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Optimization
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Abstract

Hyperspectral data unmixing aims at identifying the components (endmembers) of an observed

surface and at determining their fractional abundances inside each pixel area. Assuming that the spectral

signatures of the surface components have been previously determined by an endmember extraction

algorithm, or to be part of an available spectral library, the main problem is reduced to the estimation

of the fractional abundances. For large hyperspectral image data sets, the estimation of the abundance

maps requires the resolution of a large-scale optimizationproblem subject to linear constraints such as

non-negativity and sum less or equal to one. This paper proposes a primal-dual interior-point optimization

algorithm allowing a constrained least squares estimationapproach. In comparison with existing methods,

the proposed algorithm is more flexible since it can handle any linear equality and/or inequality constraint

and has the advantage of a reduced computational cost. It also presents an algorithmic structure suitable

for a parallel implementation on modern intensive computing devices such as Graphics Processing Units

(GPU). The implementation issues are discussed and the applicability of the proposed approach is

illustrated with the help of examples on synthetic and real hyperspectral data.
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I. INTRODUCTION

Hyperspectral imaging corresponds to the measurement of the incident light reflection at the ground

surface of an observed scene in several contiguous spectralbands. Despite of the high spatial resolution

that can be attained by recent imaging devices, the surface area covered by any pixel of the image may

contain different components. Therefore, the measured reflectance spectrum in each pixel can be explained

as a mixture of the individual component reflectance spectraweighted by the proportion (abundance) of

each component in this pixel area.

Unmixing hyperspectral data aims at the identification of the observed surface components (endmem-

bers) and the determination of their fractional abundancesinside each pixel area [1, 2]. Fast hyperspectral

data unmixing approaches are supervised, by assuming that the endmember spectra are part of an available

spectral library or can be provided by an endmember extraction algorithm [3, 4]. Then, the remaining

step of the unmixing is the estimation of the fractional abundances. Actually, there is an increasing

interest to joint estimation methods based either on non-negative source separation [5, 6] or constrained

non-negative matrix factorization [7, 8]. However, the purpose of this paper is to focus on the second

step of the supervised approach with the aim to present a fastcomputation method adapted to the case

of large data sets.

Usual algorithms for solving the spectral unmixing problemconsist in minimizing a data fitting measure

(generally a least squares criterion) under the physical constraints of non-negativity and sum-to-one. For

instance, the former constraint leads to thenon-negative least squaresalgorithm (NNLS) [9, 10], and the

latter is handled by thesum-to-one constrained least squares(SCLS) method [11]. Both constraints are

accounted for by thefully constrained least squares(FCLS) algorithm [12]. In [13], a Bayesian inference

algorithm incorporating jointly these constraints is proposed. It is based on Monte Carlo Markov chain

methods and offers the advantage of estimating the number ofcomponents. However, all these mentioned

methods suffer from a significant increase of the computation time in the case of large data sets (in terms

of image size, number of components or number of spectral bands). In order to reduce the computation

time, many recent contributions have investigated the use of parallel computing tools [14] such as graphics

processing units (GPUs) [15] and FPGA based-design [16]. A geometrical formulation of the abundance

estimation step has been recently proposed in [17], the computation cost being reduced by retrieving some

quantities computed during the endmember extraction step or by using simplex projection methods [18].

However, the geometrical formulation is restricted to the case of full-additivity and is not suitable for

general linear constraints such as partial additivity (sumless than or equal to one) or bound constraints
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on the abundances. In [19], a modern convex optimization approach based on the alternating method

of multipliers [20] was adopted for solving the constrainedoptimization problem arising in spectral

unmixing.

In this paper, we propose a new flexible spectral unmixing algorithm based on constrained least squares

estimation and interior-point optimization [21, 22]. The main originality of our approach is to exploit the

potential of primal-dual interior-point techniques, which have shown their efficiency for solving large-

scale constrained signal and image processing problems [23, 24]. The proposed optimization method

allows to minimize any convex objective function under equality (e.g., sum-to-one) and inequality (e.g.,

non-negativity or sum-less-than-one) constraints. From the numerical optimization point of view, the

choice of a primal-dual interior-point optimization scheme leads to an algorithm that can be implemented

efficiently using modern parallel computing tools such as GPUs.

The rest of this paper is organized as follows: Section II formulates the constrained optimization

problem arising in spectral unmixing. Section III presentsthe adopted interior-point optimization scheme

for the estimation of the abundance maps. Its implementation issues accounting for memory storage

and computing time are discussed in section IV. Finally, Section V illustrates the performances of the

proposed approach in terms of computation time and unmixingaccuracy, through applications to both

synthetic and real data.

II. PROBLEM STATEMENT

Let us considerN pixels of a hyperspectral image acquired inL spectral bands and assume a linear

mixing model. This linear model is widely accepted in many practical situations since it offers a first-

order approximation of the radiative transfer model [25]. According to this model, the observed spectrum

yn ∈ R
L in the n-th pixel is explained as a linear combination ofP endmember spectra and corrupted

by an additive noiseǫn,

yn = S an + ǫn, (1)

whereS = [s1, . . . , sP ] ∈ R
L×P contains theP endmember spectra andan = [an,1, . . . , an,P ]

t ∈ R
P is

the vector of endmember abundances in then-th pixel.

Using matrix notations, the mixing model is rewritten as,

Y = SA+E, (2)

whereY ∈ R
L×N is the observation data matrix,A ∈ R

P×N the fractional abundance matrix and

E ∈ R
L×N the measurement noise.
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The abundance matrix should satisfy the non-negativity constraint

(∀n ∈ {1, . . . , N}) (∀ p ∈ {1, . . . , P}) Apn > 0. (3)

This constraint will be denoted asA > 0. Moreover, under the assumption that all the endmembers

comprising the pixel spectrum inY are present in the columns ofS, the abundances coefficients should

satisfy the full additivity constraint,

(∀n ∈ {1, . . . , N})
P
∑

p=1

Apn = 1, (4)

which can be summarized by1tPA = 1
t
N , where1tN denotes a vector ofRN with all entries equal to

one.

