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Fast Constrained Least Squares Spectral
Unmixing using Primal-Dual Interior-Point

Optimization

Emilie ChouzenouxMember, IEEE Maxime Legendre,
Said Moussaoui,Member, IEEEand Jérdome IdiedMember, IEEE

Abstract

Hyperspectral data unmixing aims at identifying the comgaa (endmembers) of an observed
surface and at determining their fractional abundancedeénsach pixel area. Assuming that the spectral
signatures of the surface components have been previoesgrndined by an endmember extraction
algorithm, or to be part of an available spectral librarg thain problem is reduced to the estimation
of the fractional abundances. For large hyperspectral @rdaga sets, the estimation of the abundance
maps requires the resolution of a large-scale optimizatimblem subject to linear constraints such as
non-negativity and sum less or equal to one. This paper gexpa primal-dual interior-point optimization
algorithm allowing a constrained least squares estimapproach. In comparison with existing methods,
the proposed algorithm is more flexible since it can handjeliaear equality and/or inequality constraint
and has the advantage of a reduced computational costolpedsents an algorithmic structure suitable
for a parallel implementation on modern intensive commutiavices such as Graphics Processing Units
(GPU). The implementation issues are discussed and thecabifity of the proposed approach is

illustrated with the help of examples on synthetic and regienspectral data.
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spectral unmixing, constrained least squares, intemamtpptimization, primal-dual algorithm, GPU
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. INTRODUCTION

Hyperspectral imaging corresponds to the measurementeointident light reflection at the ground
surface of an observed scene in several contiguous spbainds. Despite of the high spatial resolution
that can be attained by recent imaging devices, the suri@secmvered by any pixel of the image may
contain different components. Therefore, the measuregttafice spectrum in each pixel can be explained
as a mixture of the individual component reflectance speargighted by the proportion (abundance) of
each component in this pixel area.

Unmixing hyperspectral data aims at the identification ef cibserved surface components (endmem-
bers) and the determination of their fractional abundaits®ide each pixel area [1, 2]. Fast hyperspectral
data unmixing approaches are supervised, by assumindgthanimember spectra are part of an available
spectral library or can be provided by an endmember extmaaigorithm [3, 4]. Then, the remaining
step of the unmixing is the estimation of the fractional atamces. Actually, there is an increasing
interest to joint estimation methods based either on na@aiiee source separation [5, 6] or constrained
non-negative matrix factorization [7, 8]. However, the pose of this paper is to focus on the second
step of the supervised approach with the aim to present acéasputation method adapted to the case
of large data sets.

Usual algorithms for solving the spectral unmixing probleomsist in minimizing a data fitting measure
(generally a least squares criterion) under the physicastcaints of non-negativity and sum-to-one. For
instance, the former constraint leads to tiwa-negative least squaredgorithm (NNLS) [9, 10], and the
latter is handled by theum-to-one constrained least squaf&€LS) method [11]. Both constraints are
accounted for by théully constrained least squar¢sCLS) algorithm [12]. In [13], a Bayesian inference
algorithm incorporating jointly these constraints is peed. It is based on Monte Carlo Markov chain
methods and offers the advantage of estimating the numbmroponents. However, all these mentioned
methods suffer from a significant increase of the compuidtioe in the case of large data sets (in terms
of image size, number of components or number of spectrald)aim order to reduce the computation
time, many recent contributions have investigated the @iparmllel computing tools [14] such as graphics
processing units (GPUSs) [15] and FPGA based-design [16]edngetrical formulation of the abundance
estimation step has been recently proposed in [17], the atatipn cost being reduced by retrieving some
guantities computed during the endmember extraction stéygy aising simplex projection methods [18].
However, the geometrical formulation is restricted to tlasec of full-additivity and is not suitable for

general linear constraints such as partial additivity (3ass than or equal to one) or bound constraints

June 27, 2013 DRAFT



SUBMITTED TO THE IEEE JOURNAL OF SELECTED TOPICS IN APPLIEDARTH OBSERVATIONS AND REMOTE SENSING 3

on the abundances. In [19], a modern convex optimizatiorrcag based on the alternating method
of multipliers [20] was adopted for solving the constrainggtimization problem arising in spectral
unmixing.

In this paper, we propose a new flexible spectral unmixingritltyn based on constrained least squares
estimation and interior-point optimization [21,22]. Theimoriginality of our approach is to exploit the
potential of primal-dual interior-point techniques, whibave shown their efficiency for solving large-
scale constrained signal and image processing problem2423The proposed optimization method
allows to minimize any convex objective function under dijyde.g., sum-to-one) and inequality (e.g.,
non-negativity or sum-less-than-one) constraints. Frbm riumerical optimization point of view, the
choice of a primal-dual interior-point optimization schefeads to an algorithm that can be implemented
efficiently using modern parallel computing tools such asJ&P

The rest of this paper is organized as follows: Section Ihfalates the constrained optimization
problem arising in spectral unmixing. Section Il presethis adopted interior-point optimization scheme
for the estimation of the abundance maps. Its implememtagsues accounting for memory storage
and computing time are discussed in section IV. Finally,ti8acV illustrates the performances of the
proposed approach in terms of computation time and unmigcwuracy, through applications to both

synthetic and real data.

I[I. PROBLEM STATEMENT

Let us considerN pixels of a hyperspectral image acquirediinspectral bands and assume a linear
mixing model. This linear model is widely accepted in mangqpical situations since it offers a first-
order approximation of the radiative transfer model [25¢cérding to this model, the observed spectrum
y, € R in the n-th pixel is explained as a linear combination Bfendmember spectra and corrupted
by an additive noise,,,

Yn = Sa, + €, (1)

whereS = [sy,..., sp] € RI*F contains theP endmember spectra and, = [a,, 1, . . ., an p]" € RY is
the vector of endmember abundances insthtl pixel.

