New uniform and asymptotic upper bounds on the tensor rank of multiplication in extensions of finite fields

Abstract : We obtain new uniform upper bounds for the tensor rank of the multiplication in the extensions of the finite fields $\mathbb{F}_q$ for any prime power $q$; moreover these uniform bounds lead to new asymptotic bounds as well. In addition, we also give purely asymptotic bounds which are substantially better by using a family of Shimura curves defined over $\mathbb{F}_q$, with an optimal ratio of $\mathbb{F}_{q^t}$-rational places to their genus, where $q^t$ is a square.
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00828153
Contributeur : Julia Pieltant <>
Soumis le : vendredi 31 mai 2013 - 11:17:19
Dernière modification le : samedi 18 février 2017 - 01:13:58
Document(s) archivé(s) le : mardi 4 avril 2017 - 13:47:53

Fichier

HR-JP_-_New_uniform_and_asympt...
Fichiers produits par l'(les) auteur(s)

Licence


Copyright (Tous droits réservés)

Identifiants

Citation

Julia Pieltant, Hugues Randriam. New uniform and asymptotic upper bounds on the tensor rank of multiplication in extensions of finite fields. Mathematics of Computation, American Mathematical Society, 2015, 84 (294), pp.2023-2045. <http://www.ams.org/journals/mcom/2015-84-294/S0025-5718-2015-02921-4/>. <10.1090/S0025-5718-2015-02921-4>. <hal-00828153>

Partager

Métriques

Consultations de
la notice

386

Téléchargements du document

107