Skip to Main content Skip to Navigation
Journal articles

The far infrared spectrum of naphthalene characterized by high resolution synchrotron FTIR spectroscopy and anharmonic DFT calculations.

Abstract : Using synchrotron radiation, we performed the rotationally resolved Fourier transform infrared absorption spectroscopy of three bands of naphthalene C10H8, namely ν46-0 (centered at 782 cm(-1), 12.7 μm), ν47-0 (centered at 474 cm(-1), 21 μm), and ν48-0 (centered at 167 cm(-1), 60 μm). The intense CH bending out of plane ν46-0 band was recorded under supersonic jet-cooled conditions using a molecular beam (the Jet-AILES apparatus) and the low frequency ν47-0 and ν48-0 bands were measured at room temperature in a long absorption path cell. The simultaneous rotational analysis of these bands permitted us to refine the ground state (GS) and ν46 rotational spectroscopic constants and to provide the first sets of constants for the ν47 and ν48 modes. The experimental rotational constants were then used as reference data to calibrate theoretical models in order to provide new insights into the accuracy of anharmonic calculations. The B97-1 functional associated with the cc-pVTZ and ANO-RCC basis sets gave a consistent set of results, for rotational constants and fundamental frequencies. The data presented here pave the way for the search of naphthalene through its far-infrared spectrum in different objects of the interstellar medium.
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-00826903
Contributor : Muriel Cadieu <>
Submitted on : Tuesday, May 28, 2013 - 3:07:53 PM
Last modification on : Wednesday, September 15, 2021 - 2:56:02 PM

Identifiers

Citation

O. Pirali, M. Goubet, T. R. Huet, Robert Georges, P. Soulard, et al.. The far infrared spectrum of naphthalene characterized by high resolution synchrotron FTIR spectroscopy and anharmonic DFT calculations.. Physical Chemistry Chemical Physics, Royal Society of Chemistry, 2013, 15 (25), pp.10141-10150. ⟨10.1039/c3cp44305a⟩. ⟨hal-00826903⟩

Share

Metrics

Record views

308