A greedy algorithm to extract sparsity degree for l1/l0-equivalence in a deterministic context

Abstract : This paper investigates the problem of designing a deterministic system matrix, that is measurement matrix, for sparse recovery. An efficient greedy algorithm is proposed in order to extract the class of sparse signal/image which cannot be reconstructed by $\ell_1$-minimization for a fixed system matrix. Based on the polytope theory, the algorithm provides a geometric interpretation of the recovery condition considering the seminal work by Donoho. The paper presents an additional condition, extending the Fuchs/Tropp results, in order to deal with noisy measurements. Simulations are conducted for tomography-like imaging system in which the design of the system matrix is a difficult task consisting of the selection of the number of views according to the sparsity degree.
Type de document :
Communication dans un congrès
European Signal Processing Conference (EUSIPCO), Aug 2012, Bucharest, Romania. pp.x+5, 2012
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00826828
Contributeur : Nelly Pustelnik <>
Soumis le : mardi 28 mai 2013 - 14:30:41
Dernière modification le : mardi 28 mai 2013 - 15:16:41
Document(s) archivé(s) le : mardi 3 septembre 2013 - 09:51:39

Fichier

HAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00826828, version 1

Citation

Nelly Pustelnik, Charles Dossal, Flavius Turcu, Yannick Berthoumieu, Philippe Ricoux. A greedy algorithm to extract sparsity degree for l1/l0-equivalence in a deterministic context. European Signal Processing Conference (EUSIPCO), Aug 2012, Bucharest, Romania. pp.x+5, 2012. 〈hal-00826828〉

Partager

Métriques

Consultations de
la notice

194

Téléchargements du document

91