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Abstract

This paper concerns estimating parameters in a high-dimensional dynamic factor
model by the method of maximum likelihood. To accommodate missing data in the
analysis, we propose a new model representation for the dynamic factor model. It
allows the Kalman filter and related smoothing methods to evaluate the likelihood
function and to produce optimal factor estimates in a computationally efficient way
when missing data is present. The implementation details of our methods for signal
extraction and maximum likelihood estimation are discussed. The computational gains
of the new devices are presented based on simulated data sets with varying numbers
of missing entries.

JEL classification: C33; C43.
Some keywords: High-dimensional vector series; Kalman filtering and smoothing;
Unbalanced panels of time series.

1 Introduction

This paper presents new procedures for parameter estimation by maximum likelihood and

signal extraction of factors for high-dimensional factor models in the presence of missing

data. We develop new methods for the basic dynamic factor model

yt = Λft + ut, t = 1, . . . , n, (1)
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where yt is the N × 1 vector of time series observations, ft is an unobserved q × 1 vector of

common factors and ut is the N×1 vector of idiosyncratic terms. We focus on cases where N

is much larger than q. The factors are assumed to follow a Gaussian dynamic linear process

and the idiosyncratic components in ut are modelled as autoregressive (AR) processes. The

results are also applicable for more general models of this form.

In many economic applications, the dimension of yt is large and the model depends on

a large number of parameters. The task of signal extraction and parameter estimation is

therefore challenging in various respects. Particularly, state space formulations allow to

obtain minimum mean square estimates of the factors together with the corresponding mean

square errors by means of the Kalman filter and smoother recursions. The methods can be

implemented in a computationally efficient way. However, the model representations are not

valid in the presence of missing data. In empirical work, unbalanced panels for time series

are more common than balanced panels without missing entries. For example, missings are

present in the Stock and Watson (2002b) data set of 215 monthly time series and in the

Otrok and Pourpourides (2008) longitudinal data set of hourly wages. Due to the existence

of many data sets with missing entries we regard the problem of missing data as highly

relevant.

We address the missing data problem by developing a low-dimensional linear state space

model with time-varying state dimensions. It is equivalent to the dynamic factor model (1)

and is designed to allow for missing entries in the dataset. We also discuss how the state

space formulation can be used to obtain maximum likelihood estimates of the parameters

by means of the Expectation-Maximization (EM) algorithm of Dempster, Laird, and Rubin

(1977) and by direct optimization using a Quasi-Newton scheme.

Traditionally models of the form (1) have been estimated using principal components

analysis (PCA), see Forni, Hallin, Lippi, and Reichlin (2000), Bai (2003) and Stock and

Watson (2002a). Stock and Watson (2002b) is especially relevant as they show how missing

data can be handled in a principal components analysis by means of an EM type algorithm.

Sargent and Sims (1977) and Geweke (1977) are the earliest references discussing maximum

likelihood methods for dynamic factor models. For a relatively low-dimensional model for

wage rates, Engle and Watson (1981) consider maximum likelihood estimation, using Fisher

scoring to maximize the likelihood. EM algorithms are developed for maximum likelihood

estimation of parameters in state space models by Watson and Engle (1983) and Shumway

and Stoffer (1982). Other estimation methods are based on the Bayesian approach as in

Otrok and Whiteman (1998) and the subspace algorithm of Kapetanios and Marcellino

(2009).

Recently there has been a renewed interest in the use of maximum likelihood estimation

for high dimensional models. Doz, Giannone, and Reichlin (2010) show that estimates of

the unobserved factors obtained from a likelihood-based analysis are consistent estimators of
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f1, . . . , fn as n, N →∞, even if the dynamic factor model is misspecified. Furthermore, they

present evidence that in some cases a likelihood-based analysis produces more precise esti-

mates of the factors than a principal component method. Reis and Watson (2010) consider

the dynamic factor model (1) and obtain parameter estimates by the method of maximum

likelihood using the approach of Watson and Engle (1983).

This maximum likelihood approach is not applicable when missing data is present. Ban-

bura and Modugno (2010) propose a solution that overcomes the problem but is compu-

tationally demanding. Furthermore, their method requires numerical modifications to let

the methods work in a satisfactory way. These modifications may distort the purpose of

finding exact maximum likelihood estimates. In this paper we address the same issue but

we develop a computationally efficient method for exact maximum likelihood parameter es-

timation. The methods also provide minimum mean square estimates and corresponding

mean square errors of the factors and the idiosyncratic components.

The remainder of the paper is organized as follows. The dynamic factor model and its

state space representations are discussed in detail in section 2. We develop in section 3

a new representation of the model that is valid when missing data is present. This state

space representation allows the computationally efficient application of the Kalman filter

and smoother recursions. Signal extraction and likelihood evaluation are explored in section

4. Parameter estimation by maximum likelihood methods are discussed in section 5 while

computational comparisons based on simulated data is presented in section 6. A short

discussion of the presented results is given in section 7.

