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Abstract—In order to overcome the increasing difficulty of
critical systems development, integrating the safety concerns
into Systems Engineering processes seems to be the relevant
solution. This paper proposes a meta-model to perform this
integration by considering phased mission systems composed of
repairable components. This kind of system requires in particular
that several redundancy policies be defined. The benefits of this
contribution are illustrated on a small example from the domain
of electric power production.

I. INTRODUCTION

The System Engineering (SE) approach offers relevant so-
lutions for formalizing and comprehending complex systems.
But it usually focuses on the normal operation of the system,
whereas for critical systems, safety matters too. Efforts are
already produced in order to link functional and dysfunctional
analyzes, but a wide gap persists between SE and Safety Anal-
ysis. Moreover, to comply with the continuous improvement
of the safety-critical systems, more and more sophisticated
dysfunctional studies need to be achieved and SE processes
have to be applied. Then as to bridge this gap, notions must
be defined or refined in the SE processes. Taking advantages
of these notions besides requires to build models combin-
ing both the functional and dysfunctional aspects. Moreover,
safety/dependability studies assume very often that the system
which is analyzed is single phased. This is no more true
for numerous critical systems of different industrial domains,
like aerospace, chemical processes, communication networks,
transportation, power production and distribution , etc). This
explains why this paper considers phased mission systems with
repairable components. As depicted on the figure 1, the main
purpose of this study is to propose a meta-model that allows
safety analyzes for that kind of system be integrated into a SE
process.

The second section of this paper discuss related works.
The construction of the meta-model is addressed in the third
section. In this paper, every meta-model is represented using
UML class diagrams and OCL constraints. The meta-model
proposed is instantiated in section IV on a small, but with
several mission phases example: a part of water level control
of the steam generator of a nuclear plant. Finally, conclusions
and outlooks are presented.
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II. RELATED WORKS

This section focuses on previous works that proposed solu-
tions to integrate safety concerns in SE processes.

In the field of SE processes, the best practices are mattered
by a wide theoretical and technical documentation. The meta-
model built in this paper is an extension of a SE knowledge
meta-model defined in [1]. This meta-model is designed to be
an aid for making models compliantly with the SE processes
suggested by the International Council on Systems Engineer-
ing (INCOSE). Due to space limitations, it is not possible to
show completely this meta-model but a part is depicted by the
figure 2.

In their paper [2], R. Guillerm and al. describe a method
for declining safety requirements of complex systems. The
refinement of the requirement notion for treating the safety
ones is a necessary step for achieving the safety integration.
In our approach, we assume that this issue is already solved.

SOPHIA [3] is a UML profile for integrated some safety
notions in SE processes. This language enables to perform risk
analyzes and define automatically some safety attributes (for
instance the Safety Integrity Level). Once again, our approach
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Fig. 2. Part of the meta-model defined in [1]

considers this issue already solved.

The Dysfunctional behavior Data Base defined by David, P.
and al. in [4] allows to model relevantly the dysfunctional
behavior through a clever refinement of the failure mode
notion.

The main benefits of these four contributions are sum-
marized in Table I. Nevertheless, none of them considers
redundancy policies or phased mission systems. The aim of
this paper is to fill these gaps.

TABLE I
COMPARATIVE STUDY

a) b) ) d e) f)

Pfister [1] v - - - - -
Guillerm [2] v v v - - -
Cancila [3] v - v - - -
David [4] v v - v - -
Our approach v - - ['4 v v

« a) To take into account the SE processes.

¢ b) To refine the requirement notion for safety ones.

¢ ¢) To define notions in order to make risk analysis.

e d) To allow a realistic failure/repair scenario modeling.
e ¢) To consider phased mission systems.

o f) To define a redundancy policy.

III. META-MODEL CONSTRUCTION

To address the problem of safety studies integration into
Systems Engineering process, this paper proposes to extend the
meta-model defined in [1]. The templates designed according
this meta-model are compliant with SE processes. The fol-
lowing meta-model adds to the first the semantics required
to perform safety studies on phased mission system. It is
completed by a list of modeling constraints and definitions.
Those adds are expressed in natural language and in OCL
(Object Constraint Language [5]).