Using matrix notations, the mixing model is rewritten as,
Y=SA+E, 2)

whereY € RL*VN js the observation data matrid € RP*Y the fractional abundance matrix and

E € RLXN the measurement noise.
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The abundance matrix should satisfy the non-negativitystraimnt
(Vne{l,...,N})(Vpe{l,...,P}) Apn = 0. 3)

This constraint will be denoted ad > 0. Moreover, under the assumption that all the endmembers
comprising the pixel spectrum il are present in the columns 6f, the abundances coefficients should

satisfy the full additivity constraint,
P

(Vne{l,...,N}) Y Ap=1, 4)
p=1

which can be summarized by, A = 1%, where1}, denotes a vector dk”” with all entries equal to
one.
When the set of endmembers is incomplete, or when the pigalane subject to illumination variability

or attenuation, only partial additivity should be requiréd.:
P

(Vne{l,...,N}) > A <1, (5)
p=1

which can be noted shortly byi, A < 1%,.

The estimation ofA given S andY is firstly formulated as the minimization of a convex criteri
F(.), under linear inequality constraints such as non-nedgtand partial additivity. Then, the case of the
sum-to-one constraint is addressed. Finally, an intgr@nt algorithm based on a primal-dual approach

is proposed for the resolution of the constrained optinoraproblem.

A. Criterion formulation

The criterionF'(-) to minimize results from the statistical modeling of the efvsition process and the
sought abundances properties. Adopting the well-knowst Isguares approach leads to defing) as

the quadratic function:
L N
1 2
FA) =53 > (§A)m —Ya)". 6)

In a statistical estimation framework, (6) correspondshi® heg-log-likelihood associated to a spatially
and spectrally uncorrelated Gaussian ndise
Note that the proposed approach can be adapted to a wider @lasonvex criteria which can be

expressed as:

N N
F(A) = 23 (a0 — ) S, (San — ) + > plan), ™)
n=1 n=1
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where X, € RX*! is a positive spectral covariance matrix apds a convex regularization function.
However, in the sequel, the presentation will be focusedhencase of the least squares criterion (6)

since it is widely used in hyperspectral imaging with reflecte spectroscopy.

B. Constraint formulation

We focus on the following general formulation of the conisiea optimization problem for the esti-

mation of the abundances maps:

min F(A) st TV\A+T, >0, (8)
ACRPXN

whereT; € RC*P and T, € R?*N. This formulation allows to take into account

« constraint (3) wher) = P, Ty = Ip andT = Op,

« constraint (5) wher) = 1, T} = —1%, and Ty = 1%,

« constraints (3) and (5) jointly, by setting = P+ 1, T} = [Ip| — 1p]' andTp = [0'| 1n]",
where Iy denotes the identity matrix dk”V. The equality constraint (4) can be implicitly handled by
introducing a reparametrization so that the optimizatioobfem is reduced to an inequality constrained

minimization [26].

Property 1. For each matrixA(®) € RP*N satisfying the equality constraiis), the transformed vector
A = AD 4 ZU also satisfieq4) as soon as the columns of matr& € R”*~1 are formed with

vectors of the null space df...

For the sum-to-one constraint, a null space matrix can baeattiy,
1 if i=j,
Zig=4q -1 if i=j+1, 9)
0  otherwise
According to this reparametrization, the constrainedmijaiation problem when constraints (3) and
(4) are imposed becomes equivalent to
minF(A((O) + ZU) st T!U +T">0, (10)
UER(P-DxN

which takes the general form (8) withi* = T1 Z and Ty = T1 A©) + Ty,
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IIl. PRIMAL-DUAL OPTIMIZATION FOR ABUNDANCE MAPS ESTIMATION

The main feature of interior-point optimization is to kedpe tsolution inside the strictly feasible
domain [21, 22]. At each iteration, the constraint fulfillmids ensured by adding a logarithmic barrier
function making the criterion unbounded at the boundaryheffeasible solution domain. Let us present
our Interior-Point Least Square¢§lPLS) algorithm to solve problem (8). By introducing theeoator
m = vec(M) which corresponds to the transformation of a matvixto a vectorm in the lexicographic

order, problem (8) is equivalent to the standard form indiyueonstrained optimization problem:

min ®(a) st Ta+t>0, (11)
acRPN

with a = ved A), T = Iy ® Ty andt = vedT)), where® is the Kronecker product.

The IPLS algorithm is based on a primal-dual interior-p@pproach which consists in jointly estimat-
ing a € RPN, and their associated Lagrange multiplievss R9Y through the resolution of a sequence
of optimization problems obtained from perturbed versiohthe Karush-Kuhn-Tucker (KKT) optimality

conditions for problem (11):

V®(a)—T'A = 0,
A(Ta+t = ,
( ) M (12)
Ta+t > 0,
A = 0,

where A = Diag(X) and p;, = 1oy results from a sequence of perturbation paramefess;
converging to0 ask is growing.

At each iterationk of the algorithm,a;; and A\, are firstly calculated from the perturbed KKT
conditions. The perturbation parametgr, ; is then updated in order to ensure the algorithm convergence
More precisely, an approximate solution of (12) is retaifredh a Newton algorithm step on the equality
conditions, in association with a linesearch strategywatig to ensure the inequality conditions [22,

Chap.11]. The update strategy is then given by
(@ri1, Aii1) = (ar + apdf, A + axdy), (13)

whereqy, is the step size an(H, d;) are the primal and dual Newton directions.