When the set of endmembers is incomplete, or when the pixel area are subject to illumination variability

or attenuation, only partial additivity should be required, i.e.:

(∀n ∈ {1, . . . , N})
P
∑

p=1

Apn 6 1, (5)

which can be noted shortly by1tPA 6 1
t
N .

The estimation ofA given S andY is firstly formulated as the minimization of a convex criterion

F (.), under linear inequality constraints such as non-negativity and partial additivity. Then, the case of the

sum-to-one constraint is addressed. Finally, an interior-point algorithm based on a primal-dual approach

is proposed for the resolution of the constrained optimization problem.

A. Criterion formulation

The criterionF (·) to minimize results from the statistical modeling of the observation process and the

sought abundances properties. Adopting the well-known least squares approach leads to defineF (·) as

the quadratic function:

F (A) =
1

2

L
∑

ℓ=1

N
∑

n=1

((SA)ℓn − Yℓn)
2 . (6)

In a statistical estimation framework, (6) corresponds to the neg-log-likelihood associated to a spatially

and spectrally uncorrelated Gaussian noiseE.

Note that the proposed approach can be adapted to a wider class of convex criteria which can be

expressed as:

F (A) =
1

2

N
∑

n=1

(San − yn)
t
Σ

−1
n (San − yn) +

N
∑

n=1

ϕ(an), (7)
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whereΣn ∈ R
L×L is a positive spectral covariance matrix andϕ is a convex regularization function.

However, in the sequel, the presentation will be focused on the case of the least squares criterion (6)

since it is widely used in hyperspectral imaging with reflectance spectroscopy.

B. Constraint formulation

We focus on the following general formulation of the constrained optimization problem for the esti-

mation of the abundances maps:

minF (A)
A∈RP×N

s.t. T1A+ T0 > 0, (8)

whereT1 ∈ R
Q×P andT0 ∈ R

Q×N . This formulation allows to take into account

• constraint (3) whenQ = P , T1 = IP andT0 = 0P ,

• constraint (5) whenQ = 1, T1 = −1
t
P andT0 = 1

t
N ,

• constraints (3) and (5) jointly, by settingQ = P + 1, T1 = [IP | − 1P ]
t andT0 = [0t | 1N ]t,

whereIN denotes the identity matrix ofRN . The equality constraint (4) can be implicitly handled by

introducing a reparametrization so that the optimization problem is reduced to an inequality constrained

minimization [26].

Property 1. For each matrixA(0) ∈ R
P×N satisfying the equality constraint(4), the transformed vector

A = A(0) + ZU also satisfies(4) as soon as the columns of matrixZ ∈ R
P×P−1 are formed with

vectors of the null space of1tP .

For the sum-to-one constraint, a null space matrix can be defined by,

Zij =



















1 if i = j,

−1 if i = j + 1,

0 otherwise.

(9)

According to this reparametrization, the constrained optimization problem when constraints (3) and

(4) are imposed becomes equivalent to

minF (A(0) +ZU)
U∈R(P−1)×N

s.t. T u
1 U + T u

0 > 0, (10)

which takes the general form (8) withT u
1 = T1Z andT u

0 = T1A
(0) + T0.
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III. PRIMAL -DUAL OPTIMIZATION FOR ABUNDANCE MAPS ESTIMATION

The main feature of interior-point optimization is to keep the solution inside the strictly feasible

domain [21, 22]. At each iteration, the constraint fulfillment is ensured by adding a logarithmic barrier

function making the criterion unbounded at the boundary of the feasible solution domain. Let us present

our Interior-Point Least Squares(IPLS) algorithm to solve problem (8). By introducing the operator

m = vec
(

M
)

which corresponds to the transformation of a matrixM to a vectorm in the lexicographic

order, problem (8) is equivalent to the standard form inequality constrained optimization problem:

min
a∈RPN

Φ(a) s.t. Ta+ t > 0, (11)

with a = vec(A), T = IN ⊗ T1 andt = vec(T0), where⊗ is the Kronecker product.

The IPLS algorithm is based on a primal-dual interior-pointapproach which consists in jointly estimat-

ing a ∈ R
PN , and their associated Lagrange multipliersλ ∈ R

QN through the resolution of a sequence

of optimization problems obtained from perturbed versionsof the Karush-Kuhn-Tucker (KKT) optimality

conditions for problem (11):






























∇Φ(a)− T tλ = 0,

Λ(Ta+ t) = µk,

Ta+ t > 0,

λ > 0,

(12)

whereΛ = Diag(λ) and µk = µk1QN results from a sequence of perturbation parameters{µk}k∈N
converging to0 ask is growing.

At each iterationk of the algorithm,ak+1 andλk+1 are firstly calculated from the perturbed KKT

conditions. The perturbation parameterµk+1 is then updated in order to ensure the algorithm convergence.

More precisely, an approximate solution of (12) is retainedfrom a Newton algorithm step on the equality

conditions, in association with a linesearch strategy allowing to ensure the inequality conditions [22,

Chap.11]. The update strategy is then given by

(ak+1,λk+1) = (ak + αkd
a
k,λk + αkd

λ
k), (13)

whereαk is the step size and(da
k,d

λ
k) are the primal and dual Newton directions.

Based on the iterative scheme (13), several primal-dual interior-point methods have been proposed in

the literature, each of them calling for its own strategy forthe computation of the primal-dual directions,

the derivation of a suitable step size, and the update of the perturbation parameter (See [27, 28] for a

review). The proposed IPLS algorithm for spectral unmixingrelies on the iterative scheme of [26] into
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which additional tools, that are described in the following, have been included to accelerate the practical

convergence, as well as to reduce the computational cost periteration.