A. Assumptions and definitions

According to [6], safety is the aptitude of an entity to satisfy
one or several aimed functions in given conditions. A safety
study is based on observation of the function dysfunctional
status. Moreover, the components of a system produce effects
on the functions. Those depend on the conditions and mainly
their state. Then in order to determine if a function is satisfied

or not, it is necessary to know whether the components are able
to perform the function in their current state. Let us assume
that the achievement of a function is quantifiable, i.e. it is
possible to express that a function is achieved at x%, and that
a component in a given state performs a function according
to an achievement rate.

The redundancy of components is widely used to enhance
the safety of a system. In that case, the designer has to define a
redundancy policy in order to manage on-line the allocation of
the functions to its components. Then a redundancy policy is
defined for a function and a set of components, and it consists
in determining the conditions for which each component has
to perform the function.

The following class descriptions are voluntarily minimal for
being as generalist as possible. Each class may be refined for
containing semantics more operational.

For more convenience, the instances of the following classes
are designated by their attribute name.

B. Definition of a mission phase

A phased mission system is characterized by several phases,
where the system structure, failure and recovery processes, or
success criteria can change with each phase ([7] and [8]).
Then the components and functions are not used similarly
across the mission phases. The phase determines how the
components should be used to perform the functions that have
to be achieved in this phase.
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Fig. 3. Step 1: definition of the system phases

The figure 3 depicts this notion of mission phase which
impacts the entire modeling.

C. Definition of a component state

Each component can run and fail according to several oper-
ation and failure modes designated by character strings. Those
modes represent respectively the functional and dysfunctional
properties of the component. For instance, at least one of each
mode is always defined by assuming that each component can
be disabled and can be non-faulty (constraint 1).

Constraint 1: Every component must have at least one
operation mode called OF F' and one failure mode called OK.



context Component inv:
self.operation mode —>one (om | om.name = *OFF’)
and self failure mode —>one(fm | fm.name = *OK’)

A component state is a pair built with one operation mode
and one failure mode. As depicted on figure 4, the possible
states of a component are defined by instantiating its failure
modes and operation modes.
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Fig. 4. Step 2: definition of the components states

The deterministic behavior of a component results in up-
dating its current operation mode by means of a transition to
be determined. But for specifying its stochastic behavior, the
designer has to describe its possible failure/repair scenarios.
The notion of behavior leads to the one of initial state. The
constraint 2 guarantees the uniqueness of the initial state.

Constraint 2: Every component must have a unique initial
state.

context Component inv:
self.operation mode —>one(om: Operation mode

om.isInit = True) and self.failure mode —>one(fm: Failure

mode | fm.isInit = True)

The failure behavior of a component (into the set of its
failure modes) depends on its behavior into the set of its
operation modes. Considering this fact, the figure 4 shows
that the proposed meta-model allows a free definition of
failure/repair scenarios. Such scenarios are expressed as in the
first statement.

Statement 1: Let C be a component, OK be its “non-
faulty” failure mode, and (om,fm) be a state of C' where
the attributes failureRate and repair Rate are not null:

o If C is in the state (om,0OK), then it can fail according
to the failure mode fm. That means the transition from
(om,OK) to (om,fm) is possible with the failure rate
specified.

o If C is in the state (om,fm), then it can be repaired.
That means the transition from (om,fm) to (om,0OK) is
possible with the repair rate specified.

The components are considered in the horizontal part of the

bathtub curve. Then the failure rate does not depend on time

but is defined by om and fm. In the same way, if a component
can be repaired in its current state, the repair rate is not null
and depends only on the current state.

If one of those attributes is null, the corresponding transi-
tion cannot be fired. For example, if a failed component is
repairable only when it is disabled (state (OFF,fm)), then
this state among those constructed with fm, is the only one
from which the attribute repair Rate is not null.

D. Definition of the effect of a component on a function

A function is statically allocated to some components which
impact its achievement. Those effects depend on the com-
ponent current state. An instance of effect is built for each
couple (state, function), from which every term is linked to
the considered component (see the constraint 3).