Based on the iterative scheme (13), several primal-duatiortpoint methods have been proposed in
the literature, each of them calling for its own strategytfog computation of the primal-dual directions,
the derivation of a suitable step size, and the update of énugpation parameter (See [27,28] for a

review). The proposed IPLS algorithm for spectral unmixieties on the iterative scheme of [26] into
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which additional tools, that are described in the followihgve been included to accelerate the practical
convergence, as well as to reduce the computational costgpation.
1) Primal-dual directions:The Newton direction$d?, dg) are obtained by solving the linear system,
V2®(ay) ~Tt d¢
AT Diag(Tay +t) dg = 0 M), -
whereV®(-) and V2®(-) are, respectively, the gradient and the Hessian of critebio), andr,(a, A)

is the primal-dual residual defined by,

Vo(a) — T'A ™ (a, A
ru(a,X) = (a) = ( ) . (15)
A(Ta +1t) - p rd(a, \)

As pointed out in [29, 30], the primal-dual matrix in the lside of equation (14) suffers from ill-
conditioning as soon atl'a, +t), < 1 or \; < 1. Moreover, this matrix is not guarenteed to be
symmetric or definite positive [28], so that the linear systd4) is difficult to solve. Therefore, rather
than solving directly (14), [26, 31] propose to proceed bgalde substitution. From the second equation

of (14) one deduces,
dp = Diag(Tay +t) "' [, — Ap(Tay +t) — ATdY]. (16)
Then, the primal directiorl] is obtained by solving the reduced linear system
[V?®(ay) + T'Diag(Tay, +t) ' AyT] df, = —V®(ay) + T'Diag(Tay, +t) " . (17)

Finally, the dual direction:lg is calculated according to (16). Note that our computatibthe primal
direction differs from [26]. Indeed, instead of a low rankpagximation of V2®(a;), we keep the true
Hessian matrix in (17), with the will to accelerate the cagemce of our algorithm (see Remark 1 at
the end of this section).

2) Linesearch:The step size valuey, should be chosen so as to ensure the convergence of the IPLS
algorithm and the fulfillment of the inequalities of the pdmtd KKT system (12). The convergence
study of the primal-dual algorithm presented in [26] redsidsata,, ensures a sufficient decrease of the

primal-dual merit functionV,, (a, \),

QN
U, (a,2) =0(a) —p Y In([Ta+t;) + X (Ta+t) - Mzhl ([ Ta +t);). (18)
i=1

One can note that (18) contains two logarithmic barrier fioms enforcmg the fulfilment of the KKT

inequalities. The sufficient decrease is assessed usingrihgo condition,
wuk (Oék) - wm(o) g Uakkuk (0) Wlth (S (07 1/2)7 (19)
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wherey,, (a) = ¥, (a) +ad, Ay +ad2). A step sizeny, satisfying (19) is obtained by a backtracking
algorithm [22]: starting from an initial step siz€, and if the latter does not satisfy (19), smaller values
are testeda{ 7, a?72, ..., 7 € (0,1), until (19) holds.

In order to ensure thap,, (-) remains finite valued, the backtracking strategy is in#é&d as follows,

ad =1 if o =+oo,
o) =min(1,0.99¢; )  elsewhere
whereoz,j;r is the largest positive value such that,
A, + ad) >0, T(ay + add) +t > 0. (21)

3) Perturbation parameter updateAccording to [26], the convergence is ensured as soon as the
sequence i; } .y tends to0 whenk tends to infinity. We propose to update the paramgjeby using
the p-criticity rule defined in [32] by:
O
=9k 22
=98N (22)

whered, = (Tay, + t)' A, is the duality gap and € (0,1).

4) Stopping criteria: The main steps of the proposed optimization method are suizedain Algo-

rithm 1. Following [23, 31], the accuracy of the primal andatdirections (inner loop) is controlled

by:

721 < ™ and 8y, /QN < U2, (23)
whererf™ is the primal residual aty, ¢¥"™ = P, dual — pdualy, with 7Pim > 0 andpdual ¢ (1,91).

The outer iterations of Algorithm 1 are run until the fulfiémt of the stopping condition proposed in [22,
Chap.11]:
e < in 08 (™) + I8 < eo. (24)
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Require: Initial valuesAy > 0 andag such thatT’'ag +t > 0
Ensure: Resolution of (11)

While (condition (24) is not satisfiedjo

While (condition (23) is not satisfiedjo

Calculatedy, by solving (17)

Deduced; from (16)

Find ay, > 0 satisfying (19)

Update(ay41, Aix+1) according to (13)
done
Define uj4+1 according to (22).

done

Algorithm 1: Interior-Point Least Squares algorithm.

5) Convergence resultThe convergence of Algorithm 1 is guaranteed by the follguiasult.

Theorem 1Il.1. Let ®(-) a twice differentiable convex function dk’". Assume that the s&§ =
{a e RPN | Ta+t> 0} is nonempty and bounded, and that eithie() is strictly convex orT*T

is inversible. Then, for every fixed > 0, there existsk, such that the sequencf(ay, Ax)}isy,
generated by(13) convergess-superlinearly to the unique minimizer df,. Moreover, the outer loop
of Algorithm 1 generates a bounded sequefite;, Ar)} whose accumulation points are primal-dual
solutions of problen(11). Finally, if ®(-) is strictly convex, the outer iteratds } converge to the unique

solution of (11).

Proof: See Appendix A. [ |

We now comment the differences between Theorem lIl.1 anddmeergence results in [26].

Remark 1.

(i) The convergence result of [26] is established under the mgsion that the criterion and the
constraints are convex, and at least one of them is strongiywex. In our study, the convexity of
® is sufficient, under the additional assumption that the trairsts are linearly independant (i.e.,
T*'T inversible) and that the s&f is nonempty and bounded. Note that these assumptions hold in

particular for the constraintg3)-(4) or (3)-(5).
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(i) Theg-superlinear convergence rate of the inner loop of our aition is mainly due to the use of
the exact Hessian matrix in the primal systéhid). A weaker result in terms of convergence speed

is obtained in [26], since a quasi-Newton approximation fud Hessian matrix is considered.