2 The dynamic factor model

2.1 Model specification

The dynamic factor model given in (1) links the observation yt to a set of unobserved factors

ft for t = 1, . . . , n. We assume that f1, . . . , fn are linear combinations of an unobserved

p × 1 dimensional vector autoregressive process αt which is driven by k × 1 dimensional

disturbance vectors ηt for t = 1, . . . , n. Specifically, there is a q × p selection matrix S that

defines the dynamic factor as

ft = Sαt, t = 1, . . . , n, (2)

and there is a transition equation for the state vector αt as given by

αt+1 = Tαt + Rηt, ηt ∼ N(0, Ση), t = 1, . . . , n, (3)
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with the initial state vector α1 specified by α1 ∼ N (0, Σα) and where the p × p transition

matrix T , the p × k disturbance selection matrix R, and the k × k variance matrix Ση are

assumed fixed (non-stochastic). The matrix S is treated as a known selection matrix while

matrices T and Ση may depend on a fixed and vector of unknown coefficients θ. In case αt

is a time-invariant stationary process, the relation Σα = TΣαT ′ + Ση applies such that a

solution for the (initial) state variance Σα exists when matrices T and Ση are given.

The dynamic specification for ft is general within the class of linear time series processes.

For example, when the p factors in ft are modeled as autoregressive moving average processes,

the state vector consists of auxiliary variables that impose the serial dependence for the

factors. The state vector dimension becomes typically much larger when more lags of ft are

required to model the serial dependence. The matrix S is a selection matrix of mostly zero

and unity values; it provides the link between the variables in the possibly large dimensional

state vector to the typically low dimensional ft. The basic example is to have ft = αt so that

p = q and S = I. A more elaborate example is given in Appendix A to further illustrate the

role of matrix S in our framework. Other dynamic specifications for ft can also be considered

and represented by (2) and (3). Further discussions of representing multivariate dynamic

processes in state space are given by Shumway and Stoffer (2000, Chapter 6).

The dynamic factor model (1) can be expressed in terms of the state vector directly using

the observation equation

yt = Zαt + ut, t = 1, . . . , n, (4)

where Z = ΛS. The factor loading matrix Λ is treated as fixed and it depends on coefficient

vector θ. The idiosyncratic component ut is modelled as a vector autoregressive process with

r lags as given by

ut+1 = φ1ut + · · ·+ φrut−r+1 + εt, εt ∼ N(0, Σε), (5)

where φ1, . . . , φr and Σε are N ×N matrices. In general, φ1, . . . , φr and the variance matrix

of the initial vector (u′1, . . . , u
′
r)
′ will be chosen such that ut is a stationary process. In case

of r = 1, the solution is implied by having the roots of |φ1| = 0 outside the unit circle and

by having the initial vector distributed as u1 ∼ N (0, Σu) with Σu = φ1Σuφ
′
1 + Σε.

In the remainder of the paper, we consider the dynamic factor model as specified above.

However, our results below apply to more general settings. We discuss these generalizations

in some detail in section 3.3.
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2.2 Two state space representations

The dynamic factor model specification (4), (3) and (5) is close to the well-known state

space model formulations of Harvey (1989) and Durbin and Koopman (2001). The Kalman

filter and smoothing methods produce estimates of the state vector αt with minimum mean

square linear properties. In our formulation of a linear Gaussian dynamic factor model, we

obtain minimum mean square estimates, see the discussions in Duncan and Horn (1972)

and Anderson and Moore (1979). However, these optimal properties only apply when the

observation equation (4) has disturbances ut that are not serially correlated. We can re-

formulate the dynamic factor model in two ways to ensure that the optimal properties of

the Kalman filter and smoothing methods are preserved. The two formulations are given

as A and B below for the special case of r = 1. The higher-order case of r > 1 follows

straightforwardly but is notationally more cumbersome.

A. A basic approach is to express the dynamic factor model in terms of (1− φ1L)yt where

L is the lag-operator. When the polynomial function 1− φ1L is applied to both sides

of (4), we obtain

yt = φ1yt−1 + Zαt − φ1Zαt−1 + εt

= ct + (Z , −φ1Z )

(
αt

αt−1

)
+ εt, (6)

with y1 = Zα1 + u1 and where ct = φ1yt−1 for t = 2, . . . , n. The transition equation

for the augmented state vector is given by

(
αt+1

αt

)
=

[
T 0

I 0

](
αt

αt−1

)
+

(
ηt

0

)
, (7)

for t = 1, . . . , n. The introduction of ct in the observation equation does not cause

further complications; it can be incorporated in the Kalman filter since ct is known at

time t.

B. An alternative formulation is obtained by augmenting the state vector with ut and is

given by

yt = ( Z , I )

(
αt

ut

)
,

(
αt+1

ut+1

)
=

[
T 0

0 φ1

](
αt

ut

)
+

(
ηt

εt

)
, (8)

for t = 1, . . . , n. The initial condition for the state vector process is straightforwardly

determined. The observation disturbance vector has disappeared from this formulation.

This loss does not cause complications in the application of the Kalman filter.
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Both formulations will lead to the same results when initialisation issues are properly

accounted for. Watson and Engle (1983) and, more recently, Reis and Watson (2010) have

adopted formulation A while Banbura and Modugno (2010) have adopted formulation B.