1) Primal-dual directions:The Newton directions(da
k,d

λ
k) are obtained by solving the linear system,





∇2Φ(ak) −T t

ΛkT Diag(Tak + t)









da
k

dλ
k



 = −rµk
(ak,λk), (14)

where∇Φ(·) and∇2Φ(·) are, respectively, the gradient and the Hessian of criterion Φ(·), andrµ(a,λ)

is the primal-dual residual defined by,

rµ(a,λ) =





∇Φ(a)− T tλ

Λ(Ta+ t)− µ



 =





r
prim
µ (a,λ)

rdual
µ (a,λ)



 . (15)

As pointed out in [29, 30], the primal-dual matrix in the leftside of equation (14) suffers from ill-

conditioning as soon as(Tak + t)i ≪ 1 or λi ≪ 1. Moreover, this matrix is not guarenteed to be

symmetric or definite positive [28], so that the linear system (14) is difficult to solve. Therefore, rather

than solving directly (14), [26, 31] propose to proceed by variable substitution. From the second equation

of (14) one deduces,

dλ
k = Diag(Tak + t)−1 [µk −Λk(Tak + t)−ΛkTda

k] . (16)

Then, the primal directionda
k is obtained by solving the reduced linear system

[

∇2Φ(ak) + T tDiag(Tak + t)−1
ΛkT

]

da
k = −∇Φ(ak) + T tDiag(Tak + t)−1µk. (17)

Finally, the dual directiondλ
k is calculated according to (16). Note that our computation of the primal

direction differs from [26]. Indeed, instead of a low rank approximation of∇2Φ(ak), we keep the true

Hessian matrix in (17), with the will to accelerate the convergence of our algorithm (see Remark 1 at

the end of this section).

2) Linesearch:The step size valueαk should be chosen so as to ensure the convergence of the IPLS

algorithm and the fulfillment of the inequalities of the pertubed KKT system (12). The convergence

study of the primal-dual algorithm presented in [26] requests thatαk ensures a sufficient decrease of the

primal-dual merit functionΨµk
(a,λ),

Ψµk
(a,λ) = Φ(a)− µ

QN
∑

i=1

ln([Ta+ t]i) + λt(Ta+ t)− µ

QN
∑

i=1

ln(λi[Ta+ t]i). (18)

One can note that (18) contains two logarithmic barrier functions enforcing the fulfillment of the KKT

inequalities. The sufficient decrease is assessed using theArmijo condition,

ψµk
(αk)− ψµk

(0) 6 σ αk∇ψµk
(0) with σ ∈ (0, 1/2), (19)
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whereψµk
(α) , Ψµk

(ak+αd
a
k,λk+αd

λ
k). A step sizeαk satisfying (19) is obtained by a backtracking

algorithm [22]: starting from an initial step sizeα0
k, and if the latter does not satisfy (19), smaller values

are tested,α0
kτ , α0

kτ
2, . . ., τ ∈ (0, 1), until (19) holds.

In order to ensure thatψµk
(·) remains finite valued, the backtracking strategy is initialized as follows,






α0
k = 1 if α+

k = +∞,

α0
k = min(1, 0.99α+

k ) elsewhere,
(20)

whereα+
k is the largest positive value such that,

λk + αdλ
k > 0, T (ak + αda

k) + t > 0. (21)

3) Perturbation parameter update:According to [26], the convergence is ensured as soon as the

sequence{µk}k∈N tends to0 whenk tends to infinity. We propose to update the parameterµk by using

the µ-criticity rule defined in [32] by:

µk = θ
δk
QN

, (22)

whereδk = (Tak + t)tλk is the duality gap andθ ∈ (0, 1).

4) Stopping criteria:The main steps of the proposed optimization method are summarized in Algo-

rithm 1. Following [23, 31], the accuracy of the primal and dual directions (inner loop) is controlled

by:

‖rprim
µk

‖∞ 6 ǫprim
k andδk/QN 6 ǫdual

k , (23)

whererprim
µk

is the primal residual atak, ǫprim
k = ηprimµk, ǫdual

k = ηdualµk with ηprim > 0 andηdual ∈ (1, θ−1).

The outer iterations of Algorithm 1 are run until the fulfillment of the stopping condition proposed in [22,

Chap.11]:

µk 6 µmin or
(

‖rprim
0 ‖+ ‖rdual

0 ‖
)

6 ǫ0. (24)
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Require: Initial valuesλ0 > 0 anda0 such thatTa0 + t > 0

Ensure: Resolution of (11)

While (condition (24) is not satisfied)do

While (condition (23) is not satisfied)do

Calculateda
k by solving (17)

Deducedλ
k from (16)

Find αk > 0 satisfying (19)

Update(ak+1,λk+1) according to (13)
done
Defineµk+1 according to (22).

done

Algorithm 1: Interior-Point Least Squares algorithm.

5) Convergence result:The convergence of Algorithm 1 is guaranteed by the following result.

Theorem III.1. Let Φ(·) a twice differentiable convex function onRPN . Assume that the setS =
{

a ∈ R
PN | Ta+ t > 0

}

is nonempty and bounded, and that eitherΦ(·) is strictly convex orT tT

is inversible. Then, for every fixedµ > 0, there existskµ such that the sequence{(ak,λk)}k>kµ

generated by(13) convergesq-superlinearly to the unique minimizer ofΨµ. Moreover, the outer loop

of Algorithm 1 generates a bounded sequence{(ak,λk)} whose accumulation points are primal-dual

solutions of problem(11). Finally, if Φ(·) is strictly convex, the outer iterates{ak} converge to the unique

solution of (11).

Proof: See Appendix A.

We now comment the differences between Theorem III.1 and theconvergence results in [26].

Remark 1.