IV. MEMORY REQUIREMENT AND COMPUTATION TIME REDUCTION FOR LARGESCALE SPECTRAL

UNMIXING

According to the expression of the least squares criter@nthie constrained optimization problem
(8) is separable with respect to the image pixels. A first anp@ntation strategy, denoted hereafter by
pixel-basedstrategy, is to solve problem (2) by applying Algorithm 1 fanmixing eachn-th pixel
individually. A second approach is to adopt mmage-basedtrategy, that is, solving the whole problem
(8) with the primal-dual algorithm. A discussion on the nuita efficiency of both strategies will be
given in Section V-A.

When theimage-basedtrategy is adopted, the numerical complexity of Algorithinis highly dom-
inated by the primal direction calculation through the tegon of the linear system (17). This section
presents an analysis of the structure of this system withatireto reduce the computational cost and

the memory requirement of Algorithm 1.

A. Primal system structure

The linear system (17) can be expressed as

H dj; = —gy, (25)

where
H), = V?®(a;,) + T'Diag(Tay, +t) ‘AT, (26)
gr = V®(ay) — T'Diag(Tay, +t) ' . (27)

An analysis of the structure of matrikf, is necessary in order to find an appropriate implementation
strategy.
Firstly, we recall thafl’ = Iy ® T. Thus,T is block-diagonal composed hy identical blocks equal

to 7. The notationT = Bdiagy(T}) is used in the sequel. For evenyc {1,--- , N}, leta, ; € RY
(resp.A,; € RY) be then-th column of A, = matay) € RP*N (resp. of A, = mat\,) € RO*N)
where mat.) is the reciprocal operator of veg. Moreover, lett, ,, € R? be then-th column of Ty. It
follows that,

Diag(Tay, +t) "' Ay, = Bdiagy (Dypx), (28)
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whereD,, ;, is a diagonal matrix of siz& x P whose diagonal elements dbéag (T a,, , + tom)’1 An -
Therefore,
T'Diag(Tay, +t) ' AT = Bdiagy (T})"'Bdiag y (D,, ) Bdiag y (T1),
= Bdiagy (T{ D,, xT}). (29)
Secondly, the HessiaW?®(a;,) of the least squares criterion reads
V20 (ay) = (In @ S)'(Iy @ S),
= Bdiagy (S'S), (30)

where (30) is a consequence of Kronecker product propdBiis

(A®B)t:At®Bt,
(A® B)(C ® D)= AC ® BD.

(31)

Finally, (29) and (30) yield,
H), = Bdiagy (S'S + T{D,, ;T1). (32)

ConsequentlyH), is a block-diagonal matrix formed by blocks of sizeP x P. Note that, in the case

of problem (10), a similar analysis leads to
H,, = Bdiagy (Z'(S'S + T{ D, ,T1) Z), (33)

that is, Hj, block-diagonal withN blocks of size(P — 1) x (P — 1).

B. Memory issues

When applying thémage-basedtrategy to large scale problems, the memory space requirstbre
matrix Hj;, can exceed the available memory, even when using a sparsgcédess memory demanding
calculation of the primal direction can be achieved by saseparately, for each iteration, thelower-
size linear systems

(VTL € {1, . ,N}) Hn,kd?z,k = —gn,k, (34)

whered;, , (resp.gy k) is then-th column of the matrix maty) (resp. mafgy)). This implementation
will now be referred to as themage-based pixel-wisenplementation, as opposed to theage-based
full-wise implementation wherdd}, is entirely built.

The pixel-wise strategy being based on the resolution dt Ba@tion of NV independent linear systems,

it is straightforward to implement in parallel. An intermat implementation dividing system (32) (or
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(33)) intol < K < N blocks can also be considered, with the advantage to adaptdimal equations
size K to the available memory. This latter approach will be refdrto asimage-based block-wise

implementation. The performance of each implementaticatesyy will be discussed in Section V-A.

V. EXPERIMENTAL RESULTS

This section discusses the performances and illustraeapiplicability of Algorithm 1. The latter
is referred to as IPLS, the type of constraints being inédadh prefix, namely NN for non-negativity
constraint (3), STO for sum-to-one and non-negativity ¢@msts (3)-(4) and SLO for sum-lower-than-one
and non-negativity constraints (3)-(5).

We first consider synthetic data in order to discuss the ehofdmplementation strategy, to perform
a comparative analysis with existing unmixing methods, &mdllustrate the relevance of the partial
additivity constraints. Then, the parallel implementatiaf IPLS using GPUs is addressed. Finally, its
applicability is emphasized through the processing of hg@lerspectral data.

The computation of the proposed primal-dual algorithm neguspecifying the parameteng{™, 942 )
and (umin, €0), controlling the precision of the inner and outer loopspextively. Following [23, 31], we
set:

Moreover, the valueg,,;, = 1077 andey = 10~7 are retained for the stopping condition (24).

A. Synthetic data

In order to simulate realistic synthetic hyperspectrabda¢flectance spectra from the USGS (U.S.
Geological Survey) spectral library [34] are retaihefihese reflectance spectra contain- 224 spectral
bands from 383 nm to 2508 nm. A subset@fspectra is then randomly picked up to create synthetic
mixtures with abundances simulated from a Dirichlet disttion. Only realizations with maximum
abundance value lower than a specified ledgl., are retained. Finally, a random Gaussian noise is
added to each resulting mixture spectrum, in order to gegmasito noise ratio (SNR) of 30 dB. The
unmixing algorithms are implemented on Matlab 2012b andctideulations are performed using a HP
Compagq Elite desktop having an Intel Core i7 3.4 GHz proageasd 8 GB of RAM.

The first step of the experiment consists in choosing the inggdementation strategy adapted to this

hardware and software configuration. Then, some compariaon performed between our method and

available at http://pubs.usgs.gov/of/2003/ofr-03-8@Edtable.html
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NNLS, FCLS and ADMM algorithms, in terms of computation timed estimation accuracy. Finally, we
illustrate through two examples, the relevance of the platilditivity constraint over the full additivity
and the non-negativity constraints.