2.3 Missing data

In this paper we are concerned with the application of the Kalman filter and smoothing

methods to the dynamic factor model in the presence of missing observations. We assume

that observations are missing at random and that the model is also applicable to missing

data. The model formulation B is valid when yt contains missing entries while formulation A

is not valid since ct cannot be determined when yt−1 is partly missing. An exact treatment

of filtering and smoothing is therefore not possible when we adopt formulation A. The

replacement of ct by ĉt = φ1E(yt|y1, . . . , yt−1) in the Kalman filter applied to formulation

A may lead to a practical solution but it clearly does not lead to an exact solution. This

assessment has led Banbura and Modugno (2010) to adopt formulation B for their dynamic

factor analysis. The solution is however computationally inefficient since the dimension of

the enlarged state vector (α′t , u′t)
′ will become very large when N increases. In the empirical

study of Banbura and Modugno (2010), the observation dimension is close to N = 100 such

that their state vector dimension is larger than 100. Although this solution is applicable, a

huge dimensional state vector slows down the Kalman filter enormously and may even lead

to numerical inaccuracies. It further prohibits its application in a routine manner. Therefore

we prefer formulation A where the increase of the state dimension is moderate. The main

contribution of this paper is a re-formulation of A that enables Kalman filter and smoothing

methods to produce optimal estimates in the presence of missing data. Furthermore we show

that the recent developments reported in Jungbacker and Koopman (2008) can be exploited

as well in the new state space formulation given below.

3 State space formulation in presence of missing data

In this section we will show how the model of Section 2 can be written as a Gaussian state

space model. For ease of notation we pursue the special case of r = 1 and a diagonal coeffi-

cient matrix φ1. Section 3.3 discusses the consequences of more general model specifications.

3.1 Notation

Consider some N ×1 vector vt. The vector vt(os) contains all elements of vt that correspond

to observed entries in the N × 1 data vector ys for t, s = 1, . . . , n. In a similar way, vt(ms)

contains all elements of vt that correspond to missing entries in ys. In case all entries in ys are

observed, vt(ms) is an empty vector. The vector vt(os, ms′) contains all elements of vt that
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correspond only to observed entries in ys and missing entries in ys′ for t, s, s′ = 1, . . . , n. Using

this notation we can split the vector vt into four mutually exclusive subvectors vt(os, os′),

vt(os, ms′), vt(ms, os′) and vt(ms, ms′). In case we have no missing data, vectors vt(ms) and

vt(ms, ms′) are empty while vt = vt(os) = vt(os, os′). We further note that

{vt} = {vt(os), vt(ms)} = {vt(os, os′), vt(os, ms′), vt(ms, os′), vt(ms, ms′)} .

To illustrate the notation, consider N = 5 and

yt = (1, m, 2, m, 3)′, yt−1 = (m, m, m, 4, 5)′, vt = (6, 7, 8, 9, 10)′,

where m denotes a missing entry. It follows that

vt(ot) = (6, 8, 10)′, vt(mt) = (7, 9)′,

vt(ot, ot−1) = 10, vt(ot, mt−1) = (6, 8)′, vt(mt, ot−1) = 9, vt(mt, mt−1) = 7,

The notation applies to matrices in a similar way. Consider the N × h matrix V . Matrix

V (ot; ·) contains selected rows of V that correspond to the observed entries in yt while all

columns are retained. In case of an h×N matrix V , the selection V (·; ot) applies to columns.

In case of an N ×N matrix V , the selection V (ot; mt) applies to both rows and columns.

3.2 The missing data state space formulation

Consider the model equations (4), (5) and (3). We develop a modified state space formulation

for the observation vector with only observed entries, that is

yo
t =

(
yt(ot, ot−1)

yt(ot, mt−1)

)
,

for t = 1, . . . , n. We accomplish the formulation on the basis of the augmented state vector

α̇t =
[
α′t , α′t−1 , ut(ot, mt−1)

′ , ut(mt, mt−1)
′ , ut(mt, ot−1)

′ ]′ .
The state vector is augmented with its lagged counterpart αt−1 and with a selection of

the idiosyncratic component ut. The new formulation below can therefore be interpreted

as a mix of formulations A and B in section 2.2. We require the subset ut(ot, mt−1) of

ut to incorporate them in the observed entries of yt as implied by (4). The updating of

ut to ut+1 as implied by (5), with r = 1, requires also the remaining ut entries, that is

ut(mt) = [ut(mt; mt−1)
′, ut(mt; ot−1)

′]′. The two entries in ut(mt) are explicitly given in

the augmented state vector α̇t because their treatments in the updating of α̇t to α̇t+1 are

different. The details are given next.
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The observation equation that links the observation vector yo
t and the state vector α̇t is

obtained straightforwardly as

yo
t = co

t +

[
Z(ot, ot−1; ·) −φo

tZ(ot, ot−1; ·) 0 0 0

Z(ot, mt−1; ·) 0 I 0 0

]
α̇t +

(
εt(ot, ot−1)

0

)
, (9)

where co
t = [ {φo

tyt−1(ot, ot−1)}′ , 0 ]′ and φo
t = φ1(ot, ot−1; ot, ot−1). Matrix φo

t is diagonal

consisting of (a subset of), possibly reshuffled, diagonal elements of φ1. The specification

for yt(ot, ot−1) relies on formulation A while for yt(ot, mt−1) it relies on formulation B. The

major difference of our formulation with B is that we only include those entries of ut in the

state vector that correspond to missing entries in yt and/or yt−1. For entries of yt where

both yt and yt−1 are observed, we compute the entries in co
t and rely on formulation A.

