
HAL Id: hal-00826346
https://hal.science/hal-00826346

Submitted on 23 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The vertex-colouring a,b-edge-weighting problem is
NP-complete for every pair of weights

Julien Bensmail

To cite this version:
Julien Bensmail. The vertex-colouring a,b-edge-weighting problem is NP-complete for every pair of
weights. 2013. �hal-00826346�

https://hal.science/hal-00826346
https://hal.archives-ouvertes.fr


The vertex-colouring {a, b}-edge-weighting problem

is NP-complete for every pair of weights

Julien Bensmail

Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France
CNRS, LaBRI, UMR 5800, F-33400 Talence, France

julien.bensmail@labri.fr

June 23, 2013

Abstract

Let G be a graph. From an edge-weighting w : E(G) → {a, b}
of G such that a and b are two distinct real numbers, one obtains
a vertex-colouring χw of G defined as χw(u) =

∑
v∈N(u) w(uv) for

every u ∈ V (G). If χw is a proper colouring of G, i.e. two adja-
cent vertices of G receive distinct colours by χw, then we say that
w is vertex-colouring. We investigate the complexity of the problem
of deciding whether a graph admits a vertex-colouring edge-weighting
taking values among a given pair {a, b}, which is already known to
be NP-complete when {a, b} is either {0, 1} or {1, 2}. We show this
problem to be NP-complete for every pair of real weights.

Keywords: vertex-colouring edge-weighting of graphs, two weights,
complexity, 1-2-3 Conjecture

1 Introduction

Let G be a graph. An edge-weighting w : E(G) → W of G is obtained by
associating a weight from W with each edge of G, where W ⊂ R. To make
the values assigned by w to the edges of G visible, we also say that w is a
W -edge-weighting of G. In the case where W = {1, 2, ..., k} for some integer
k, we call w a k-edge-weighting of G.

Assume w is an edge-weighting of G. From w, one deduces a vertex-
colouring χw of G where χw(u) =

∑
v∈N(u)w(uv) for every vertex u of G.

In other words, the colour of u by χw is the sum of its incident colours by
w. We call χw(u) the weighted degree of u (by w). If χw is proper, i.e. for
every pair {u, v} of adjacent vertices in G we have χw(u) 6= χw(v), then we
say that w is vertex-colouring.
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In 2004, Karoński,  Luczak and Thomason raised the following famous
conjecture on vertex-colouring edge-weightings of graphs [6].

1-2-3 Conjecture. Every graph with no isolated edge admits a vertex-
colouring 3-edge-weighting.

As a first result towards the 1-2-3 Conjecture, Karoński,  Luczak and
Thomason proved that there is a set W of 183 real weights such that any
graph with no isolated edge admits a vertex-colouring W -edge-weighting [6].
Since then, many refinements of this result have been introduced. The result
which is the closest from the 1-2-3 Conjecture so far is due to Kalkowski,
Karoński and Pfender, who proved that every graph with no isolated edge
admits a vertex-colouring 5-edge-weighting [5]. The interested reader may
refer to [7] for an up-to-date survey on vertex-colouring edge-weightings of
graphs.

Consider now the following problem arising from the definitions above.

Vertex-Colouring {a, b}-Edge-Weighting - {a, b}-VCEW
Instance: A graph G.
Question: Does G admit a vertex-colouring {a, b}-edge-weighting?

The problem {a, b}-VCEW is clearly in NP no matter what are a and b.
It was proved by Dudek and Wajc that 0, 1-VCEW and 1− 2-VCEW are
NP-complete [3]. They additionally suggested that their hardness reduction
could be generalized to prove that {a, b}-VCEW is NP-complete whenever
a and b are two distinct rational numbers. However, they did not give any
formal proof of this statement. The problem {1, 2}-VCEW is also known
to be NP-complete when restricted to cubic graphs [1].

In this paper, we prove that {a, b}-VCEW is NP-complete for every
pair {a, b} of real weights. We proceed as follows. We first introduce, in
Section 3, a hardness reduction framework for showing that some edge-
colouring problems are NP-complete by reduction from the well-known SAT
problem. A first implementation of this framework with specific gadgets
leads, in Section 4, to a proof that {a, b}-VCEW is NP-complete whenever
0 6∈ {a, b} and b 6= −a. We then give two other implementations of our
reduction framework in Sections 5 and 6 for showing that {a, 0}-VCEW
and {a,−a}-VCEW are NP-complete, respectively.

2 Terminology and preliminary results

Before introducing the reduction framework, we first introduce some termi-
nology and results that are used in further sections.
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Figure 1: Two graphs G and H with input iG and iH , respectively, and
output oG and oH , respectively, and their connection along oG and iH .