Constraint 3: Every possible state of a component leads to
a unique effect on each function statically allocated to this
component.

context Component inv:

self.function —>forAll(f: Function |
self.operation mode.state —>forAll(s: State |
s.effect —>including(f.effect) —>size() = 1)))

As depicted on figure 5, the effect attributes are
achievement Rate and isUnacceptable. The first allows to
determine the function achievement rate that the component
performs when it is in the considered state. The second allows
to determine the forbidden states by taking into account the
safety (the constraint 4 fixes particular non-forbidden states).

Constraint 4: A disabled component (operation mode
OFF) or non-failed (failure mode OK), does not have an
unacceptable effect on a function.

context Effect inv:
self.state.operation mode.name = *OFF’
or self.state.failure mode.name = *OK’
implies self.isUnacceptable = False

The attribute goal of the class F'unction is the achievement
threshold that the components have to reach. Then at a given
time, a function is satisfied if and only if the sum of the
achievement rates of the components, for which the function is
dynamically allocated to them, in their current state, is greater
than goal. The definition 1), makes explicit this test.

Definition 1: This definition gives the result of the opera-
tion isSatisfy().

context Function::isSatisfy(Date):boolean body:
self.effect —>select(e:Effect |

e.state.operation mode.component.currentState(Date) =

e.state and self.allocation —>includes(

e.state.operation mode.component)).achievementRate

—>sum() > self.goal
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E. Definition of a redundancy policy

The redundancy policies describe how to update the
functions allocation to the components considering the
system phase and the failure/repair events. The methods
dynamicAllocation and dynamicDeallocation are used for
updating the attribute allocation of the class Function. If a
component is able to perform a function in some conditions,
then the function can be statically allocated to the component.
If those conditions are verified, then the function is allocated
to it dynamically.

Let us assume that a redundancy policy can ever be ex-
pressed by the following statement:

Statement 2: If the set of component I, does not perform
fittingly the function F' during the phase P, and if the
component C' is available (i.e. its current state is in the set
E,), then C has to be powered on the state S for participating
in the achievement of F.

Each component of the set E. performs the function F
according to an achievement rate. The set E. “performs
fittingly the function F™ if the sum of those rates in their
current state is greater than a threshold ¢ to be determined.

In comparison to the meta-model (see the class Redundancy
policy on figure 6), the spared components correspond to the
set E., the aimed function is F', the phase for which the policy
is defined is P, the redundant component is C, the available
states correspond to E, the rescue state is s, and the attribute
threshold is t. A redundancy policy is not directly linked
to the failures, because only the achievement of the function
is important. Nevertheless, the knowledge of the components
current states is required to determine if they “perform fittingly
the function F”. The designer can define a priority rule for
avoiding the redundancy policies competition.

Furthermore, a redundancy policy must respect the two
following constraints (5 and 6).
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Fig. 6. Step 4: definition of the redundancy policies

Constraint 5: The states linked to a redundancy policy
(available and rescue) must be linked to the redundant com-
ponent of this redundancy policy.

context Redundancy policy inv:
self.redundant.operation mode.state —>includesAll
(self.available —>including(self.rescue))

Constraint 6: A redundant component must be able to
achieve fittingly the aimed function.

context Redundancy policy inv:
self.rescue.effect —>includes(e:Effect | e.function =
self.aimed).achievementRate > self.threshold

F. Synthesis and limitation of modeling
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Fig. 7. Complete Meta-model for the integration of safety analyzes into SE
processes

At this step, some limitations of the power of expression



can be identified. Indeed, the proposed semantics do not
allow to easily express the following notions: failure mode
degradation, failure propagation and common cause failure.
The link called transition (on the figure 7) is designed to
model the deterministic change of the operation mode of
a component without modification of its failure mode. But
nothing enables to give a better description of this transition
(guarding, delaying, ...). Then this meta-model is relevant only
if it is used in addition to a dynamical formal model to design
the control, the preventive maintenance policy, etc...

1V. EXAMPLE

In this part the meta-model is instantiated in order to model
a simple sub-system of two pumps. It is a part of a water
level control system of the steam generator in a nuclear power
plant [9]. This system is used in [10] for modeling dynamic
reliability.