(i) The convergence result of [26] is established under the assumption that the criterion and the

constraints are convex, and at least one of them is strongly convex. In our study, the convexity of

Φ is sufficient, under the additional assumption that the constraints are linearly independant (i.e.,

T tT inversible) and that the setS is nonempty and bounded. Note that these assumptions hold in

particular for the constraints(3)-(4) or (3)-(5).
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(ii) Theq-superlinear convergence rate of the inner loop of our algorithm is mainly due to the use of

the exact Hessian matrix in the primal system(17). A weaker result in terms of convergence speed

is obtained in [26], since a quasi-Newton approximation of the Hessian matrix is considered.

IV. M EMORY REQUIREMENT AND COMPUTATION TIME REDUCTION FOR LARGESCALE SPECTRAL

UNMIXING

According to the expression of the least squares criterion (6), the constrained optimization problem

(8) is separable with respect to the image pixels. A first implementation strategy, denoted hereafter by

pixel-basedstrategy, is to solve problem (2) by applying Algorithm 1 forunmixing eachn-th pixel

individually. A second approach is to adopt animage-basedstrategy, that is, solving the whole problem

(8) with the primal-dual algorithm. A discussion on the numerical efficiency of both strategies will be

given in Section V-A.

When theimage-basedstrategy is adopted, the numerical complexity of Algorithm1 is highly dom-

inated by the primal direction calculation through the resolution of the linear system (17). This section

presents an analysis of the structure of this system with theaim to reduce the computational cost and

the memory requirement of Algorithm 1.

A. Primal system structure

The linear system (17) can be expressed as

Hkd
a
k = −gk, (25)

where

Hk = ∇2Φ(ak) + T tDiag(Tak + t)−1
ΛkT , (26)

gk = ∇Φ(ak)− T tDiag(Tak + t)−1µk. (27)

An analysis of the structure of matrixHk is necessary in order to find an appropriate implementation

strategy.

Firstly, we recall thatT = IN ⊗T1. Thus,T is block-diagonal composed byN identical blocks equal

to T1. The notationT = BdiagN (T1) is used in the sequel. For everyn ∈ {1, · · · , N}, let an,k ∈ R
P

(

resp.λn,k ∈ R
Q
)

be then-th column ofAk = mat(ak) ∈ R
P×N

(

resp. ofΛk = mat(λk) ∈ R
Q×N

)

where mat(.) is the reciprocal operator of vec(.). Moreover, lett0,n ∈ R
Q be then-th column ofT0. It

follows that,

Diag(Tak + t)−1
Λk = BdiagN (Dn,k), (28)

June 27, 2013 DRAFT



SUBMITTED TO THE IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 11

whereDn,k is a diagonal matrix of sizeP×P whose diagonal elements areDiag (T1an,k + t0,n)
−1

λn,k.

Therefore,

T tDiag(Tak + t)−1
ΛkT = BdiagN (T1)

tBdiagN (Dn,k)BdiagN (T1),

= BdiagN (T t
1Dn,kT1). (29)

Secondly, the Hessian∇2Φ(ak) of the least squares criterion reads

∇2Φ(ak) = (IN ⊗ S)t(IN ⊗ S),

= BdiagN (StS), (30)

where (30) is a consequence of Kronecker product properties[33]:






(A⊗B)t = At ⊗Bt,

(A⊗B)(C ⊗D) = AC ⊗BD.
(31)

Finally, (29) and (30) yield,

Hk = BdiagN (StS + T t
1Dn,kT1). (32)

Consequently,Hk is a block-diagonal matrix formed byN blocks of sizeP ×P . Note that, in the case

of problem (10), a similar analysis leads to

Hk = BdiagN (Zt(StS + T t
1Dn,kT1)Z), (33)

that is,Hk block-diagonal withN blocks of size(P − 1)× (P − 1).

B. Memory issues

When applying theimage-basedstrategy to large scale problems, the memory space requiredto store

matrixHk can exceed the available memory, even when using a sparse coding. A less memory demanding

calculation of the primal direction can be achieved by solving separately, for each iteration, theN lower-

size linear systems

(∀n ∈ {1, . . . , N}) Hn,kd
a
n,k = −gn,k, (34)

whereda
n,k (resp.gn,k) is then-th column of the matrix mat(da

k) (resp. mat(gk)). This implementation

will now be referred to as theimage-based pixel-wiseimplementation, as opposed to theimage-based

full-wise implementation whereHk is entirely built.

The pixel-wise strategy being based on the resolution at each iteration ofN independent linear systems,

it is straightforward to implement in parallel. An intermediate implementation dividing system (32) (or
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(33)) into 1 6 K 6 N blocks can also be considered, with the advantage to adapt the normal equations

size K to the available memory. This latter approach will be referred to asimage-based block-wise

implementation. The performance of each implementation strategy will be discussed in Section V-A.

V. EXPERIMENTAL RESULTS

This section discusses the performances and illustrates the applicability of Algorithm 1. The latter

is referred to as IPLS, the type of constraints being indicated in prefix, namely NN for non-negativity

constraint (3), STO for sum-to-one and non-negativity constraints (3)-(4) and SLO for sum-lower-than-one

and non-negativity constraints (3)-(5).

We first consider synthetic data in order to discuss the choice of implementation strategy, to perform

a comparative analysis with existing unmixing methods, andto illustrate the relevance of the partial

additivity constraints. Then, the parallel implementation of IPLS using GPUs is addressed. Finally, its

applicability is emphasized through the processing of realhyperspectral data.

The computation of the proposed primal-dual algorithm requires specifying the parameters (ηprim, ηdual, θ)

and (µmin, ǫ0), controlling the precision of the inner and outer loops, respectively. Following [23, 31], we

set:

ηprim = 100, ηdual = 1.9, θ = 0.5. (35)

Moreover, the valuesµmin = 10−9 andǫ0 = 10−7 are retained for the stopping condition (24).

A. Synthetic data

In order to simulate realistic synthetic hyperspectral data, reflectance spectra from the USGS (U.S.

