. This is why efforts have been made in the last decade to design EC probes which provide enhanced EC data. Among them, probes using large bandwidth excitation systems (pulsed eddy current systems [4]) rather than a harmonic excitation have been proposed. Also, probes implementing rotating excitation fields have been designed so as to investigate the inspected part under various “viewpoints” [5,6]. Furthermore, recent progresses made in the miniaturization of the magnetic sensors and in the use of integrated technologies enable advanced array probes to be built [5-11]. Such array probes are suitable for the design of EC imaging systems since they allow two dimensional C-scan images to be accurately collected, with an acquisition time reduced if compared to the EC data provided by single sensor probes which require more fastidious mechanical scanning [8]. A variety of such EC array probes has been reported. These probes implement various magnetic field sensors such as Hall effect sensors [7], coils [8,9] or high sensitivity sensors such as giant magneto resistances (GMR) [10,11]. Moreover, depending on the size of the sensors and also, as far as coils are concerned, on the possibility of using a flexible support, probes matching complex geometries can be designed [9]. Finally, high resolution C-scans also have been provided by magneto-optic EC system [12,13] dedicated to the imaging of plane parts. In these different devices, the EC
flowing within the inspected part can either be induced locally, using elements of the array probe as local transmitters [8,9], or induced “globally”, i.e. within the whole inspection area, using a large EC inducer [11]. The latter can be designed taking advantage of the symmetries of the inspected part in order i) to optimize the electromagnetic coupling with the part, ii) to reduce perturbation parameters such as the geometry changes in the part, iii) and/or to reduce the direct coupling between the inducer and the magnetic field sensor array [13]. Thanks to the use of such global inducers, imaging devices that are only sensitive to the magnetic field components that are due to EC / defects interactions may be designed [11, 13]. For example, such a configuration proposed in [14] or [15] enables to induce a uniform eddy current flow in the inspected area, so that the measurement system is self-nulling (measured EC data are non-zero only in the presence of a defect). Recently, the authors have applied this approach to design an EC array probe dedicated to the imaging of bore holes featuring sub-millimetric surface-breaking defects. The configuration of the proposed probe aims at allowing efficient acquisition of relevant data to be carried out (thanks to a sensing array), as well as computationally efficient defect reconstruction algorithms to be implemented. The design of the probe itself, including the study of the influence of the sensing element technology, was carried out by the means of finite element computations and presented in [16]. In paper [17], the authors have proposed an inversion algorithm, developed in a total variation regularized optimization framework, able to carry out the three-dimensional reconstruction of surface breaking defects in the bore-hole, starting from EC data simulated in a large frequency bandwidth. In this paper, we report on the experimental validation and characterization of such an EC array probe dedicated to bore-hole imaging, with multi-frequency reconstruction of defects in view. The paper is organized as follows. Section 2 provides the probe features and the description of the experimental setup that is implemented. The characterization of the probe is reported in section 3: experimental magnetic flux density cartographies (C-scans) are provided and compared to simulated data. Moreover, the multi-frequency operation of the probe is characterized. Then, the influence of the structure of the array probe is studied with regards to the sampling of the collected C-scan. Finally, concluding remarks are given in section 4.

2. EC imaging array probe and experimental set-up

2.1. Structure and basic principle of the probe

The proposed EC probe aims at providing rapidly and accurately sampled C-scan images relative to surface breaking defects. Given the cylindrical geometry of the part to be imaged, this probe was designed based on a global inducer consisting in a large coil coaxial to the bore hole (Figure 1) which allows a good electromagnetic coupling with the part to be achieved. Thanks to this configuration, a uniformly oriented EC flow is induced within the inner wall of the bore hole along the \(\hat{\theta} \) axis (Figure 1.B). In the absence of a defect, for symmetry reasons, no radial component of the magnetic field is generated. Conversely, the presence of a surface breaking defect will locally modify the EC flow (Figure 1.B). Consequently, new magnetic field components will appear in the vicinity of the defect and, among them, a non-zero radial component will arise (Figure 1.C) along the \(\hat{r} \) axis. Sensing this particular component seems therefore particularly judicious since it is null in the absence of a defect. Indeed, in this way, there is no direct coupling between the inducer and the magnetic field sensor.

This configuration enhances the sensitivity of the probe to the defects [16], and enables the use of high gain amplifiers to provide low noise measurement data. In order to rapidly sample the two-dimensional distribution (C-scan) of the radial magnetic field, the use of a sensing coil array is considered (Figure 1.D). The resulting configuration of the whole EC probe is as depicted in Figure 1.E.

