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A new representation of Dirac’s delta-distribution, based on so-called q-exponentials, has been
recently conjectured. We prove here this conjecture.

I. INTRODUCTION

Tsallis and Jauregui have recently conjectured a representation of the celebrated Dirac delta distribution, which
they call δq(x), based on q−exponential functions. However, they could not prove their conjecture and used numerical
experiments that suggest its validity. In this note, we provide a rigourous mathematical approach to this problem
and prove their conjecture by recourse to the notion of superstatistics.

II. q− EXPONENTIALS AND SUPERSTATISTICS

Statistical Mechanics’ most notorious and renowned probability distribution is that deduced by Gibbs for the canonical
ensemble [1, 2], usually referred to as the Boltzmann-Gibbs equilibrium distribution

pG(i) =
exp (−βEi)

ZBG

, (1)

with Ei the energy of the microstate labeled by i, β = 1/kBT the inverse temperature, kB Boltzmann’s constant, and
ZBG the partition function. The exponential term FBG = exp (−βE) is, of course, called the Boltzmann-Gibbs factor.
Recently Beck and Cohen [3] have advanced a generalization (called superstatistics) of this BG factor, assuming that
the inverse temperature β is a stochastic variable. The generalized statistical factor FGS is thus obtained as the
multiplicative convolution

FGS =

� ∞

0

dβ

β
f(β) exp (−βE), (2)

where f(β) is the density probability of the inverse temperature.
As stated above, β is the inverse temperature, but the integration variable may also be any convenient intensive

parameter. Superstatistics, meaning “superposition of statistics”, takes into account fluctuations of such intensive
parameters.
Beck and Cohen also show that, if f(β) is a Gamma distribution, nonextensive thermostatistics is obtained, which is
of interest because this thermostatistics is today a very active field, with applications to several scientific disciplines
[4–6]. In working in a nonextensive framework one has to deal with power-law distributions, which are certainly
ubiquitous in physics (critical phenomena are just a conspicuous example [7]). Indeed, it is well known that power-
law distributions arise quite naturally in maximizing Tsallis’ information measure (q is a real positive parameter called
the “nonextensivity index”)

Hq (f) =
1

1 − q

(

1 −

� +∞

−∞

f(x)qdx

)

, (3)

subject to appropriate constraints. More precisely, in the case of the canonical distribution, there is only one constraint,
the energy E, i.e., 〈E〉 = K (K a positive constant) and the equilibrium canonical distribution writes

fq(x) =
1

Zq

(1 − (1 − q)βqE)
1

1−q

+ ,
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with (x)+ = max (0, x) and βq and Zq stand for the nonextensive counterparts of β and ZBG above. Defining the
q−exponential function as

eq (x) = (1 + (1 − q)x)
1

1−q

+ (4)

allows to rewrite the equilibrium distribution in the more natural way

fq (x) =
1

Zq

eq (−βE)

It is a classical result that as q → 1, Tsallis entropy reduces to Shannon entropy

H1 (f) = −

� +∞

−∞

f(x) log f(x). (5)

Accordingly, the q−exponential function converges to the usual exponential function.

III. PROOF OF JAUREGUI-TSALLIS’ CONJECTURE

A. Definitions and Notations

We remind the celebrated formula

δ(t) =
1

2π

�
R

e−ıutdu. (6)

We intend to provide a generalization of this formula; namely, we prove the following representation conjectured
by Tsallis et al. assuming 1 < q < 2:

δ(t) =
1

cq

�
R

eq (−ıut) du. (7)

for some constant cq.
We begin by recalling the mathematical meaning of (6).

Definition 1. A function ϕ is called rapidly decreasing if ϕ is C∞ and if for all integers k, ℓ

lim
x→±∞

xkϕ(ℓ)(x) = 0.

We denote by S be the set of the rapidly decreasing functions on R and by S ′ the set of the continuous linear
functionals over S. For ϕ ∈ S, its Fourier transform F(ϕ) is denoted by ϕ̂.

We know from Rudin [8, p. 184 theorem 7.4] the following

Proposition 1. The Fourier transform F is a continuous linear mapping of S into S.

Definition 2. Let f be a bounded measurable function[9]. We let Tf be the linear continuous mapping:

∀ϕ ∈ S 〈Tf , ϕ〉 =

�
f(t)ϕ(t)dt

B. Proofs

In order to prove the usual representation (6), we simply have to show that for all ϕ ∈ S :

�
du 〈Te−ıut , ϕ〉 = 2πϕ(0).
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Of course 〈Te−ıut , ϕ〉 = ϕ̂(u). Hence the result.

We can turn to the proof of (7) In this respect, let us pick a ϕ ∈ S. We have

〈Teq(−ıut), ϕ〉 =

�
eq(−ıut)ϕ(t)dt

=

�
EW e−ıut(q−1)W ϕ(t)dt

where

EW g(W ) ,
1

Γ( 1
q−1 )

� +∞

0

g(w)e−ww
1

q−1
−1dw

is the expectation of g(W ), where W is a Gamma distributed random variable with shape parameter 1
q−1 and g some

function such that the above definition makes sense. We remark that the equality

eq (−ıut) = EW e−ıut(q−1)W

is the expression of the superstatistical theory.
On the other hand, we have

1

Γ( 1
q−1 )

� �
e−ww

1

q−1
−1|ϕ(t)|dtdw ≤

�
|ϕ(t)|dt.

As obviously ϕ is summable, we can apply the Fubini-Lebesgue theorem and we obtain

〈Teq(−ıut), ϕ〉 = EW

�
e−ıut(q−1)W ϕ(t)dt

= EW ϕ̂(u (q − 1) W )

=
1

Γ( 1
q−1 )

�
e−ww

1

q−1
−1ϕ̂(u (q − 1) w)dw

Now, consider

�
R

〈Teq(−ıut), ϕ〉du.

Since q < 2, we have, by the change of variable u 7→ v = u (q − 1) w,

�
dw

�
|e−ww

1

q−1
−1ϕ̂(u (q − 1) w)|du =

�
|ϕ̂(v)|dv

q − 1

�
e−ww

1

q−1
−2dw < ∞

since, by Proposition 1, ϕ̂ ∈ S. Thanks to the Fubini-Lebesgue theorem, we deduce that

�
R

〈Teq(−ıut), ϕ〉du =
1

Γ( 1
q−1 )

�
ϕ̂(v)dv

q − 1

�
e−ww

1

q−1
−2dw

=
Γ( 1

q−1 − 1)

(q − 1) Γ( 1
q−1 )

2πϕ(0)

We have proved the result with

cq =
2π

2 − q
.
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IV. CONCLUSION

We have proved the representation of the Dirac delta distribution (7) using q−exponential functions, as conjectured
by Tsallis et al.
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