Let G be a graph. Given a vertex u of G, we denote by d(u) the degree
of u, i.e. the number of its neighbours in G. An input (resp. output) of G is
an edge i = uv (resp. o = vu) such that d(u) = 1. Assuming G has x (resp.
y) inputs (resp. outputs) ordered arbitrarily, we sometimes refer to these
inputs (resp. outputs) as i1(G), ..., ix(G) (resp. o1(G), ..., oy(G)). Consider
now two graphs G and H such that o and i are an output of G and an input
of H, respectively. The connection of G and H along o and i is the graph
obtained by taking the disjoint union of G and H, and then identifying the
edges o and i. Assuming we are given a one-to-one correspondence φ from
a set {o1, ..., ox} of x outputs of G to a set {i1, ..., ix} of x inputs of H, one
can similarly define the connection of G and H along x inputs of G and x
outputs of H where the resulting graph is obtained by identifying oj and
φ(oj) for every j ∈ {1, ..., x}. In this situation we say that G and H are
connected along (o1, ..., ox) and (φ(o1), ..., φ(ox)). The inputs and outputs of
any graph resulting from the connection of G and H are those of G and H
which have not been used for the connection. This construction is depicted
in Figure 1.

Denote byG′ the graph obtained by connectingG andH along (o1, ..., ox)
and (i1, ..., ix). Given a vertex-colouring W -edge-weighting w of G, an ex-
tension of w from G to G′ is a vertex-colouring W -edge-weighting w′ of G′

such that we have w′(e) = w(e) for every edge e that originally belonged to
G. Note in particular that if e is an edge resulting from the identification of
oj and ij for some j ∈ {1, ..., x}, then we have w′(e) = w(oj).

Assume uv is an edge of G. Now consider a graph H such that H
has two inputs u′′z and zv′′. According to the definitions above, we have
d(u′′) = d(v′′) = 1. Besides, we have d(z) ≥ 2. By H-subdividing uv, we
mean that we “replace” the edge uv with H. More precisely, we first remove
the edge uv from G, then attach a new vertex u′ to u and one new vertex v′

to v (so that d(u′) = d(v′) = 1), and finally connect G and H along (uu′, vv′)
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Figure 2: Two possible vertex-colouring {a, b}-edge-weightings of P4.

and (u′′z, v′′z).

We now give several properties of vertex-colouring {a, b}-edge weightings.

Observation 2.1. Let P4 denote the path u1u2u3u4 of length 3. If w is a
vertex-colouring {a, b}-edge-weighting of P4, then w(u1u2) 6= w(u3u4).

Proof. Suppose w(u1u2) = a without loss of generality. Then u2u3 can
be either coloured a or b. In the first case, we have w(u3u4) = b since
otherwise we would have χw(u2) = χw(u3) = 2a. In the second case, we have
w(u3u4) = b since otherwise we would have χw(u2) = χw(u3) = a+ b

Suppose we have w(o) = a for an output o of some graph G. Then,
by connecting G and u1u2u3u4 along o and u1u2 (which is similar to P4-
subdividing o), we get that any extension of w from G to the resulting graph
is such that w(u3u4) = b by Observation 2.1. Therefore, P4-subdividing an
output is an operation that can be used to “invert” the colour at some
output of a graph by a vertex-colouring {a, b}-edge-weighting.

In the next result, we denote by mw(u) the multiset of colours incident
with a vertex u by w. In other words, if x (resp. y) of the edges incident
with u are coloured a (resp. b) by w, i.e. we have χw(u) = xa + yb, then
mw(u) contains the value a (resp. b) exactly x (resp. y) times.

Lemma 2.2. Let u and v be two adjacent vertices of some graph G such
that d(u) = d(v), and w be an {a, b}-edge-weighting of G. If χw(u) = χw(v),
then mw(u) = mw(v).

Proof. We clearly have χw(u) = χw(v) when mw(u) = mw(v). Now sup-
pose that mw(u) 6= mw(v). Then, u and v are incident to x and x′ edges
coloured a by w, respectively, and y and y′ edges coloured b, respectively. Be-
sides, we have x 6= x′ and y 6= y′ sincemw(u) 6= mw(v). Because d(u) = d(v),
we have x+ y = x′ + y′. Since χw(u) = χw(v), we have xa+ yb = x′a+ y′b,
and, because x− x′ 6= 0, we get that a = b which is impossible by definition
of an {a, b}-edge-weighting.