2.2. Probe features

A prototype of the sensor array probe was build for experimental validation purposes. The inducer of the probe is constituted of 58 mm long and 48.8 mm diameter single layered bobbin-coil featuring 76 turns wound with a 1.25 mm diameter copper wire, so as to reduce the capacitance of the inducer [18]. This inducer was characterized by means of an HP4192A impedance analyzer. The resistance of the inducer, measured at 10 Hz was found to be \(R_{\text{inducer}} = 212 \ \Omega \pm 2 \ \text{m\Omega} \), the self inductance \(L_{\text{inducer}} = 44.22 \ \mu \text{H} \pm 0.01 \ \text{Hz} \) (at 100 kHz), and the stray capacitance, measured at 10 MHz was found to
be \(C_{\text{inducer}} = 28.8 \, \text{pF} \pm 0.2 \, \text{pF}. \) In practice, these features enable the inducer to correctly operate from a few kHz up to 800 kHz, and large frequency bandwidth operations may be envisaged. The elements of the sensing array are pickup coils of 1.4 mm long, of 1.4 mm outer diameter, and featuring 460 turns distributed on 10 layers of 46 turns, wound with a 50 µm diameter copper wire. This kind of mini-bobbin coils features a bandwidth larger than 10 MHz and a sensitivity higher than 350 V/T at 100kHz. Since these features are sufficient for the sensing of surface breaking defects, mini-coils have been chosen as pick-up elements in this study rather than solid state sensors such as Hall-effect sensors [19] or giant effect magneto-resistances. Indeed, these solid state sensors are sensitive to in-plane magnetic field components, and may be found more difficult to integrate in a pickup array than bobbin coils, considering that it is the radial component of the magnetic field in the bore hole that is to be imaged.

2.3. Experimental set-up

The part under test is a bore hole of diameter 52 mm machined in a 170 mm×100 mm×50 mm laboratory made mock-up, made of a 2024 T3 aluminum alloy, representative of an aeronautic part, which features an electrical conductivity of 17.6 MS/m [20]. The part features three defects denoted \(D_1, D_2, \) and \(D_3 \) machined using an electrical discharged machining (EDM) process. The defects feature a semi-circular shape, a 200 µm aperture and a diameter \(d \) equal to 0.4 mm, 0.8 mm and 2 mm respectively (Figure 2). The defects are located in the middle of the cylindrical hole (far from the mouth of the bore hole) and their main orientation is along the \(z \) axis (Figure 2). The global inducer of the probe is introduced inside the bore hole (Figure 3) and fed with alternated currents of adjustable frequency through a power amplifier. A single pickup coil, oriented along the \(\vec{r} \) axis, is fixed to a moving support and placed in the air-gap separating the inducer from the wall of the bore hole. Due to the configuration of the probe, to the dimensions of the constitutive parts, and to the positioning accuracy of the motorized axes of the robot used to move the probe, the lift-off between the sensing coil and the wall of the bore hole was estimated to be 200 µm ± 20µm. The pickup coil senses the radial component of the magnetic field and is moved along the \(\vec{z} \) and \(\vec{\theta} \) axes by means of a translation and a rotation PC controlled actuators, so as to build the C-Scan EC cartographies (Figure 3). The EC data are actually collected at the ends of the pickup coil using a PC controlled HP4192A impedance analyzer by means of lock-in amplification.

This single sensing pickup coil configuration was preferred to the use of an actual sensor array for the sake of simplicity in the implementation of this proof of concept set-up. The position of the pickup coil is accurately adjustable along the \(\vec{z} \) and \(\vec{\theta} \) axes, using the PC controlled actuators, so that various array sensor configurations may be simulated and studied. Indeed, the moving of the pickup coil enables the acquisition of the EC C-scan within the defect area, denoted \(I \), with adjustable scanning steps of \(s_z = m \cdot dz \) and \(s_\theta = n \cdot R \cdot d\theta \), with \(m,n \in \{1,2,3,...,N\} \), and where \(dz = 12.5 \, \mu \text{m} \) and \(R.d\theta = 50 \, \mu \text{m} \).

3. Implementation and characterization of the EC imaging probe

3.1. First experimental results

The implementation of the EC imaging probe was firstly carried out at 90 kHz considering the defects \(D_1, D_2, \) and \(D_3, \) The resulting C-scan images \(I \) are complex and constituted of in-phase and in-quadrature images, respectively denoted \(I_p \) and \(I_q \), obtained by reference to the phase-shift of the exciting current, so that \(I = I_p + jI_q \). They are presented in Figure 4, Figure 5, and Figure 6 for defects \(D_1, D_2, \) and \(D_3, \) respectively. These images are obtained in a 4.4 × 4.4 mm² area, with scanning steps featured by \(m = 8 \) and \(n = 2 \) (i.e. \(s_z = s_\theta = 0.1 \) mm).
Figure 4. EC C-scans for defect D_1, at 90 kHz.