The considered sub-system is made up of two feeding turbo
pumps (TPA1,TPA2) which have to perform a single function
F: ”To supply enough water at the water flow regulation valve
sub-system”. The pumps may failed and be repaired, then for
increasing the dependability of the function, its allocation at
the two pumps must be dynamically managed by redundancy
policies to be determined.

For a complete system, the meta-model proposed in part
Il cannot be graphically instantiated without the aid of a
modeling software with an encapsulated view opportunity such
as arKlItect© [11]. For this simple example, the meta-model
is instantiated by means of three instance diagrams completed
by tables.

A. Introducing the system phases

The global system operates according to three phases (Table
I). The function F is mandatory in all phases but only one
pump is necessary for the first and third phase.

TABLE II
PHASES DESCRIPTION

id | role description

P1 | To increase | A single pump is able to perform fittingly
the power the function.

P2 | To produce | The two pumps have to run together to
energy perform efficiently the function.

P3 | To decrease | A single pump is able to perform fittingly
the power the function.

B. Defining the components states with failure/repair at-
tributes

As shown in figure 8, each pump may be powered on
three operation modes: OF F' (as every component), RUN
and OVERSPEFED. The initial mode of TPA1l is RUN
and the one of TPA2 is OFF. The pumps are considered
non-failed at the initial state, then the initial failure mode is
OK. Each pump may fail according two failure modes called
LEAK and RUPTURE.

The table III gives the value of the attributes (failureRate,
repair Rate) of the State class instances. Let us remark that

QM1.1 : Operationmode | FM1.1 : Failure mode

name = OK
[isinit=true
OM2 1 - Operation mode -FMZ-F—Eiﬁ-uluﬂm_ﬁ c1:C ‘

name = RUN name = LEAK lname = TPAT |
islnit = true isinit= false

name = OFF
ishit= false

13.1 : Failure mode

name = RUPTURE
islnit = false

OM3.1 - Operation mode

name = OVERSPEED
ishit = false

F : Function

name = F
description = To supply enough water.
goal = 60.0

FM1.2 : Failure mode

OM12 - Operation mode
name = OFF

name = OK

islnit = true \%- gue
OM2.2 : Operation mode [-~Fii22+Failure mode | €2 : Component
name = RUN name = LEAK ame= TPAZ |
ishit= false ishnit = false

132 - Failure mode

name = RUPTURE
ishit = false

0OM3.2 : Operation mode [

name = OVERSPEED
isinit = false

Fig. 8. First partial instance diagram from the considered sub-system

a leak can be repaired when the pump is in the operation
mode RUN. The pumps are identical, then a unique table is
sufficient.

TABLE III
FAILURES’ FEATURES
LEAK RUPTURE
OFF (0,0.2) (0,0.1)
RUN (0.01,0.1) (0.001,0)
OVERSPEED (0.05,0) (0.002,0)

C. Describing the effects on the function

The first step consists in quantifying the achievement of
the function. Addressing this task requires more specific
knowledge about the system phases. During the first phase, the
system increases its power until it reaches 60% of the nominal
power. A single feed turbo pump is able to supply enough
water for meeting this global goal. During the second phase,
the system produces energy. For an efficient production, the
system should work at 100% of its nominal power. Fulfilling
this production expectation requires in particular two running
pumps or a single over-speeding pump. But if the pumps do
not succeed in that task, the system decreases its power until
60%, without changing its phase, and wait the reparation of
the pumps. In that case, the production continues and the
function is considered satisfied. During the third phase, the
system decreases its power until return to 0% of the nominal
power. As during the first phase, a single feed turbo pump
is able to supply enough water for meeting this global goal.
Next the achievement rates will be expressed as the rates of
nominal power.

The attribute called goal is the achievement rate for per-
forming fittingly F'. In this example, the goal does not depend
on any parameters, then its value is constantly 60.0. Indeed, the
function is satisfied if the sum of the achievement rates of the
components, for which the function is dynamically allocated to
them, is greater than 60.0, without consideration of the system
phase.