Geological Survey) spectral library [34] are retained1. These reflectance spectra containL = 224 spectral

bands from 383 nm to 2508 nm. A subset ofP spectra is then randomly picked up to create synthetic

mixtures with abundances simulated from a Dirichlet distribution. Only realizations with maximum

abundance value lower than a specified levelAmax are retained. Finally, a random Gaussian noise is

added to each resulting mixture spectrum, in order to get a signal to noise ratio (SNR) of 30 dB. The

unmixing algorithms are implemented on Matlab 2012b and thecalculations are performed using a HP

Compaq Elite desktop having an Intel Core i7 3.4 GHz processor and 8 GB of RAM.

The first step of the experiment consists in choosing the bestimplementation strategy adapted to this

hardware and software configuration. Then, some comparisons are performed between our method and

1available at http://pubs.usgs.gov/of/2003/ofr-03-395/datatable.html
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NNLS, FCLS and ADMM algorithms, in terms of computation timeand estimation accuracy. Finally, we

illustrate through two examples, the relevance of the partial additivity constraint over the full additivity

and the non-negativity constraints.

1) Pixel-based or image-based unmixing:In order to compare the performances of pixel-based and

image-based full-wise implementations, we consider the unmixing of synthetic images of sizeN = 642,

with different number of endmembers, andAmax = 1. The unmixing is performed under constraints (3)-

(4), using either the exact endmembers or those extracted from the image using the N-FINDR method [35].

For each test realized, Table I reports the computation timeper pixel, the average number of iterations

(outer iterations of Algorithm 1), and the average residualnorm:

r =
1

N

N
∑

n=1

1

L
‖yn − San‖2 . (36)

It can be noted that the image-based implementation is significantly faster than the pixel-based. This

is explained by the better management of the vectorized calculations compared to sequential ones in

Matlab. Moreover, less iterations are required to reach thestopping criterion in the case of the image-

based implementation. The average residual norm of the two strategies certifies that the quality of the

reconstruction is equivalent in both cases. Finally, let usemphasize that the performances of IPLS are

not degraded when replacing the exact endmembers by their estimation with N-FINDR.

Endmembers P
Time (µs) Iterations r (×10

−4)

PXL IMG PXL IMG PXL IMG

LIB

3 2150 15 25.7 20.3 3.14 3.14

6 2198 49 25.2 20.4 3.38 3.38

10 2307 118 24.6 20.9 3.65 3.65

15 2649 266 24.0 21.1 3.75 3.76

EEA

3 2138 15 25.7 20.2 3.15 3.14

6 2192 48 25.2 20.2 3.38 3.39

10 2302 117 24.5 20.9 3.69 3.70

15 2643 277 23.9 21.2 3.86 3.86

TABLE I

AVERAGE TIME PER PIXEL, NUMBER OF ITERATIONS, AND RESIDUAL NORM OVER100 MONTE-CARLO SIMULATIONS, FOR

DIFFERENT NUMBER OF ENDMEMBERS USING ACTUAL(LIB) OR ESTIMATED ENDMEMBERS(EEA): COMPARISON

BETWEEN PIXEL-BASED (PXL) AND IMAGE -BASED (IMG) IMPLEMENTATIONS OF IPLS.
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2) Image-based unmixing alternatives:We now analyse the influence of the block-size parameter

K on the performance of the image-based block-wise implementation. In that respect, we consider a

hyperspectral image of sizeN = 1282 built using a subset ofP endmembers from the USGS library,

andAmax = 1. The computation time required by Algorithm 1 to unmix this image under full additivity

constraints (3)-(4), is presented in Figure 1 for several numbers of endmembers and different values ofK.

Note that a block sizeK = 1 corresponds to the pixel-wise implementation and the full-size strategy is

obtained by settingK = N . The other configurations correspond to intermediate block-wise alternatives.

The memory space required for the unmixing function in Matlab is also reported.

Ideally, the best implementation should correspond to botha low computing time and a low memory

usage. According to our results, the computation time decreases as the block size rises, reaching a

minimum for a block size above100, whatever the value ofP . On the other hand, as expected, the

memory usage grows with the block size. Consequently, the block size should be set to an intermediate

value in order to achieve the best computing time. The block-wise implementation with a block size

K = 256 allowing to get the best compromise between computing time and memory requirement is

retained for the remaining experiments presented in the paper.
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Fig. 1. Unmixing computation time (in seconds) and memory usage (MB) for different block sizes of the block-wise

implementation
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3) Comparison with state-of-the-art unmixing algorithms:IPLS is now compared with FCLS when

both non-negativity constraint (3) and full additivity constraint (4) are imposed, and with NNLS when

only non-negativity is considered. We also compare our algorithm with the alternating method of multi-

pliers (ADMM) from [19], using the Matlab code available athttp://www.lx.it.pt/˜bioucas .

Synthetic hyperspectral images of sizeN = 642 are generated, using different numberP of endmembers

andAmax = 1. For each image, the set of spectra employed to perform the spectral unmixing is either

the one used to create the image or is estimated using the N-FINDR endmember extraction algorithm.

The three methods have led to the same unmixing quality in terms of residual valuer. The results

in terms of average computation time per pixel over100 Monte-Carlo simulations are reported in Table

II. For all the tests realized, both STO-IPLS and STO-ADMM appear to be faster than FCLS. The ratio

between STO-IPLS or STO-ADMM and FCLS computation times seems to be independent from the

number of endmember used. NN-IPLS and NN-ADMM are also faster than NNLS under the conditions

tested. This superiority tends to decrease as the number of endmembers increases. Finally, the ranking

between IPLS and ADMM methods depends on the experimental conditions. According to our tests,

STO-IPLS seems slightly faster than STO-ADMM, while NN-IPLS and NN-ADMM perform similarly

in terms of computation time.

4) Relevance of the partial additivity constraint:When dealing with real data, the abundance estimation

performances depend on the used endmember spectra and on theconstraints that are imposed on the

abundance values. The aim of this section is to show that it may be suitable, in some situations, to

relax the sum-to-one constraint (4) and, eventually, to replace it by the partial additivity constraint (5).