Figure 5. EC C-scans for defect D_2, at 90 kHz.

Figure 6. EC C-scans for defect D_3, at 90 kHz.

mm). For the sake of validation, the obtained C-scans were compared to simulated data, obtained by means of finite element computations of the same configuration in which the lift-off of the sensing coil is assumed to be 200 µm. Lissajous plots relative to a cut line passing above the defects along the z axis are also provided in Figure 7. In both representations, one can note a fair agreement between experimental and computed data whatever the considered defect. The small amplitude or phase difference that can be noticed may originate from a mis-positioning (variation of lift-off) of the sensing coil or, as far as the smallest defects is concerned, from the tolerance margin of the defects manufacturing. Nevertheless, these preliminary results validate the experimental feasibility of the EC imaging probe. The imaging probe is designed to operate in a large frequency bandwidth, since previous works have shown that enhanced defect reconstruction results were obtained starting from multifrequency EC data [17]. Considering the penetration depth δ of the EC within the material, which may be approximated by [21]:

$$\delta = \frac{1}{\sqrt{\sigma \mu f}}$$

and considering the larger defect to be imaged (D_3, 1 mm deep), one can conclude that frequencies ranging from less than 15 kHz up to hundreds of kHz should be used to provide varied EC information relative to these surface-breaking defects.
In order to quantify the experimental sensing ability of the probe in that frequency bandwidth, we use the peak signal to noise ratio (PSNR), defined as [22]:

$$\text{PSNR} = 20 \cdot \log \frac{\text{max}(|I|)}{\sqrt{\sigma_p^2 + \sigma_q^2}}$$ \hspace{1cm} (2)

where max(|I|) is the peak value of the modulus of I taken above the defect signature, and σ_p and σ_q are the standard deviations of the noise, assumed to be Gaussian, which are estimated from 80 pixels taken in defect-free areas comprised in the I_p and I_q images, respectively. As an example, the estimation of the noise in the case of defect D_2 at 90 kHz (Figure 4) leads to $\sigma_p = 2.2$ µV and $\sigma_q = 2.3$ µV. With max(|I|) = 1.82 mV, the PSNR calculated using Eq. 2 is found to be 55.1 dB.

The PSNR was estimated for the C-scan images obtained experimentally at frequencies varying in the 10 – 800 kHz
range, when considering the defects D_1, D_2 and D_3. The results are gathered in Table 1. One can note that in the considered frequency range, all the defects are correctly sensed (the PSNR being always higher than 36 dB), which gives good prospects for solving the inverse problem required for the accurate characterization of defects [17]. Furthermore, the evolution of the maximum value of the defect signatures as a function of the defect depth is plotted for 3 different frequencies in Figure 8. One can note that the obtained curves are monotonous, that is to say defects of different diameters may be discriminated considering the value of $\max(\mid I \mid)$. Moreover, the sensitivity of the probe (the slope of the different curves) changes with the frequency. As a result, multi-frequency EC data may be used simultaneously so as to enhance the robustness of the discrimination between defects of different diameter.

Table 1. Estimation of the PSNR obtained on experimental data provided by the probe for various defects and excitation frequencies.

<table>
<thead>
<tr>
<th>Frequency (kHz)</th>
<th>10</th>
<th>40</th>
<th>55</th>
<th>90</th>
<th>150</th>
<th>350</th>
<th>800</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNR for D_1 (dB)</td>
<td>36.2</td>
<td>40.7</td>
<td>44.9</td>
<td>45.2</td>
<td>44.8</td>
<td>50.8</td>
<td>62.4</td>
</tr>
<tr>
<td>PSNR for D_2 (dB)</td>
<td>46.1</td>
<td>50.3</td>
<td>54.5</td>
<td>55.1</td>
<td>55.7</td>
<td>50.3</td>
<td>61.6</td>
</tr>
<tr>
<td>PSNR for D_3 (dB)</td>
<td>48.2</td>
<td>51.9</td>
<td>56.5</td>
<td>57.3</td>
<td>58.1</td>
<td>58.1</td>
<td>63.6</td>
</tr>
</tbody>
</table>