The transition equation for the state process α̇t is obtained as follows. The updates for αt

and αt−1 are given as in (7) for formulation A. Next we develop equations for ut+1(ot+1, mt)

and ut+1(mt+1, mt) which are effectively the selection ut+1(mt) (re-ordered). The transition

from ut(mt) to ut+1(mt) is the autoregressive update (5) with r = 1 in our case. For our

selection of ut, we have

ut+1(mt) = φ1(mt; mt)ut(mt) + εt(mt), ut(mt) =

(
ut(mt, mt−1)

ut(mt, ot−1)

)
,

for t = 1, . . . , n. To place ut+1(mt) into α̇t+1, we need to re-order it into

(
ut+1(ot+1, mt)

ut+1(mt+1, mt)

)
= Jtut+1(mt),

where Jt is implicitly defined as a selection matrix of ones and zeroes. The bottom part of

α̇t+1 is ut+1(mt+1, ot) and corresponds to observed entries in yt. Therefore, we have

ut+1(mt+1, ot) = φ∗tut(mt+1, ot) + εt(mt+1, ot)

= φ∗t [ yt(mt+1, ot)− Z∗t αt ] + εt(mt+1, ot),

where φ∗t = φ1(mt+1, ot; mt+1, ot) and Z∗t = Z(mt+1, ot; ·). The transition equation for α̇t is

therefore

α̇t+1 = dt +

⎡
⎢⎢⎢⎣

T 0 0 0

I 0 0 0

0 0 0 Jtφ1(mt; mt)

−φ∗t Z
∗
t 0 0 0

⎤
⎥⎥⎥⎦
⎛
⎜⎜⎜⎝

αt

αt−1

ut(ot, mt−1)

ut(mt)

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

ηt

0

Jtεt(mt)

εt(mt+1, ot)

⎞
⎟⎟⎟⎠ , (10)

where dt = [ 0 , 0 , 0 , {φ∗t yt(mt+1, ot) }′ ]′, for t = 1, . . . , n.
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3.3 Discussion of the new formulation

The equations (9) and (10) define the state space model for the observed values while the

missing observations are accounted for by including the relevant ut’s in the state vector. In

case we have no missing data, the vectors ut(ot, mt−1) and ut(mt) are empty and we return

to formulation A. Entries of ut only appear in the state vector when they correspond to

missing entries in yt or in yt−1. In this way we keep the dimension of the state to a minimum

while we are able to produce optimal estimates using Kalman filter and smoothing for all

time periods. Further, the Markov property of the state space model implies that only the

missing entries in yt and yt−1 are relevant for our methods.

In most cases the dimension of α̇t will be smaller than the dimension of ( α′t, u
′
t )
′, the

state vector in model formulation B. In case α̇t has a larger dimension than ( α′t, u
′
t )
′, due to a

large number of missings in yt−1 or yt, it is possible to reduce the dimension of α̇t by dropping

αt−1 (partially and temporarily) from the state vector α̇t. This result follows because αt−1

is not required in the augmented state vector α̇t when all entries in ut are included in α̇t.

Computational gains are relatively small and we therefore do not pursue this further.

The new formulation does imply time-varying system matrices in the observation and

transition equations. In fact, the dimension of the state vector also varies over time. Fortu-

nately, the Kalman filter can treat varying dimensions for the state vector. The implemen-

tation of such a Kalman filter requires attention but it comes with the benefit of a dynamic

factor analysis that is computationally feasible when missing data is present. We give some

more details in the next section.

The results presented in this paper apply to more general settings. For example, the

dynamic specification of ft may also depend on non-stationary time series processes such as a

random walk. The Kalman filter and smoothing need to deal with the initialisation problem

but existing solutions can be applied straightforwardly. Lagged factors and explanatory

variables can be included in the observation equation of the dynamic factor model, see the

discussion in Jungbacker and Koopman (2008). Given our solution, the case of r > 1 is trivial

but requires more notation in the expositions of sections 3 and 4. A particular concern is the

case of a non-diagonal autoregressive coefficient matrix φ1 since it mixes the lag-dependence

of idiosyncratic components associated with missing entries to those associated with observed

entries. We therefore need to modify the system matrices in (10) accordingly. This exercise

is straightforward but the notation is somewhat cumbersome.