1) Pixel-based or image-based unmixinkp order to compare the performances of pixel-based and
image-based full-wise implementations, we consider thaiximg of synthetic images of siz& = 642,
with different number of endmembers, add,., = 1. The unmixing is performed under constraints (3)-
(4), using either the exact endmembers or those extraaigttire image using the N-FINDR method [35].
For each test realized, Table | reports the computation perepixel, the average number of iterations

(outer iterations of Algorithm 1), and the average resich@im:

11
r= N; 7 lyn = Sanl,. (36)

It can be noted that the image-based implementation is fgigntly faster than the pixel-based. This
is explained by the better management of the vectorizeduledions compared to sequential ones in
Matlab. Moreover, less iterations are required to reachstbpping criterion in the case of the image-
based implementation. The average residual norm of the tategies certifies that the quality of the
reconstruction is equivalent in both cases. Finally, leeogphasize that the performances of IPLS are

not degraded when replacing the exact endmembers by theiragion with N-FINDR.

Time (us) lterations | = (x107%)

PXL | IMG | PXL | IMG | PXL | IMG

Endmembers| P

3 [ 2150| 15 | 25.7| 20.3| 3.14| 3.14
2198 | 49 | 25.2| 204 | 3.38 | 3.38

He 10 | 2307 | 118 | 24.6 | 20.9 | 3.65 | 3.65
15| 2649 | 266 | 240 | 21.1 | 3.75 | 3.76
2138 | 15 | 25.7| 20.2 | 3.15| 3.14
6 | 2192| 48 | 25.2| 20.2 | 3.38 | 3.39
EEA

10 | 2302 | 117 | 245 | 209 | 3.69 | 3.70
15| 2643 | 277 | 239 | 21.2 | 3.86 | 3.86

TABLE |
AVERAGE TIME PER PIXEL, NUMBER OF ITERATIONS AND RESIDUAL NORM OVER 100 MONTE-CARLO SIMULATIONS, FOR
DIFFERENT NUMBER OF ENDMEMBERS USING ACTUAI(LIB) OR ESTIMATED ENDMEMBERS(EEA): COMPARISON

BETWEEN PIXEL-BASED (PXL) AND IMAGE -BASED (IMG) IMPLEMENTATIONS OF IPLS.
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2) Image-based unmixing alternative¥¥e now analyse the influence of the block-size parameter
K on the performance of the image-based block-wise impleatient In that respect, we consider a
hyperspectral image of siz& = 1282 built using a subset o endmembers from the USGS library,
and A,,.x = 1. The computation time required by Algorithm 1 to unmix thisaige under full additivity
constraints (3)-(4), is presented in Figure 1 for severailmers of endmembers and different valuegof
Note that a block sizd{ = 1 corresponds to the pixel-wise implementation and thedizé strategy is
obtained by settind( = N. The other configurations correspond to intermediate bieisle alternatives.
The memory space required for the unmixing function in Maikalso reported.

Ideally, the best implementation should correspond to laokbw computing time and a low memory
usage. According to our results, the computation time desa® as the block size rises, reaching a
minimum for a block size abové00, whatever the value of’. On the other hand, as expected, the
memory usage grows with the block size. Consequently, thekidize should be set to an intermediate
value in order to achieve the best computing time. The blede implementation with a block size
K = 256 allowing to get the best compromise between computing time memory requirement is

retained for the remaining experiments presented in thermpap

Computing time [s] Memory usage [MB]

== I =
o B—P=6 | .o SRR B—P=6 |
| —©—P=10| 100}, 51 —O—P=10|

_O B N W D OO N

10°  10° 10
Block size [px] Block size [px]

Fig. 1.  Unmixing computation time (in seconds) and memorgges (MB) for different block sizes of the block-wise

implementation
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3) Comparison with state-of-the-art unmixing algorithm®&LS is now compared with FCLS when
both non-negativity constraint (3) and full additivity airaint (4) are imposed, and with NNLS when
only non-negativity is considered. We also compare ourrélgo with the alternating method of multi-
pliers (ADMM) from [19], using the Matlab code available latp://www.IX.it.pt/"bioucas
Synthetic hyperspectral images of siXe= 642 are generated, using different numteof endmembers
and A,,.x = 1. For each image, the set of spectra employed to perform thetrsih unmixing is either
the one used to create the image or is estimated using theNRFlendmember extraction algorithm.

The three methods have led to the same unmixing quality imdesf residual value.. The results
in terms of average computation time per pixel ov@d Monte-Carlo simulations are reported in Table
Il. For all the tests realized, both STO-IPLS and STO-ADMMeaar to be faster than FCLS. The ratio
between STO-IPLS or STO-ADMM and FCLS computation timesnse¢o be independent from the
number of endmember used. NN-IPLS and NN-ADMM are also fasten NNLS under the conditions
tested. This superiority tends to decrease as the numbendmh@mbers increases. Finally, the ranking
between IPLS and ADMM methods depends on the experimentadittons. According to our tests,
STO-IPLS seems slightly faster than STO-ADMM, while NN-®land NN-ADMM perform similarly
in terms of computation time.