3.2. Effect of the sampling step

The EC images considered in the previous sections (see Figure 4 to Figure 6) were obtained by moving a single pickup coil over the defect zone with 0.1 mm × 0.1 mm spatial sampling steps. If a fixed sensing array featuring 1.4 mm diameter pickup coils was used instead of a single moving pickup coil, the obtained images would be rather different, since the sampling step, resulting from the size of the coils, would be significantly larger. As a result, the quality of the obtained sensed cartography might be altered, so as the performances of the defect characterization. Therefore, the influence of the sampling step as well as the coil arrangement of the array have to be evaluated. To do so, let us denote $I_{m,n}$ the C-scan image obtained with the sampling steps s_x and s_θ featured by m and n, as defined in section 2.3. The C-scan images shown in Figure 4 to Figure 6 are obtained with samplings steps of $s_x = s_\theta = 0.1$ mm. They are therefore denoted $I_{0,2}$ and constitute the reference images in this study. Using an actual array probe would lead to consider sampling steps of larger dimensions than 0.1 mm. Indeed, if the sensing array is constituted of 1.4 mm diameter pickup coils placed side by side, the resulting C-scan images would be obtained with sampling steps of $s_x = s_\theta = 1.4$ mm. These features may alter the sensing of the defects and deteriorate the defect characterization performances of the imaging system. In order to reduce the degradation of the defects and deteriorate the defect characterization, the interpolation error $\varepsilon_{m,n}$ defined as:

$$\varepsilon_{m,n} = I_{0,2} - \overrightarrow{I_{m,n}}$$

where $\overrightarrow{I_{m,n}}$ is the cubic interpolation of EC image $I_{m,n}$, carried out so as to match the sampling steps of the reference image $I_{0,2}$. Finally, the mean square error ε_{MSE} due to the sampling and interpolation, computed by comparison to the reference image, can be evaluated using:

$$\varepsilon_{MSE} = \sum_{k=1}^{l} \frac{|\varepsilon_{m,n}|^2}{\sum_{k=1}^{l} |a_k|^2}$$

where k and l are the number of pixels of the EC image along the the z and θ axes.
In this work, the influence of the sampling step was studied in two measurement configurations: the EC observation of the smallest defect \(D_1 \) at 10 kHz, which constitutes the worst case of detection, and the observation of defect \(D_2 \) at 800 kHz, which constitutes the best case of detection according to Table 1. In both configurations, the error was evaluated versus the sampling steps used to carry out the data acquisition. The used sampling steps range from \(s_z = s_\theta = 0.2 \text{ mm} \) (i.e. \(m = 16, n = 4 \)) to \(s_z = s_\theta = 1.4 \text{ mm} \) (i.e. \(m = 112, n = 28 \)), the latter values being relative to the sampling steps provided by a sensing array constituted of 1.4 diameter sensing coils placed side by side. The obtained results are provided in Figure 9. In both configurations, one can observe that the error is increasing from less than a few percent up to 35% when the sampling steps are as large as 1.4 mm. In order to keep the error lower than a few percent even in the worst defect configuration, one may use a staggered row arrangement of the pickup coils to build up the sensing array. Such a configuration is depicted in Figure 10. Provided that the C-scan is acquired using two different positions of the sensing array, separated from a distance \(d = \sqrt{4.s_z^2 - s_\theta^2} \) along \(R.d\theta \), the image is acquired with equivalent sampling steps of \(s_z = 0.7 \text{ mm} \) and \(s_\theta = \sqrt{4.s_z^2 - s_\theta^2} \approx 1.2 \text{ mm} \). This staggered row configuration associated with a two-step acquisition strategy was experimentally evaluated using acquisition parameters \(m = 66 \) and \(n = 24 \), and the sampling and interpolation error was evaluated to be lower than 9% in the worst imaging case (\(D_1 \) at 10 kHz), still using 1.4 mm diameter pickup coils.

4. Conclusion

In this study, the experimental feasibility and the first characterization of an EC array probe dedicated to the imaging of millimetric surface breaking defects appearing in bore holes, have been reported. The probe was designed with accurate defect characterization in view. It is constituted of a large inducer generating a uniformly oriented EC flow within the inspected part, and a sensing array used to sense the radial component of the magnetic field resulting at the surface of the wall of the bore hole. An experimental set-up was build in order to validate the imaging performances of such a probe, in a large frequency bandwidth. For the sake of simplicity, a probe prototype featuring a single sensing coil which can be accurately positioned in the sensing area, has been developed in order to evaluate the sensing performances as well as to study the influence of the sensing array configuration. The obtained experimental results proved a good sensing ability of the designed probe in the 10 kHz – 800 kHz frequency range, with a PSNR higher than 36 dB for a defect featured by a diameter as small as 0.4 mm. Furthermore, a staggered row configuration of the sensing array was proposed so as to significantly reduce (from 35% to 9%) the acquisition error due to the value of the sampling step resulting from the pickup coils geometry. Further works will focus on the implementation of inverse problems algorithms, such as the ones developed and implemented using simulated data in [17], in order to study the performances of the imaging probe in terms of defect characterization performances.

5. Acknowledgments

The authors thank MM. Dessendre and Trétout from Dassault-Aviation for their help.

6. References