4 Signal extraction and likelihood evaluation

In this section we discuss computationally efficient approaches to signal extraction and likeli-

hood evaluation. These methods are also relevant for parameter estimation that is discussed

in section 5.
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4.1 Estimation of states and idiosyncratic components

Given the state space formulation of the dynamic factor model, we can adopt the Kalman

filter and associating smoothing methods (KFS) to obtain

ȧt|s = E(α̇t|Ys), Ṗt|s = Var(α̇t|Ys),

for t, s = 1, . . . , n where Ys = (yo
1, . . . , y

o
s), see Durbin and Koopman (2001) for an exposition

of these methods. Prediction refers to s = t− 1, concurrent filtering to s = t and smoothing

to s = n. The Kalman filter can also be used to evaluate the log-likelihood function using

the prediction error decomposition result of Schweppe (1965), see section 4.4.

In terms of the dynamic factor model (4), (3) and (5), KFS produces estimates (as well

as the mean square errors) of αt and of those entries of ut that are associated with missing

entries in yt and yt−1, that is um
t = [ ut(ot, mt−1)

′ , ut(mt)
′ ]′. We can also obtain estimates

and corresponding mean square errors of uo
t = ut(ot, ot−1) using the identity ut = yt − Zαt

in (4). Let at|s = E(αt|Ys) and Pt|s = Var(αt|Ys) for t, s = 1, . . . , n. Obviously, at|s and Pt|s
are the upper (block) parts of ȧt|s and Ṗt|s, respectively. It follows that

E(uo
t |Ys) = yo

t − Zo
t at|s, Var(uo

t |Ys) = Zo
t Pt|sZo ′

t ,

Cov(uo
t , αt|Ys) = −Zo

t Pt|s, Cov(uo
t , u

m
t |Ys) = −Zo

t Cov(αt, u
m
t |Ys),

where Zo
t = Z(ot, ot−1; ·) and Cov(um

t , αt|Ys) is part of Ṗt|s for t, s = 1, . . . , n.

4.2 KFS with a collapsed observation vector

The computational effort for the KFS depends on the dimensions of both the state and

observation vectors. Consider the dynamic factor model (1) with q × 1 vector ft = Sαt and

state space representation (4) and (3) but with ut replaced by εt ∼ N(0, Σε), that is

yt = Zαt + εt, αt+1 = Tαt + ηt, (11)

for t = 1, . . . , n with N ×1 observation vector yt and p×1 state vector αt. In most practical

applications of the dynamic factor model, the dimension of yt is significantly larger than the

dimension of αt. Jungbacker and Koopman (2008) demonstrate that in such circumstances,

when N > q, computational efficiency of KFS can significantly be improved by a simple

computational device. We have Z = ΛS and we define the N ×N and q ×N matrices

A =

[
AL

AH

]
, AL = C−1Λ′Σ−1

ε ,
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respectively, where C can be any q× q invertible matrix and AH is chosen such that matrix

A is full rank and ALΣεA
H ′ = 0. It follows that AHΛ = 0. We assume that Λ has full

column rank. In most cases of practical interest this assumption will be valid. If matrix Λ

does not have full rank, it can be replaced with any full rank matrix that spans the column

space of Λ, see the discussion in Jungbacker and Koopman (2008). Matrix AH exists by

construction but it does not need to be evaluated for our purposes. By choosing C such that

CC ′ = Λ′Σ−1
ε Λ, we have

Ayt =

(
ALyt

AHyt

)
=

(
C ′S

0

)
αt +

(
ALεt

AHεt

)
,

(
ALεt

AHεt

)
∼ N

(
0,

[
I 0

0 AHΣεA
H ′

])
,

for t = 1, . . . , n. The equation for αt+1 is unaffected by the transformation. It follows

that the part AHyt does not depend on αt, it is not correlated with ALyt and therefore

does not need to be considered for the estimation of αt. Therefore, the KFS only need to

be applied to the collapsed observation (low-dimensional) vector ALyt for signal extraction.

Since Var(ALεt) = I, we can adopt the KFS devices discussed in Koopman and Durbin

(2003) to further accelerate the computations.

The collapse can lead to high computational savings. To illustrate the reductions that

we can achieve in practice, consider model (1) with N = 100 and q = 5. In this case,

the observation vector relevant for the application of the KFS collapses from dimension

N = 100 to dimension q = 5. Jungbacker and Koopman (2008) also demonstrate that

likelihood evaluation can rely on the Kalman filter applied to ALyt, see section 4.4.

The presence of missing entries in the data set requires a further modification of the

collapsed KFS. It is immediately obvious that the multiplication ALyt returns a vector with

all missing entries when at least one entry in yt is missing. In other words, the vector ALyt

does not exist when missing entries are present in yt. The presented modification in the next

section applies more generally; it is applicable to all multivariate time series models that can

be represented in a linear state space form.

4.3 A collapsed KFS in presence of missing data

The computational device of Jungbacker and Koopman (2008) can be modified in the context

of the state space formulation developed in section 3.2, in case missing data is present.

Consider the observation equation (9). Since this formulation relies on time-varying system

matrices, we require the collapsed transformations to vary over time as well.

