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Abstract

In this paper, we construct new deformations of the Peregrine

breather of order 6 with 10 real parameters. We obtain new families

of quasi-rational solutions of the NLS equation. With this method,

we construct new patterns of different types of rogue waves. We get

as already found for the lower order, the triangular configurations and

rings isolated. Moreover, one sees for certain values of the parameters

the appearance of new configurations of concentric rings.

1 Introduction

Since fundamental work of Zakharov and Shabat in 1972, and the first expres-
sions of the quasi-rational solutions given by Peregrine in 1983, a considerable
number of studies were carried out. Eleonski, Akhmediev and Kulagin ob-
tained the first higher order analogue of the Peregrine breather[3] in 1986.
Akhmediev et al. [1, 4] , constructed other families of higher order, using
Darboux transformations.
In 2010, rational solutions of the NLS equation have been written as a quo-
tient of two Wronskians in [8]. In 2011, an other representation of the so-
lutions of the NLS equation has been constructed in [10], also in terms of a
ratio of two Wronskians determinants of order 2N .
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In 2012, an other representation of the solutions of the focusing NLS equa-
tion, as a ratio of two determinants has been given in [13] using generalized
Darboux transform.
Ohta and Yang [17] have given a new approach where solutions of the focus-
ing NLS equation by means of a determinant representation, obtained from
Hirota bilinear method.
A the beginning of the year 2012, one obtained a representation in terms of
determinants which does not involve limits [12].
These first two formulations given in [10, 12] did depend in fact only on two
parameters. Then we found for the order N (for determinants of order 2N),
solutions depending on 2N − 2 real parameters.
The purpose of this study is to present new solutions depending this time
on strictly more than two parameters, to get all the possible patterns for
the solutions of NLS equation. We construct solutions depending on 10 pa-
rameters which give the Peregrine breather as particular case when all the
parameters are equal to 0 : it is the reason why we will call these solutions,
10 parameters deformations of the Peregrine of order 6.
We first recall the expressions of solutions of the two dimensional focusing
nonlinear Schrödinger equation [10] in terms of wronskians. Then, we con-
struct new quasi rational solutions depending a priori on 2N − 2 parameters
at the order N . After, one builds various drawings to illustrate the evolution
of the solutions according to the parameters.
One obtains at the same time triangular configurations and ring structures
with a maximum of 21 peaks. The complete analytical expression of the
solutions depending on 10 parameters is found, but is too monstrous to be
published. These deformations are completely new and gives by new patterns
a best understanding of the NLS equation.

2 Determinant representation of solutions of

NLS equation

We recall the results obtained in [10] and [12]. We consider the focusing NLS
equation

ivt + vxx + 2|v|2v = 0. (1)
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In the following, we consider 2N parameters λν , ν = 1, . . . , 2N satisfying the
relations

0 < λj < 1, λN+j = −λj, 1 ≤ j ≤ N. (2)

We define the terms κν , δν , γν by the following equations,

κν = 2
√

1 − λ2
ν , δν = κνλν , γν =

√

1 − λν

1 + λν

, (3)

and

κN+j = κj, δN+j = −δj, γN+j = 1/γj, j = 1 . . . N. (4)

The terms xr,ν (r = 3, 1) are defined by

xr,ν = (r − 1) ln
γν − i

γν + i
, 1 ≤ j ≤ 2N. (5)

The parameters eν are defined by

ej = iaj − bj, eN+j = iaj + bj, 1 ≤ j ≤ N, (6)

where aj and bj, for 1 ≤ j ≤ N are arbitrary real numbers.
We use the following notations :

Aν = κνx/2 + iδνt − ix3,ν/2 − ieν/2,

Bν = κνx/2 + iδνt − ix1,ν/2 − ieν/2,

for 1 ≤ ν ≤ 2N , with κν , δν , xr,ν defined in (3), (4) and (5).
The parameters eν are defined by (6).
Here, the parameters aj and bj, for 1 ≤ N are chosen in the form

aj =
N−1
∑

k=1

ãkǫ
2k+1j2k+1, bj =

N−1
∑

k=1

b̃kǫ
2k+1j2k+1, 1 ≤ j ≤ N. (7)