4) Relevance of the partial additivity constraind’hen dealing with real data, the abundance estimation
performances depend on the used endmember spectra and ocoriteaints that are imposed on the
abundance values. The aim of this section is to show that it beasuitable, in some situations, to
relax the sum-to-one constraint (4) and, eventually, tdaapit by the partial additivity constraint (5).
A hyperspectral image of siz& = 1282 built using a subset oP = 6 endmembers from the USGS
library is considered. The accuracy of the abundance mapaat®n is assessed using the normalized

mean square error

P
100 .
NMSE(%) = 5= > _ (llmy — 10, |12/ my ) (37)
p=1
which measures the relative mean difference between thaladundances mapa, = [4,1,. .., A,n]*

and the estimated one®,,.

a) Effect of illumination variability: We first analyse the relevance of the full additivity conisiira
when the image pixels are subject to illumination varidpilin that respect, each pixel spectrum generated
from the linear mixing model is multiplied by a scale factpmodeling the illumination variability due
to surface topography or atmospheric attenuation [36].rAEY], this scale factor is simulated from a

Beta distribution with a specified mean valygin the interval [0.9 , 1]. The hyperspectral image is then
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Time (us)
FCLS | STO-ADMM | STO-IPLS

Endmembers P

46 22 18
84 65 45
LIB
10 | 210 124 90
15 | 479 198 177
45 18 18
84 71 42
EEA
10| 144 132 89
15 314 197 179
Time (us)

Endmembers P
NNLS NN-ADMM NN-IPLS

66 18 20
117 53 46
LIB
10 | 177 109 94
15 | 246 183 190
67 15 20
118 54 45
EEA
10| 175 121 93
15 | 237 189 187
TABLE I

AVERAGE TIME PER PIXEL FOR DIFFERENT NUMBER OF ENDMEMBERS USG ACTUAL (LIB) OR ESTIMATED ENDMEMBERS
(EEA): COMPARISON BETWEENFCLS, ADMM AND IPLSFULLY CONSTRAINED (STO)AND NNLS, ADMM AND IPLS

WITH NON-NEGATIVITY CONSTRAINT ONLY (POS).

unmixed using the IPLS algorithm on the exact endmembeth, &ither constraint (4) or (5) in addition
to the non-negativity constraint (3).

Table 1ll summarizes our results for different maximum atamce values and attenuation levels. The
number of pixels was set ¥ = 502 and 100 Monte-Carlo simulations have been considered. It can be
noted that the full additivity constraint leads to the bestreation results in the absence of illumination
variability (v, = 1) and endmember spectra taken either from the library ometdd from the image
using an endmember extraction algorithm (VCA in this experit). However, the performances decrease
when the value of,, equals 0.95 or 0.9. It can be, for instance, noted that thapadditivity is relevant

when the endmembers are taken from the library and that thenagativity constraint alone leads to the
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best results when endmembers are extracted from the image.

Constraints
sTo | sLo | NN

Endmembers| Amax Un

1.00| 0.04 | 0.10 | 0.19
LIB (1, 0.95,0.9)| 0.95| 3.83 | 0.64 | 0.69
0.90 | 12.36| 2.03 | 2.06

1.00| 0.47 | 0.58 | 0.72
1 095| 457 | 3.39 | 1.44
0.90 | 16.45| 12.71| 5.08
1.00| 0.63 | 0.74 | 0.90
EEA 0.95 0.95| 5.65 | 447 | 1.94
0.90 | 17.18 | 13.28 | 5.02
1.00| 099 | 1.12 | 1.24
0.9 0.95| 4.67 | 3.45 | 142
0.90| 17.25| 13.25| 5.72

TABLE Il
AcCURACY (NMSE) OF ABUNDANCE ESTIMATION FROM EITHER ACTUAL(LIB) OR EXTRACTED ENDMEMBERS(EEA),

USING IPLS UNDER FULL ADDITIVITY (STO),PARTIAL ADDITIVITY (SLO)AND NON-NEGATIVITY (NN) CONSTRAINTS

b) Effect of an incomplete set of endmembé&¥e& now consider the case when the set of endmembers
used to unmix the image spectra is incomplete. Such situatises, for instance, when the number of
components is underestimated. An image of siWe= 50? containing P endmembers is simulated
using the same strategy as in the previous experiment, using = 1 and v, = 1. The unmixing is
performed using a subset ¢f < P endmembers arbitrarily taken from the actual set of endneesnb
or estimated using the VCA algorithm. The IPLS algorithm pléed with either full additivity (3)-(4),
partial additivity (3)-(5) or non-negativity (3) constrés. From Table IV, one can note that imposing the
partial additivity constraint is very useful when the numbé& unmixed endmembers is lower than the

number of actual endmembers.

B. Parallel implementation

A parallel implementation of Algorithm 1, for both imagedeal and pixel-based strategies, has been
realized using CUDA (foCompute Unified Device Architectyr@ programming model created by Nvidia

based on a language designed as an extension of the C language
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LIB EEA
sto | sto | NN | sTo | sto | NN

0.06 | 011 | 0.17 | 047 | 0.51 | 0.60
6 | 5| 18.22| 15.39| 19.34 | 18.28 | 15.47 | 19.66
48.31| 36.00 | 39.15| 48.17 | 35.99 | 39.19

10| 0.14 | 021 | 031 | 168 | 1.84 | 2.15
10| 9 | 10.13| 7.41 | 8.69 | 11.64| 9.05 | 10.17
22.47| 16.40 | 22.41| 23.66 | 17.98 | 23.50

15| 052 | 073 | 157 | 6.43 | 6.64 | 9.23
15| 14| 6.17 | 5.65 | 16.19| 15.79 | 12.31| 19.20
13| 12.32| 10.97 | 26.75| 21.56 | 16.77 | 27.96

TABLE IV
AccuRACY (NMSE IN (%)) OF ABUNDANCE ESTIMATION USINGIPLS UNDER FULL ADDITIVITY (STO),PARTIAL
ADDITIVITY (SLO)AND NON-NEGATIVITY (NN) CONSTRAINTS EFFECT OF AN INCOMPLETE SET OFACTUAL (LIB) OR

EXTRACTED ENDMEMBERS(EEA).