We carry out a partial collapse of yo
t and only consider the transformation of yt(ot, ot−1)

with dimension Noo
t . For this purpose, we define

AL
t = C−1

t Z+ ′
t V −1

t , Z+
t = [Λ(ot, ot−1; ·) ,−φo

tΛ(ot, ot−1; ·) ] , Vt = Σε(ot, ot−1; ot, ot−1),

11



where φo
t = φ1(ot, ot−1; ot, ot−1) and Ct is chosen such that

CtC
′
t = Z+ ′

t V −1
t Z+

t ,

for t = 1, . . . , n. Again, we should make sure that Z+
t has full column rank. If this is not

the case it is generally easy to find a new matrix with full column rank that spans the same

column space. The transformation AL
t is applied to yt(ot, ot−1) only and does not require to

consider the elements of α̇t associated with ut since they do not affect yt(ot, ot−1). We can

extend the transformation towards yt(ot, mt−1) but this will not lead to further reductions

yt(ot, mt−1).

Define the matrix

At =

[
AL

t

AH
t

]
,

where AH
t is chosen such that AL

t VtA
H ′
t = 0 and At is a full rank matrix. The state space

model for the transformed observation vector Atyt(ot, ot−1) is given by

(
AL

t yt(ot, ot−1)

AH
t yt(ot, ot−1)

)
=

(
AL

t co
t

AH
t co

t

)
+

[
C ′

tS 0 0 0

0 0 0 0

]
α̇t + Atεt(ot, ot−1), (12)

where q × p matrix S is defined in (2) and Var[Atεt(ot, ot−1)] is a block-diagonal variance

matrix with the upper-block given by Var[AL
t εt(ot, ot−1)] = I. It follows that we can remove

AH
t yt(ot, ot−1) for the application of the KFS and for the same reasons as discussed in section

4.2. In particular, for the application of KFS we can replace (9) by the two observation

equations

(
AL

t yt(ot, ot−1)

yt(ot, mt−1)

)
=

(
AL

t co
t

0

)
+

[
C ′

tS 0 0 0

Zom
t I 0 0

]
α̇t +

(
AL

t εt(ot, ot−1)

0

)
, (13)

where Zom
t = {Z(ot, mt−1; ·) , 0 }. In most cases, the observation vector dimension of the

collapsed model will be much lower than the dimension of yo
t . However, when yt does contain

many missing observations, it may become the case that the dimension of yt(ot, ot−1) is lower

than 2p. In this case no computational gain can be achieved by transforming the model.

The state space model (13) and (10) satisfies the conditions required for the KFS devices

discussed in Koopman and Durbin (2003).

In case both observation vectors yt and yt−1 contain no missing entries, we can apply

the time-invariant transformation as developed in section 4.2 and based on the state space

formulation A of section 2.2. We only require the modifications for collapsing the observation

vector when missing entries in the observation vectors yt or yt−1 are present.
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4.4 Log-likelihood evaluation

For a set of realizations y1, . . . , yn as generated by the state space model, we define the

log-likelihood function by

�(y) = log p(yo
1, . . . , y

o
n; θ), y = {yo

t }n
t=1, (14)

where p(·) is the Gaussian density function, y is the set of observed data, and θ is the

vector of parameters introduced in section 2. The prediction error decomposition result of

Schweppe (1965) implies that log p(yo
1, . . . , y

o
n; θ) = log p(yo

1; θ)+
∑n

t=2 log p(yo
t |Yt−1; θ) where

p(yo
t |Yt−1; θ) can be evaluated by the Kalman filter.

Jungbacker and Koopman (2008) argue that the likelihood function �(y) can be obtained

by the Kalman filter applied to the collapsed data vector. In our case, we can limit the

application of the Kalman filter to the observation equation (13). The log-likelihood function

is then evaluated by

�(y) = constant + �
(
yL , yom

)
+ �
(
yH
)
,

where

yL = {AL
t yt(ot, ot−1)}n

t=1, yom = {yt(ot, mt−1)}n
t=1, yH = {AH

t yt(ot, ot−1)}n
t=1,

and the constant does not depend on θ nor on the obervations. The log-likelihood function

�
(
yL , yom

)
is obtained from the Kalman filter applied to the state space model (13) and

(10). The log-likelihood function �
(
yH
)

can be evaluated by

�
(
yH
)

= constant− 1

2

n∑
t=1

log |Vt| − 1

2

n∑
i=1

e′tV
−1
t et,

where et =
(
I − VtA

L ′
t AL

t

)
[yt(ot, ot−1)− φo

tyt−1(ot, ot−1)] , for t = 1, . . . , n, see Jungbacker

and Koopman (2008, Lemma 2).

5 Maximum likelihood estimation

The estimation of θ discussed in section 2 by maximum likelihood methods requires solving

a potentialy high dimensional optimization problem. It involves the maximization of �(y; θ)

with respect to θ and where �(y; θ) can be evaluated by the methods described in section

4.4.
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5.1 Direct maximization

In general, large-scale optimization problems are handled by quasi-Newton algorithms as

described in Nocedal and Wright (1999). These algorithms require the evaluation of �(y; θ)

and the score function at each iteration of the algorithm. Since the number of parameters in

dynamic factor models are typically large, the numerical computation of the score function

is not feasible. Fortunately, analytic expressions for the score function are available for

dynamic factor models in state space form and which can be computed efficiently, see the

discussion in Koopman and Shephard (1992) and Jungbacker and Koopman (2008).