We consider the following functions :

f4j+1,k = γ4j−1
k sin Ak, f4j+2,k = γ4j

k cos Ak,

f4j+3,k = −γ4j+1
k sin Ak, f4j+4,k = −γ4j+2

k cos Ak, (8)
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for 1 ≤ k ≤ N , and

f4j+1,k = γ2N−4j−2
k cos Ak, f4j+2,k = −γ2N−4j−3

k sin Ak,

f4j+3,k = −γ2N−4j−4
k cos Ak, f4j+4,k = γ2N−4j−5

k sin Ak, (9)

for N + 1 ≤ k ≤ 2N .
We define the functions gj,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way,
we replace only the term Ak by Bk.

g4j+1,k = γ4j−1
k sin Bk, g4j+2,k = γ4j

k cos Bk,

g4j+3,k = −γ4j+1
k sin Bk, g4j+4,k = −γ4j+2

k cos Bk, (10)

for 1 ≤ k ≤ N , and

g4j+1,k = γ2N−4j−2
k cos Bk, g4j+2,k = −γ2N−4j−3

k sin Bk,

g4j+3,k = −γ2N−4j−4
k cos Bk, g4j+4,k = γ2N−4j−5

k sin Bk, (11)

for N + 1 ≤ k ≤ 2N .
Then we get the following result :

Theorem 2.1 The function v defined by

v(x, t) = exp(2it − iϕ) ×
det((njk)j,k∈[1,2N ]

)

det((djk)j,k∈[1,2N ]
)

(12)

is a quasi-rational solution of the NLS equation (1)

ivt + vxx + 2|v|2v = 0,

depending on 2N − 2 parameters ãj, ãj, 1 ≤ j ≤ N , where

nj1 = fj,1(x, t, 0), 1 ≤ j ≤ 2N njk =
∂2k−2fj,1

∂ǫ2k−2
(x, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N

njN+1 = fj,N+1(x, t, 0), 1 ≤ j ≤ 2N njN+k =
∂2k−2fj,N+1

∂ǫ2k−2
(x, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N

dj1 = gj,1(x, t, 0), 1 ≤ j ≤ 2N djk =
∂2k−2gj,1

∂ǫ2k−2
(x, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N

djN+1 = gj,N+1(x, t, 0), 1 ≤ j ≤ 2N djN+k =
∂2k−2gj,N+1

∂ǫ2k−2
(x, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N

The functions f and g are defined in (8),(9), (10), (11).
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We will give the proof in a forthcoming paper.
The solutions of the NLS equation can also be written in the form :

v(x, t) = exp(2it − iϕ) × Q(x, t)

where Q(x, t) is defined by :

Q(x, t) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1,1[0] . . . f1,1[N − 1] f1,N+1[0] . . . f1,N+1[N − 1]
f2,1[0] . . . f2,1[N − 1] f2,N+1[0] . . . f2,N+1[N − 1]

...
...

...
...

...
...

f2N,1[0] . . . f2N,1[N − 1] f2N,N+1[0] . . . f2N,N+1[N − 1]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

g1,1[0] . . . g1,1[N − 1] g1,N+1[0] . . . g1,N+1[N − 1]
g2,1[0] . . . g2,1[N − 1] g2,N+1[0] . . . g2,N+1[N − 1]

...
...

...
...

...
...

g2N,1[0] . . . g2N,1[N − 1] g2N,N+1[0] . . . g2N,N+1[N − 1]

∣

∣

∣

∣

∣

∣

∣

∣

∣

(13)

3 Quasi-rational solutions of order 6 with ten

parameters

Wa have already constructed in [10] solutions for the cases from N = 1 until
N = 6, and in [12] with two parameters.
Because of the length of the expression v of the solution of NLS equation
with eight parameters, we can’t give here. We only construct figures to show
deformations of the fifth Peregrine breathers.
Conversely to the study with two parameters given in preceding works [10,
12], we get other type of symmetries in the plots in the (x, t) plane. We give
some examples of this fact in the following.