The table IV gives the value of the achievement rate of F’
performed by a pump according to its state. Once again, a
unique table is enough due to the uniqueness of F' and the
pump kind.

TABLE IV
ACHIEVEMENT RATE OF F' PERFORMED BY A PUMP
| OK  rupture leak
OFF 0 0 0
run 60 0 50
overspeed | 100 0 80

Let us remark that, during the second phase, a pump in
the state (run,leak) performs fittingly the function despite the
failure.

D. Determining the redundancy policies

The three following statements enable to define three in-
stances of the class Redundancy policy.

Statement 3: R1.1: If the set of component {T'PA1} does
not perform fittingly the function F' during the phase P1 or
P3, and if the component T PA2 is available (i.e. its current
state is in the set {OFF — OK}), then TPA2 has to be
powered on the state RUN — OK for participating in the
achievement of F'.

Statement 4: R1.2: If the set of component {T'PA2} does
not perform fittingly the function F' during the phase P1 or
P3, and if the component TP A1 is available (i.e. its current
state is in the set {OFF — OK}), then TPA1 has to be
powered on the state RUN — OK for participating in the
achievement of F'.

Statement 5: R2.1: If the set of component {T'PA1} does
not perform fittingly the function F' during the phase P2, and
if the component TP A2 is available (i.e. its current state is
in the set {RUN — OK}), then TPA2 has to be powered
on the state OVERSPEED — OK for participating in the
achievement of F.

Statement 6: R2.2: If the set of component {T'PA2} does
not perform fittingly the function F' during the phase P2, and
if the component TP A1 is available (i.e. its current state is
in the set {RUN — OK}), then TPA1 has to be powered
on the state OVERSPEED — OK for participating in the
achievement of F'.

The value of the attribute threshold is 60.0 for the first
two policies, and 50.0 for the last two policies. Let us remark
that, during the second phase, if the pumps fail with the
failure mode LEAK, according to the tables IV and III, the
function is fittingly achieve anyway and this failure mode can
be repaired in the operation mode RUN. That explains that
the leak failures don’t trigger the redundancy policies 2.1 and
2.2.

Those instances of the class Redundancy policy are shown
by the two instance diagrams on the figures 9 and 10. Each
redundancy policy is linked to the function F'.

E. Outcome

Hence this example shows that a template made by in-
stantiating the meta-model proposed in this paper permits to

R12 : Redundancy policy

name = R1b
threshold = 60.0
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N LY
(RUNOK)T -State |12 )
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P3 - Phase
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Fig. 9. Second partial instance diagram from the considered sub-system
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R1.1 - Redundancy policy
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Fig. 10. Third partial instance diagram from the considered sub-system

model useful interaction. Indeed, a designer can easily models
the coupling between the failure modes and the operation
modes. Moreover, it is possible to define a policy redundancy
observing a function for determining whether its allocation
must be updated and how it must be. The system may perform
several mission phases and a policy redundancy is defined for
one of them.

V. CONCLUSIONS AND OUTLOOKS

The meta-model defined by Pfister and al. in [1] extended
by the one proposed in this paper formalizes a framework for
integrating the safety analysis into SE processes. Indeed, after
making the casual processes (phased mission specification,
functional architecture, physical architecture, allocation...),
it is possible to describe the functional and dysfunctional
features of the components. And then, the designer can
model realistic failure/repair scenarios. He also can define
redundancy policies for updating the dynamical allocation of
functions caused by dysfunctional events, taking into account
the different phases of the system. The treated example shows
that this meta-model allows to integrate useful informations in
the model. This meta-model was fully implemented into the
modeling software tool arKItect© [11]. By way of proof of



concept, some safety calculus was successfully applied on the
model of the example presented in this paper with the aid of
the analysis software tool PyCATSHOO [12].

Currently we are working on an algorithm for automating
the construction of a formal dynamic model from an instance
of the meta-model. The utilization of this dynamic model
for performing formal methods or simulations is also an
ongoing work. Then the full method could be implemented
with the support of a SE platform. Extending this approach
for modeling dynamic reliability in order to cover a greater
field in safety concerns is another way to be investigated.
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