A hyperspectral image of sizeN = 1282 built using a subset ofP = 6 endmembers from the USGS

library is considered. The accuracy of the abundance maps estimation is assessed using the normalized

mean square error

NMSE(%) =
100

P

P
∑

p=1

(

‖mp − m̂p‖2/‖mp‖2
)

, (37)

which measures the relative mean difference between the actual abundances mapsmp = [Ap1, . . . , ApN ]t

and the estimated oneŝmp.

a) Effect of illumination variability:We first analyse the relevance of the full additivity constraint

when the image pixels are subject to illumination variability. In that respect, each pixel spectrum generated

from the linear mixing model is multiplied by a scale factorη modeling the illumination variability due

to surface topography or atmospheric attenuation [36]. As in [37], this scale factor is simulated from a

Beta distribution with a specified mean valueνη in the interval [0.9 , 1]. The hyperspectral image is then
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Endmembers P
Time (µs)

FCLS STO-ADMM STO-IPLS

LIB

3 46 22 18

6 84 65 45

10 210 124 90

15 479 198 177

EEA

3 45 18 18

6 84 71 42

10 144 132 89

15 314 197 179

Endmembers P
Time (µs)

NNLS NN-ADMM NN-IPLS

LIB

3 66 18 20

6 117 53 46

10 177 109 94

15 246 183 190

EEA

3 67 15 20

6 118 54 45

10 175 121 93

15 237 189 187

TABLE II

AVERAGE TIME PER PIXEL FOR DIFFERENT NUMBER OF ENDMEMBERS USING ACTUAL (LIB) OR ESTIMATED ENDMEMBERS

(EEA): COMPARISON BETWEENFCLS, ADMM AND IPLS FULLY CONSTRAINED (STO)AND NNLS, ADMM AND IPLS

WITH NON-NEGATIVITY CONSTRAINT ONLY (POS).

unmixed using the IPLS algorithm on the exact endmembers, with either constraint (4) or (5) in addition

to the non-negativity constraint (3).

Table III summarizes our results for different maximum abundance values and attenuation levels. The

number of pixels was set toN = 502 and100 Monte-Carlo simulations have been considered. It can be

noted that the full additivity constraint leads to the best estimation results in the absence of illumination

variability (νη = 1) and endmember spectra taken either from the library or extracted from the image

using an endmember extraction algorithm (VCA in this experiment). However, the performances decrease

when the value ofνη equals 0.95 or 0.9. It can be, for instance, noted that the partial additivity is relevant

when the endmembers are taken from the library and that the non-negativity constraint alone leads to the
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best results when endmembers are extracted from the image.

Endmembers Amax νη
Constraints

STO SLO NN

LIB (1, 0.95, 0.9)

1.00 0.04 0.10 0.19

0.95 3.83 0.64 0.69

0.90 12.36 2.03 2.06

EEA

1

1.00 0.47 0.58 0.72

0.95 4.57 3.39 1.44

0.90 16.45 12.71 5.08

0.95

1.00 0.63 0.74 0.90

0.95 5.65 4.47 1.94

0.90 17.18 13.28 5.02

0.9

1.00 0.99 1.12 1.24

0.95 4.67 3.45 1.42

0.90 17.25 13.25 5.72

TABLE III

ACCURACY (NMSE) OF ABUNDANCE ESTIMATION FROM EITHER ACTUAL(LIB) OR EXTRACTED ENDMEMBERS(EEA),

USING IPLS UNDER FULL ADDITIVITY (STO),PARTIAL ADDITIVITY (SLO) AND NON-NEGATIVITY (NN) CONSTRAINTS.

b) Effect of an incomplete set of endmembers:We now consider the case when the set of endmembers

used to unmix the image spectra is incomplete. Such situation arises, for instance, when the number of

components is underestimated. An image of sizeN = 502 containingP endmembers is simulated

using the same strategy as in the previous experiment, usingAmax = 1 and νη = 1. The unmixing is

performed using a subset of̂P 6 P endmembers arbitrarily taken from the actual set of endmembers

or estimated using the VCA algorithm. The IPLS algorithm is applied with either full additivity (3)-(4),

partial additivity (3)-(5) or non-negativity (3) constraints. From Table IV, one can note that imposing the

partial additivity constraint is very useful when the number of unmixed endmembers is lower than the

number of actual endmembers.

B. Parallel implementation

A parallel implementation of Algorithm 1, for both image-based and pixel-based strategies, has been

realized using CUDA (forCompute Unified Device Architecture), a programming model created by Nvidia

based on a language designed as an extension of the C language.
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P P̂
LIB EEA

STO SLO NN STO SLO NN

6

6 0.06 0.11 0.17 0.47 0.51 0.60

5 18.22 15.39 19.34 18.28 15.47 19.66

4 48.31 36.00 39.15 48.17 35.99 39.19

10

10 0.14 0.21 0.31 1.68 1.84 2.15

9 10.13 7.41 8.69 11.64 9.05 10.17

8 22.47 16.40 22.41 23.66 17.98 23.50

15

15 0.52 0.73 1.57 6.43 6.64 9.23

14 6.17 5.65 16.19 15.79 12.31 19.20

13 12.32 10.97 26.75 21.56 16.77 27.96

TABLE IV

ACCURACY (NMSE IN (%)) OF ABUNDANCE ESTIMATION USING IPLS UNDER FULL ADDITIVITY (STO),PARTIAL

ADDITIVITY (SLO) AND NON-NEGATIVITY (NN) CONSTRAINTS: EFFECT OF AN INCOMPLETE SET OFACTUAL (LIB) OR

EXTRACTED ENDMEMBERS(EEA).

In the pixel-based implementation, the entire algorithm isrun independently for each pixel. One thread

per pixel is used, each thread containing the whole IPLS algorithm. The image-based implementation

does not present such a degree of parallelization since somesteps, namely the linesearch, the perturbation

parameter update, and the convergence check, require the computation of one variable for the entire image.