Let Q(θ|θ∗) denote the complete expected loglikelihood defined by

Q(θ|θ∗) = Eθ∗ [ log p(yo, α̇1, . . . , α̇n; θ)| yo] ,

where p(yo, α̇1, . . . , α̇n; θ) is the joint density of yo and α̇1, . . . , α̇n for parameter vector θ.

The subscript θ∗ in Eθ∗ emphasizes that the expectation is calculated for a given parameter

vector θ∗. From the results in Louis (1982) and Ruud (1991), we have

∂Q(θ|θ∗)
∂θ

∣∣∣∣
θ=θ∗

=
∂�(y; θ)

∂θ

∣∣∣∣
θ=θ∗

,

provided that θ is the true parameter. Note that �(y; θ) is defined in (14). In Appendix B we

provide the expressions for the derivatives of Q(θ|θ∗) with respect to the system matrices of

the state space model (9) and (10). From these expressions and the chain rule we can deter-

mine the score function for all the parameters in the model of section 2. The computation of

the score in this way only requires a single run of the KFS and can be done computationally

efficiently due to the results of the previous section.

5.2 Expectation-Maximization algorithm

An alternative method is the expectation-maximization (EM) algorithm for finding the max-

imum likelihood estimators, see Watson and Engle (1983) and Shumway and Stoffer (1982).

The EM algorithm produces a sequence of proposals θ(1), θ(2), . . . for the maximum likelihood

estimator of θ by repeating the following two steps for j = 1, 2, . . .:

• E-step: obtain the expected complete likelihood Q(θ|θ(j)) where θ(j) is the current

estimate.

• M-step: maximize Q(θ|θ(j)) with respect to θ and set θ(j+1) to the parameter value

where this optimum is attained.

The EM algorithm has the attractive property that it always converges to a (local) optimum

and the likelihood is ensured to increase with each iteration. The E-step can be performed by
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means of the KFS in a relatively straightforward way for the dynamic factor model considered

in this paper. The maximization in the M-step can however not be done analytically. Watson

and Engle (1983) propose an ad-hoc iterative scheme for the M-step. Alternatively, we can

perform the M-step via a quasi-Newton scheme. Since the gradient of Q(θ|θ(j)) is available

analytically, the necessary computations can be done computationally efficient.

6 Computational costs and gains

In this section we explore the computational gains that we can obtain using our new new state

space specification of section 3.2 when applying the Kalman filter and associated smoothing

algorithm (KFS). We do this by considering the computational costs implied by our new

specification compared to those of the state space formulations A and B. The KFS method

is key to both the direct maximization of the likelihood function and the E-M algorithm. In

the former case it provides the likelihood function and the quantities to compute the score

vector while in the latter case it provides the inputs for the Expectation step.

Below we will refer to formulations A and B from section 2.2; our new model formulation

in section 3.2 will be referred to as formulation C. In comparison with A, the computing times

for KFS without the presence of missing data will be the same since the two specifications

are equivalent in this case. When missing observations are present, formulation A is not

valid while formulation C is. The costs of the additional computations are modest when the

number of missing entries is modest. When yt and yt−1 have a total of m unique missing

entries (the entries that are both missing in yt and yt−1 are counted once), the state vector

α̇t needs to be increased by m (temporarily). This will slow down the KFS computations

but it will lead to exact results while formulation A cannot deal with missing entries. The

increase in computing time depends on the number of missings in the data set.

In Table 1(a) we provide some indications of the computational costs for the dynamic

factor model (1) with two dynamic factors (q = 2) which are modelled as stationary vector

autoregressive processes. The comparisons are carried out for three different observation

vector dimensions N = 10, 50, 100. We have implemented the collapsed KFS as described in

section 4.3. The computations are carried out for n = 1000 observations and the reported

relative times are based on the recorded computing times for the full sample of y1, . . . , yn in

which randomly chosen entries are treated as missing. Our results reveal, for example, that

for N = 50 and for 1% missing observations, the computations take 1.5 times longer than

those for formulation A (instead of, say, 20 seconds, it takes 30 seconds). When the number

of missings has increased by 10%, the computations take 2.6 times longer.

The formulation B also provides exact results when data is missing and it is the approach

adopted by Banbura and Modugno (2010). However, we have argued in this paper that

formulation C is computationally more efficient. In Table 1(b) we compare the computing
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times for formulations B and C. The gains of the new formulation compared to B are quite

considerable. For the same model as described above with N = 50, the KFS for formulation

C is almost 88 times faster when we have 1% missings while it is 44 times faster when 10%

of the data is missing. These gains are considerable and they are even higher and more

dramatic when N increases to higher values. We therefore suggest to use formulation C for

dynamic factor analysis in the presence of missing data.