In the pixel-based implementation, the entire algorithmmuis independently for each pixel. One thread
per pixel is used, each thread containing the whole IPLSr#lign. The image-based implementation
does not present such a degree of parallelization since staps, namely the linesearch, the perturbation
parameter update, and the convergence check, requirernhgutation of one variable for the entire image.
These global steps, calledductions are optimized using the combination of the GPU and the CPU as
it is described in [38, Chap. 6].

For the same experiments than those conducted in Sectioh, WA present in Figure 2 the speed up
in terms of average computation time per pixel obtained whging parallel programming. The IPLS
algorithm was run on a Dell Precision T7400 having an IntebiXex5472 3 GHz processor and 16 GB
of RAM. It embeds the Nvidia Tesla C1060 GPU (Graphics PrsiogsUnit) allowing to do parallel
computation on its 240 processor cores running at 1.3 GHze Nt the iterations number and the
residual norms resulting from these tests were the samethiume presented in Table I, which shows
the validity of our GPU program. The ratio between GPU and @Bbhputation time follows different
behaviour for pixel-based and image-based implementtidfhen the first approach is retained, the
gain of GPU computing tends to decrease, as the number of@ambers grows. On the opposite, the

image-based GPU implementation tends to be more efficieenwhincreases. Up to our knowledge,
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Fig. 2.  Comparison in terms of computation time per pixeltwsen GPU and CPU implementation for pixel-based and
image-based implementations of IPLS algorithm. Averageilte over100 Monte-Carlo simulations, for different number of

endmembers using actual (LIB) or estimated endmembers YEEA
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Fig. 3. Comparison in terms of computation time per pixekwsen pixel-based and image-based GPU implementations of
IPLS algorithm. Average results ovéd0 Monte-Carlo simulations, for different number of endmensbesing actual (LIB) or

estimated endmembers (EEA).

this difference could be due to the use of the strategy by (3&p. 6] in the GPU programs of the
image-based implementation. Indeed, it implies that themding time necessary for performing data
transfers remains constant, whatever the valug.dfor small size unmixing problems, this transfer time
becomes preponderant over other operations, thus limikiegGPU speed-up.

Figure 3 illustrates the ratio between the average computdime per pixel for pixel-based and

image-based GPU implementations. Although the pixel-bagpproach would seem better suited for par-

June 27, 2013 DRAFT



SUBMITTED TO THE IEEE JOURNAL OF SELECTED TOPICS IN APPLIEDARTH OBSERVATIONS AND REMOTE SENSING 20

allelization, it presents similar computation time thae tmage-based approach, when GPU programming
is employed. This can be explained by the fact that, accgrtbinthe CUDA model [39], the threads
are actually processed by groups of 32 calleatps Each warp works as an SIMD (Single Instruction
Multiple Data) unit. At a given instant, all the threads ofeowarp are necessarily executing the same
instruction. In the case of a conditional structure suchf,athen, elseif two conditions are satisfied
by different threads within a warp, then two series of ingians corresponding to these conditions are
executed by all the threads of this warp, although some ofrélselts are ignored. Therefore, during
the execution of the pixel-based IPLS, the computing timpedels on the pixels having the slowest
convergence rate in each group of 32 consecutive pixels.géirewhen using the pixel-based approach
can thus be small if the convergence rates highly differ faom pixel to another. Another reason is that,
as emphasized in Section V-Al, the IPLS algorithm requiregeniterations to reach convergence in its

pixel-based version.

C. Real data processing

We consider in this section the unmixing of the well known R¥$ Cuprite dataset available onlfne
This image originally contain250 x 191 pixels and 224 spectral bands betweeh and 2.5,m. Only
188 bands are preserved after removing the corrupted ones.

1) Number of endmembers estimatiomhe number of endmembers is estimated with the SGDE
method proposed in [40] based on Gerschgorin disks’ raeéding to the reasonable number of 14
endmembers. This estimated number is retained during tte@fe¢he experiment. Other methods such as
Virtual Dimentionality estimation [41] or ELM [42] could va been used, possibly leading to a different
number.

2) Endmembers extractiorifthe endmembers are extracted from the scene using the NFEIANGo-
rithm. For each endmember, Table V gives the two closest commts of the USGS library according
to the Spectral Information Divergence (SID) [43]. Othedeember extraction algorithms and spectral
distance measurements could have been used, possiblgdeadilifferent substances. A survey on EEA
algorithms is conducted in [44].

3) Abundance estimationComputing times for different constraints are reported abl€& VI, for an

image-based block-wise implementation of the IPLS alparitrun on Matlab R2011b, using the same

2http://aviris.jpl.nasa.gov/html/aviris.freedata.htm
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‘ Index ‘ Mineral SID (x1073)
Pyrope WS474 6.52
! Sphene HS189.3B 8.36
) Buddingtonite GDS85 D-206 6.51
Kaolin/Smect KLF511 12%K 7.39
Nontronite SWa-1.a 13.31
° Kaolin/Smect H89-FR-5 30K 13.73
Nontronite NG-1.a 6.33
N Montmorillonite+Illi CM37 8.63
Nontronite SWa-1.a 15.39
> Kaolin/Smect KLF508 85%K 17.51
Rectorite ISR202 (RAr-1) 8.46
® Montmorillonite+Illi CM42 8.49
Montmorillonite+Illi CM42 9.52
! Kaolin/Smect H89-FR-5 30K 10.36
Kaolin/Smect KLF511 12%K 3.28
8 Rectorite ISR202 (RAr-1) 4.08
Montmorillonite CM20 5.38
° Alunite GDS82 Na82 6.91
10 Thenardite GDS146 3.60
Kaolin/Smect H89-FR-2 50K 3.35
1 Cookeite CAr-1.c j30um 2.54
Thenardite GDS146 2.65
Montmorillonite+Illi CM42 8.22
1z Rectorite ISR202 (RAr-1) 9.37
Kaolin/Smect KLF511 12%K 1.82
3 Montmorillonite+llli CM37 3.21
Barite HS79.3B 5.36
o Richterite HS336.3B 551
TABLE V