These global steps, calledreductions, are optimized using the combination of the GPU and the CPU as

it is described in [38, Chap. 6].

For the same experiments than those conducted in Section V-A1, we present in Figure 2 the speed up

in terms of average computation time per pixel obtained whenusing parallel programming. The IPLS

algorithm was run on a Dell Precision T7400 having an Intel Xeon X5472 3 GHz processor and 16 GB

of RAM. It embeds the Nvidia Tesla C1060 GPU (Graphics Processing Unit) allowing to do parallel

computation on its 240 processor cores running at 1.3 GHz. Note that the iterations number and the

residual norms resulting from these tests were the same thanthose presented in Table I, which shows

the validity of our GPU program. The ratio between GPU and CPUcomputation time follows different

behaviour for pixel-based and image-based implementations. When the first approach is retained, the

gain of GPU computing tends to decrease, as the number of endmembers grows. On the opposite, the

image-based GPU implementation tends to be more efficient when P increases. Up to our knowledge,
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Fig. 2. Comparison in terms of computation time per pixel, between GPU and CPU implementation for pixel-based and

image-based implementations of IPLS algorithm. Average results over100 Monte-Carlo simulations, for different number of

endmembers using actual (LIB) or estimated endmembers (EEA).
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Fig. 3. Comparison in terms of computation time per pixel, between pixel-based and image-based GPU implementations of

IPLS algorithm. Average results over100 Monte-Carlo simulations, for different number of endmembers using actual (LIB) or

estimated endmembers (EEA).

this difference could be due to the use of the strategy by [38,Chap. 6] in the GPU programs of the

image-based implementation. Indeed, it implies that the computing time necessary for performing data

transfers remains constant, whatever the value ofP . For small size unmixing problems, this transfer time

becomes preponderant over other operations, thus limitingthe GPU speed-up.

Figure 3 illustrates the ratio between the average computation time per pixel for pixel-based and

image-based GPU implementations. Although the pixel-based approach would seem better suited for par-
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allelization, it presents similar computation time than the image-based approach, when GPU programming

is employed. This can be explained by the fact that, according to the CUDA model [39], the threads

are actually processed by groups of 32 calledwarps. Each warp works as an SIMD (Single Instruction

Multiple Data) unit. At a given instant, all the threads of one warp are necessarily executing the same

instruction. In the case of a conditional structure such asif, then, else, if two conditions are satisfied

by different threads within a warp, then two series of instructions corresponding to these conditions are

executed by all the threads of this warp, although some of theresults are ignored. Therefore, during

the execution of the pixel-based IPLS, the computing time depends on the pixels having the slowest

convergence rate in each group of 32 consecutive pixels. Thegain when using the pixel-based approach

can thus be small if the convergence rates highly differ fromone pixel to another. Another reason is that,

as emphasized in Section V-A1, the IPLS algorithm requires more iterations to reach convergence in its

pixel-based version.

C. Real data processing

We consider in this section the unmixing of the well known AVIRIS Cuprite dataset available online2.

This image originally contains250 × 191 pixels and 224 spectral bands between0.4 and2.5µm. Only

188 bands are preserved after removing the corrupted ones.

1) Number of endmembers estimation:The number of endmembers is estimated with the SGDE

method proposed in [40] based on Gerschgorin disks’ radii, leading to the reasonable number of 14

endmembers. This estimated number is retained during the rest of the experiment. Other methods such as

Virtual Dimentionality estimation [41] or ELM [42] could have been used, possibly leading to a different

number.

2) Endmembers extraction:The endmembers are extracted from the scene using the N-FINDR algo-

rithm. For each endmember, Table V gives the two closest components of the USGS library according

to the Spectral Information Divergence (SID) [43]. Other endmember extraction algorithms and spectral

distance measurements could have been used, possibly leading to different substances. A survey on EEA

algorithms is conducted in [44].

3) Abundance estimation:Computing times for different constraints are reported in Table VI, for an

image-based block-wise implementation of the IPLS algorithm, run on Matlab R2011b, using the same

2http://aviris.jpl.nasa.gov/html/aviris.freedata.html.
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Index Mineral SID (×10
−3)

1
Pyrope WS474 6.52

Sphene HS189.3B 8.36

2
Buddingtonite GDS85 D-206 6.51

Kaolin/Smect KLF511 12%K 7.39

3
Nontronite SWa-1.a 13.31

Kaolin/Smect H89-FR-5 30K 13.73

4
Nontronite NG-1.a 6.33

Montmorillonite+Illi CM37 8.63

5
Nontronite SWa-1.a 15.39

Kaolin/Smect KLF508 85%K 17.51

6
Rectorite ISR202 (RAr-1) 8.46

Montmorillonite+Illi CM42 8.49

7
Montmorillonite+Illi CM42 9.52

Kaolin/Smect H89-FR-5 30K 10.36

8
Kaolin/Smect KLF511 12%K 3.28

Rectorite ISR202 (RAr-1) 4.08

9
Montmorillonite CM20 5.38

Alunite GDS82 Na82 6.91

10
Thenardite GDS146 3.60

Kaolin/Smect H89-FR-2 50K 3.35

11
Cookeite CAr-1.c ¡30um 2.54

Thenardite GDS146 2.65

12
Montmorillonite+Illi CM42 8.22

Rectorite ISR202 (RAr-1) 9.37

13
Kaolin/Smect KLF511 12%K 1.82

Montmorillonite+Illi CM37 3.21

14
Barite HS79.3B 5.36

Richterite HS336.3B 5.51

TABLE V

SPECTRAL INFORMATION DIVERGENCE(SID) BETWEEN EXTRACTED ENDMEMBERS AND LABORATORY REFLECTANCES.

architecture as in Section V-B. We can note on both Table VI and Figure 4 that the residual error is not

strongly affected by the constraint choice.

