On anisotropic polynomial relations for the elasticity tensor

Abstract : In this paper, we explore new conditions for an elasticity tensor to belong to a given symmetry class. Our goal is to propose an alternative approach to the identification problem of the symmetry class, based on polynomial invariants and covariants of the elasticity tensor C, rather than on spectral properties of the Kelvin representation. We compute a set of algebraic relations which describe precisely the orthotropic ([D2]), trigonal ([D3]), tetragonal ([D4]), transverse isotropic ([SO(2)]) and cubic ([O]) symmetry classes in H4, the higher irreducible component in the decomposition of Ela. We provide a bifurcation diagram which describes how one "travel" in H4 from a given isotropy class to another. Finally, we study the link between these polynomial invariants and those obtained as the coefficients of the characteristic or the Betten polynomials.We show, in particular, that the Betten invariants do not separate the orbits of the elasticity tensors.
Type de document :
Article dans une revue
Journal of Elasticity, Springer Verlag, 2014, 115 (1), pp.77-103. 〈10.1007/s10659-013-9448-z〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00827948
Contributeur : Nicolas Auffray <>
Soumis le : jeudi 30 mai 2013 - 05:00:46
Dernière modification le : jeudi 21 février 2019 - 10:52:50
Document(s) archivé(s) le : samedi 31 août 2013 - 04:15:19

Fichier

AKP_JoE.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Nicolas Auffray, Boris Kolev, Michel Petitot. On anisotropic polynomial relations for the elasticity tensor. Journal of Elasticity, Springer Verlag, 2014, 115 (1), pp.77-103. 〈10.1007/s10659-013-9448-z〉. 〈hal-00827948〉

Partager

Métriques

Consultations de la notice

583

Téléchargements de fichiers

338