SPECTRALINFORMATION DIVERGENCE(SID) BETWEEN EXTRACTED ENDMEMBERS AND LABORATORY REFLECTANCES

architecture as in Section V-B. We can note on both Table M Rigure 4 that the residual error is not
strongly affected by the constraint choice.
Figure 5 illustrates the effect of the constraint choice loa dlistribution of the abundance sum per

pixel. With positivity only, a sum higher than one is obsehie a significant part of the image, which
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NN SLO STO

Fig. 4. Cuprite residual norm per pixel after unmixing wifPLIS subject to different constraints.

has no physical meaning. Adding the partial additivity doaist provides a sum close to one in most
of the pixels. Those who have an abundance sum far from onereweal a lack of luminosity, an
underestimated number of endmembers, or a non-linear pieman that cannot be handled with the
proposed mixing model.

Using the GPU implementation described in Section V-B, themputational time for unmixing the
real data under constraints (3) and (4) becomes 0.50 s foirthge-based version, and 0.59 s for the
pixel-based version. The speed up of 33 compared to the CPtiomeexhibits the suitability of our

method for parallel programming.

Constraint‘ NN ‘ SLO ‘ STO‘

Time (s) | 13.2| 17.5| 16.4
r(x107%) | 7.37 | 8.34 | 8.52

TABLE VI
COMPUTING TIME AND RESIDUAL NORM AFTER UNMIXING CUPRITE SCENE WITHIPLS SUBJECT TO DIFFERENT

CONSTRAINTS

V1. CONCLUSION

We have proposed in this paper a spectral unmixing algoritiowing to estimate the abundance
maps using a primal-dual interior-point optimization neethThe main feature of the proposed approach
is to handle various linear constraints such as full adtytipartial additivity and non-negativity. The
second advantage of this approach is its suitability for ffinient parallel implementation using GPUs.
These features have been illustrated by processing a rpakrs$pectral data using two GPU variants of

the proposed method (pixel-based or image-based). Implgmgethe pixel-based version of the method
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Fig. 5. Abundance sum per pixel after unmixing Cuprite scemgiect to different constraints: maps and probabilitysitgn
functions.

can be extended to the case of sparse unmixing of a singléguretrum using either a sparse recovery
approach on a large library or to the case of a large numbepe@dtsal bands. On the other hand, the
image-based implementation opens the way to fast progegsathods including spatial penalization on
the abundance maps.

In that respect, the proposed method can be naturally extetalthe case of abundance estimation
using penalized or weighted least squares estimation, wigeregularization function preserves the block
diagonal structure of the Hessian matrix. This is for instathe case with Tikhonov regularization or
sparse regularization approaches. Future works will bectid to addressing the case of penalization
functions that incorporate a spatial regularization of #ieindance maps, such as total variation [45]
and roughness penalties [46]. Our preliminary resultssgmeed in [47], have shown that the spatial
regularization enhances the estimation quality at theepdt a significant increase of the numerical
complexity. Additional mathematical development are regplin order to adapt the primal-dual approach

to solve the minimization problem in this context with a redd memory requirement and computation

cost.
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APPENDIX
A. Proof of Theorem Ill.1

1) Convergence of the inner loojet us firstly prove the convergence of the inner loop of Aition 1

for a fixed perturbation parametger> 0. According to the definition (18), we have, for &lle N,

Y, (an M) V®(ay) — 2T Diag(Tay +t) ' + T\, 38)
Ta,+t— A,;lu
and
V20, (e Ay = V2®(ay) + 2T'Diag(Tay +t) 2T T* 39)
T Al;2p,
For all £ € N, the linesearch ensures thBu; +t > 0 and A; > 0. Since either®(-) is strictly convex
or T'T is inversible, V2V, (ay, Ax) is positive definite so tha¥’,, has a unique minimize(du,ﬁ\u).
Then, the same analysis as in [26, Sec.3] allows us to detiaterte sequencfay, Ar)} oy resulting
from the update equation (13) converges(m,ﬂu).
2) Convergence rate of the inner loohengthy but straightforward calculations show that (1&))(
(38) and (39) lead to
uT'Diag(Tay, +t)~! (Diag(A;'p — (Tay, + 1)) Tdy

V2V, (ak, Ap)di + VU, (ak, M) = v A1 A
A (Dlag(Ak n— (Tay, + t))) dj;

with dj, = [(d2)' (d})']". Let us study the behaviour 4fV2W,,, (ax, Av)di + VU, (ax, Ar)| for
large values oft. According to [26, Lem.3.1[{\},cy and{Ta; +t}, . are bounded, and bounded

away from zero. Moreover, the gradient &f, tends to0 as k& goes to infinity, so that (38) yields

limy_,0o Ay 't — (Tay +t) = 0. Therefore,
V20, (ak, Ap)di + VU, (ak, Ap)|| it o([|dl]), (40)

Hence, applying [48, Th.3.5], there exidts such that the stepsize, = 1 is admissible for alk > £,
and the sequencf ay, Ak)},@kH resulting from (13) convergegsuperlinearly to(a,,, 5\#).

3) Convergence of the outer loogor all £ such that (23) holds,

75" < VPN[|rPiM oo < VPN ™y, (41)
7l < 6k + pu < QN7+ 1) puy. (42)

Furthermore,
fiks1 < O™y, (43)
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with 97 € (0,1) and g > 0 so that{suy}, . converges td ask tends to infinity. Thus, according
to (41), (42) and [26, Th.5.1], the outer loop of Algorithm &ngrates a bounded sequeK¢ey, A\;)}
whose accumulation points are primal-dual solutions obfem (11). Finally, if®(-) is strictly convex,

the solutiona of (11) is unique, and the outer iteratés;} converge toa.
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