3.1 Peregrine breather of order 6

If we choose ã1 = b̃1 = ã2 = b̃2 = ã3 = b̃3 = ã4 = b̃4 = ã5 = b̃5 = 0, we obtain
the classical Peregrine breather :
Figure 1
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Figure 1: Solution of NLS, N=6, all parameters equal to 0 , Peregrine
breather P6.

With other choices of parameters, we obtain all types of configurations :
triangles, overlapping triangular-circular and circular configurations with a
maximum of 21 peaks.

3.2 Variation of parameters

In the case of the variation of one parameter, we obtain different types of
configuration with a maximum of 21 peaks.
In the cases a1 6= 0 or b1 6= 0 we obtain triangles; for a2 6= 0 or b2 6= 0, we
have 3 concentric rings with two of them with 5 peaks and an another with
10 peaks with a central peak. For a3 6= 0 or b3 6= 0, we obtain 3 concentric
rings with 7 peaks on each of them without a central peak. For a4 6= 0 or
b4 6= 0, we have 2 concentric rings with 9 peaks with inside (for large values
of parameters) the apparition of the Peregrine breather of order 2 with 3
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peaks. For a5 6= 0 or b5 6= 0, we have only one ring with 2N − 1 = 11 peaks
with inside (for large values of parameters) the apparition of the Peregrine
breather of order N − 2 = 4 with 10 peaks.
Figure 2 a1 6= 0

Figure 2: Solution of NLS, N=6, ã1 = 103, triangle with 21 peaks.
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Figure 3 b1 6= 0

Figure 3: Solution of NLS, N=6, b̃1 = 104, triangle with 21 peaks.
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Figure 4 a2 6= 0

Figure 4: Solution of NLS, N=6, ã2 = 108, 3 rings with respectively 5, 10, 5
peaks with in the center one peak.
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Figure 5 b2 6= 0

Figure 5: Solution of NLS, N=6, b̃2 = 108, 3 rings with respectively 5, 10, 5
peaks with in the center one peak.
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Figure 6 a3 6= 0

Figure 6: Solution of NLS, N=6, ã3 = 108, 3 rings with 7 peaks on each of
them without central peak.
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Figure 7 b3 6= 0

Figure 7: Solution of NLS, N=6, b̃3 = 1012, 3 rings with 7 peaks on each of
them without central peak.
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Figure 8 a4 6= 0

Figure 8: Solution of NLS, N=6, ã4 = 1010, 2 rings with 9 peaks with in the
center the Peregrine P2.
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Figure 9 b4 6= 0

Figure 9: Solution of NLS, N=6, b̃4 = 1010, 2 rings with 9 peaks with in the
center the Peregrine P2.
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Figure 10 a5 6= 0

Figure 10: Solution of NLS, N=6, ã5 = 105, a ring of 11 peaks with in the
center the Peregrine of order 4.
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Figure 11 b5 6= 0

Figure 11: Solution of NLS, N=6, b̃5 = 1010, a ring of 11 peaks with in the
center the Peregrine of order 4.
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4 Conclusion

In the present paper we construct explicitly solutions of the NLS equation
of order N with 2N − 2 real parameters. The explicit expression in terms of
polynomials of x and t is too monstrous to be published.
By different choices of these parameters, we obtained new patterns in the
(x; t) plane; we recognized rings as already observed in the case of deforma-
tions depending on two parameters [10, 12]. We get news triangular shapes
and multiple concentric rings configurations.
All conjectures are verified : the maximum of the modulus of the Peregrine
breather of order N = 6 is equal to 2N − 1 = 11; in the case of one ring,
there is 2N −1 peaks on the ring; we obtain polynomials in x and t of degree
N(N + 1) = 42.
We hope to continue this study for the higher orders in order to give a better
understanding of the phenomenon of rogue waves.
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