Figure 5 illustrates the effect of the constraint choice on the distribution of the abundance sum per

pixel. With positivity only, a sum higher than one is observed in a significant part of the image, which
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Fig. 4. Cuprite residual norm per pixel after unmixing with IPLS subject to different constraints.

has no physical meaning. Adding the partial additivity constraint provides a sum close to one in most

of the pixels. Those who have an abundance sum far from one mayreveal a lack of luminosity, an

underestimated number of endmembers, or a non-linear phenomenon that cannot be handled with the

proposed mixing model.

Using the GPU implementation described in Section V-B, the computational time for unmixing the

real data under constraints (3) and (4) becomes 0.50 s for theimage-based version, and 0.59 s for the

pixel-based version. The speed up of 33 compared to the CPU version exhibits the suitability of our

method for parallel programming.

Constraint NN SLO STO

Time (s) 13.2 17.5 16.4

r (×10
−4) 7.37 8.34 8.52

TABLE VI

COMPUTING TIME AND RESIDUAL NORM AFTER UNMIXING CUPRITE SCENE WITHIPLS SUBJECT TO DIFFERENT

CONSTRAINTS.

VI. CONCLUSION

We have proposed in this paper a spectral unmixing algorithmallowing to estimate the abundance

maps using a primal-dual interior-point optimization method. The main feature of the proposed approach

is to handle various linear constraints such as full additivity, partial additivity and non-negativity. The

second advantage of this approach is its suitability for an efficient parallel implementation using GPUs.

These features have been illustrated by processing a real hyperspectral data using two GPU variants of

the proposed method (pixel-based or image-based). Implementing the pixel-based version of the method
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Fig. 5. Abundance sum per pixel after unmixing Cuprite scenesubject to different constraints: maps and probability density

functions.

can be extended to the case of sparse unmixing of a single pixel spectrum using either a sparse recovery

approach on a large library or to the case of a large number of spectral bands. On the other hand, the

image-based implementation opens the way to fast processing methods including spatial penalization on

the abundance maps.

In that respect, the proposed method can be naturally extended to the case of abundance estimation

using penalized or weighted least squares estimation, whenthe regularization function preserves the block

diagonal structure of the Hessian matrix. This is for instance the case with Tikhonov regularization or

sparse regularization approaches. Future works will be directed to addressing the case of penalization

functions that incorporate a spatial regularization of theabundance maps, such as total variation [45]

and roughness penalties [46]. Our preliminary results, presented in [47], have shown that the spatial

regularization enhances the estimation quality at the price of a significant increase of the numerical

complexity. Additional mathematical development are required in order to adapt the primal-dual approach

to solve the minimization problem in this context with a reduced memory requirement and computation

cost.
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APPENDIX

A. Proof of Theorem III.1

1) Convergence of the inner loop:Let us firstly prove the convergence of the inner loop of Algorithm 1

for a fixed perturbation parameterµ > 0. According to the definition (18), we have, for allk ∈ N,

∇Ψµ(ak,λk) =





∇Φ(ak)− 2T tDiag(Tak + t)−1µ+ T tλk

Tak + t−Λ
−1
k µ



 (38)

and

∇2Ψµ(ak,λk) =





∇2Φ(ak) + 2T tDiag(Tak + t)−2Tµ T t

T Λ
−2
k µ



 (39)

For all k ∈ N, the linesearch ensures thatTak + t > 0 andλk > 0. Since eitherΦ(·) is strictly convex

or T tT is inversible,∇2Ψµ(ak,λk) is positive definite so thatΨµ has a unique minimizer(âµ, λ̂µ).

Then, the same analysis as in [26, Sec.3] allows us to deduce that the sequence{(ak,λk)}k∈N resulting

from the update equation (13) converges to(âµ, λ̂µ).

2) Convergence rate of the inner loop:Lengthy but straightforward calculations show that (16), (17),

(38) and (39) lead to

∇2Ψµ(ak,λk)dk +∇Ψµ(ak,λk) =





µT tDiag(Tak + t)−1
(

Diag(Λ−1
k µ− (Tak + t))

)−1
Tda

k

Λ
−1
k

(

Diag(Λ−1
k µ− (Tak + t))

)

dλ
k





with dk =
[

(da
k)

t (dλ
k)

t
]t

. Let us study the behaviour of‖∇2Ψµk
(ak,λk)dk + ∇Ψµk

(ak,λk)‖ for

large values ofk. According to [26, Lem.3.1],{λk}k∈N and{Tak + t}k∈N are bounded, and bounded

away from zero. Moreover, the gradient ofΨµ tends to0 as k goes to infinity, so that (38) yields

limk→∞Λ
−1
k µ− (Tak + t) = 0. Therefore,

‖∇2Ψµk
(ak,λk)dk +∇Ψµk

(ak,λk)‖ =
k→∞

o(‖dk‖), (40)

Hence, applying [48, Th.3.5], there existskµ such that the stepsizeαk = 1 is admissible for allk > kµ

and the sequence{(ak,λk)}k>kµ
resulting from (13) convergesq-superlinearly to(âµ, λ̂µ).

3) Convergence of the outer loop:For all k such that (23) holds,

‖rprim
µk

‖ 6
√
PN‖rprim

µk
‖∞ 6

√
PNηprimµk, (41)

‖rdual
µk

‖ 6 δk + µk 6 (QNηdual+ 1)µk. (42)

Furthermore,

µk+1 6 θηdualµk, (43)
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with θηdual ∈ (0, 1) andµ0 > 0 so that{µk}k∈N converges to0 ask tends to infinity. Thus, according

to (41), (42) and [26, Th.5.1], the outer loop of Algorithm 1 generates a bounded sequence{(ak,λk)}
whose accumulation points are primal-dual solutions of problem (11). Finally, ifΦ(·) is strictly convex,

the solutionâ of (11) is unique, and the outer iterates{ak} converge tôa.
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