[ Table 1 about here. ]

7 Conclusions

Dynamic factor analysis has been given renewed attention in the economics and finance

literature recently. High-dimensional dynamic models with multiple factors contain many

parameters that need to be estimated. In case maximum likelihood estimation is requested

and optimization is employed via Fisher-scoring and/or the EM algorithm, computational

efficient methods are of key importance. Various problems arise when these methods are

used when missing entries in the data set are present. A standard solution places the full

idiosyncratic component vector into the state vector. It will lead to a high-dimensional state

vector for a model with a high-dimensional observation vector. The associating computa-

tions for Kalman filtering and smoothing will slow down considerably. To circumvent this

problem, we propose a new state space formulation of the model that allows for missing

values and can exploit existing devices for computational efficiency. Only the idiosyncratic

components associated with missing entries for the concurrent and previous time periods

are accommodated in the state vector, all other ones are removed from the state vector.

As a result, the dimension of the state vector is kept to a minimum. Also we have shown

that the existing computational devices to accelerate the computations can be adopted. In

our formulation the dimension of the state vector varies over time so the implementation of

the Kalman filter and smoothing methods requires attention. However, we can obtain high

computational savings even when the number of missing entries is moderate, see Table 1.
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Appendix A : A dynamic factor state space model

Consider the dynamic factor model with the q factors in ft following a vector autoregressive

moving average process. An example of a dynamic process for ft is given by

ft+1 = Φ1ft + Φ2ft−1 + ηt + Θ1ηt−1, ηt ∼ N(0, Ση), t = 1, . . . , n,

where the q × q autoregressive coefficient matrices Φ1 and Φ2 and the q × q moving average

coefficient matrix Θ1 are restricted such that ft is a stationary process. This process can

be represented in the general formulation (2) and (3), with the state vector αt of dimension

p = 2 · q and the disturbance vector ηt of dimension k = q, by having the state vector and

the system matrices equal to

αt =

(
ft

Φ2ft−1 + Θ1ηt−1

)
, S = [Iq 0q×q] , T =

[
Φ1 Iq

Φ2 0q×q

]
, R =

[
Iq

Θ1

]
.

The observations rely on the factors, or implicitly on the state vector, via the relations

yt = Λft + εt = Zαt + εt, t = 1, . . . , n,

where Z = ΛS.

Appendix B : the details for score evaluation

Suppose the vector time series y1, . . . , yn is generated by the linear Gaussian state space

model as given by

yt = ct + Ztαt + εt εt ∼ N(0, Ht),

αt+1 = dt + Ttαt + Rtηt ηt ∼ N(0, Qt),

with α1 ∼ N(a1|0, P1|0) and t = 1, . . . , n. The system vectors and matrices ct, dt, Zt, Tt, Ht

and Qt are fixed and may depend on the parameter vector θ. Selection matrix Rt has full

column rank, is fixed and does not depend on θ. Finally, we assume that Ht is a non-singular

variance matrix. Let

at|n = E(αt|y1, . . . , yn), Pt|n = Var(αt|y1, . . . , yn), Pt+1,t|n = Cov(αt+1, αt|y1, . . . , yn),

for t = 1, . . . , n. These quantities can be computed by the Kalman filter and associating

state smoothing method, see Durbin and Koopman (2001, Chapter 4). Denote �(y) by the

log-likelihood of y1, . . . , yn. We then have the following expressions for the score vectors with
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respect to each of the system matrices

∂�(y)

∂dt
= R̄′tQ

−1
t R̄t(at+1|n − Ttat|n − dt),

∂�(y)

∂Tt
= R̄′tQ

−1
t R̄t(MTt − TtMZt)

∂�(y)

∂ct

= H−1
t (yt − Ztat|n − ct),

∂�(y)

∂Zt

= H−1
t

[
(yt − ct)a

′
t|n − ZtMZt)

]
,

∂�(y)

∂Qt
= Q−1

t MQtQ
−1
t − 1

2
diag{Q−1

t MQtQ
−1
t },

∂�(y)

∂Ht
= H−1

t MHtH
−1
t − 1

2
diag{H−1

t MHtH
−1
t },

where R̄t = (R′tRt)
−1R′t and

MQt = E(ηtη
′
t|y1, . . . , yn)−Qt, MTt = at+1|na′t|n + Pt+1,t|n,

MHt = (yt − Ztat|n)(yt − Ztat|n)′ + ZtPt|nZ ′t −Ht, MZt = at|na′t|n + Pt|n.

The matrix MQt can be evaluated using the identity ηt = R̄t(αt+1 − Ttαt − dt) and from

Pt+1,t|n and Pt|n.
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Table 1: Computational costs and gains

The panel (a) presents ratios of computing times for the formulation of section 3.2 with missing data divided
by those for the formulation without missing data (this is formulation A of section 2.2). For example,
the value 2 indicates that the computational demands are twice as high. The panel (b) presents ratios of
computing times for the formulation B of section 2.2 divided by those for the formulation of section 3.2
with missing data. For example, the value 2 indicates that the new device is twice as fast. The ratios are
presented for different dimensions N of observation vector yt and for different percentages of missing data.

(a) Costs relative to A

N percentage missing
1% 10% 25%

10 1.4 1.8 2.3
50 1.5 2.6 8.9
100 1.2 3.9 24.8

(b) Gains relative to B

N percentage missing
1% 10% 25%

10 2.1 1.5 1.1
50 87.9 43.7 11.3
100 625.5 197.5 25.8
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