By Lemma 2.2, it follows that if u and v are two adjacent vertices of G
such that d(u) = d(v), then we only have to check whether mw(u) 6= mw(v)
while checking whether an edge-weighting w of G is vertex-colouring.
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We now introduce the notion of replacement gadget. A replacement
gadget R for a pair {a, b} of real weights is a graph with the following
structural and colouring properties:

1. the graph R has two inputs i1(R) = uz and i2(R) = zv, and no output,

2. we have w(i1(R)) = w(i2(R)) for every vertex-colouring {a, b}-edge-
weighting w of R,

3. there exist vertex-colouring {a, b}-edge-weightings of R such that i1(R)
is coloured a,

4. there exist vertex-colouring {a, b}-edge-weightings of R such that i1(R)
is coloured b,

5. the weighted degree of z is x by every {a, b}-edge-weighting w of R
such that w(i1(R)) = a, where x is some real number,

6. the weighted degree of z is y by every {a, b}-edge-weighting w of R
such that w(i1(R)) = b, where y is some real number.

We refer to the vertex z as r(R) for convenience. To make the weighted
degree of r(R) by all vertex-colouring {a, b}-edge-weightings of R apparent,
we call R a (x, y)-replacement gadget.

Replacement gadgets may be used to reduce the number of conflicts by
a non-vertex-colouring {a, b}-edge-weighting w of some graph G. Indeed,
suppose that for an edge uv of G we have w(uv) = a and χw(u) = χw(v).
To solve this local conflict, one way to proceed is to “replace” uv by a
(x1, y1)-replacement gadget R for {a, b}, i.e. to R-subdivide uv, and then
extend w to the resulting graph, i.e. to the edges of R, in such a way that
w(i1(R)) = w(i2(R)) = a. Such an extension exists by the definition of a
replacement gadget.

Clearly, the weighted degree of both u and v is not altered by the ex-
tension of w. Therefore, the only new possible conflicts which may arise
are χw(u) = x1 or χw(v) = x1. If such a situation occurs, then we reveal
what is the weighted degree of one of u and v by w. By then repeating the
procedure above but with a (x2, y2)-replacement gadget for {a, b} such that
x1 6= x2, the possibilities for getting another conflict when extending w to
the resulting graph are reduced. We catch this observation within the next
lemma.

Lemma 2.3. Assume w is an {a, b}-edge-weighting of some graph G, and
suppose we are given one (x1, y1)-, one (x2, y2)- and one (x3, y3)-replacement
gadget R1, R2 and R3 for {a, b}, respectively, where the xi’s are distinct and
the yi’s are distinct. If χw(u) = χw(v) for some edge uv of G, then there
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is a value of i ∈ {1, 2, 3} for which there is an extension of w to the graph
resulting from the Ri-subdivision of uv such that χw(u) 6= χw(r(Ri)) and
χw(v) 6= χw(r(Ri)).

Proof. Suppose w(uv) = a. Start by R1-subdividing uv, and then extend
w to the resulting graph in such a way that w(i1(R1)) = w(i2(R1)) = a.
Such an extension exists by definition. If the claim is not verified, then
χw(u) = χw(r(R1)) = x1 without loss of generality. Start over from the
original graph and colouring. Now, R2-subdivide uv before extending w to
the resulting graph in such a way that w(i1(R2)) = w(i2(R2)) = a. Clearly
we cannot have χw(u) = χw(r(R2)) since x1 6= x2. Thus, if the claim is still
not verified, then χw(v) = x2. In this situation, repeat the same procedure
a third time but with a R3-subdivision of uv. Now the claim has to be true
since other we would have either χw(u) = χw(r(R3)) or χw(v) = χw(r(R3)),
which is impossible since χw(r(R3)) = x3, χw(u) = x1, χw(v) = x2, and x1,
x2 and x3 are distinct.

Hence, assuming we are provided three sufficiently different replace-
ment gadgets for {a, b}, by repeating the procedure used in the proof of
Lemma 2.3 for every conflicting edge of G, i.e. every edge uv such that
χw(u) = χw(v), we can deduce a graph which looks like G and which admits
a vertex-colouring {a, b}-edge-weighting which looks like w.

Corollary 2.4. Assume w is an {a, b}-edge-weighting of some graph G on
n vertices, and suppose we are given one (x1, y1)-, one (x2, y2)-, and one
(x3, y3)-replacement gadget R1, R2 and R3 for {a, b}, respectively, where the
xi’s are distinct and the yi’s are distinct. Then there is a combination of
subdivisions of the edges of G involving the Ri’s such that the resulting graph
admits an extension of w which is vertex-colouring.

Proof. Suppose there are x < n2 edges e1, ..., ex of G whose incident vertices
have the same weighted degree by w. Consider each such edge ei = uv.
Suppose w(ei) = a without loss of generality. By Lemma 2.3, there is one
replacement gadget R of R1, R2 and R3 for which we can R-subdivide ei
and then extend w to the resulting graph in such a way that w(i1(R)) =
w(i2(R)) = a, χw(u) 6= χw(r(R)) and χw(v) 6= χw(r(R)). Since this op-
eration does not alter the weighted degree of both u and v, no new pair
of vertices with the same weighted degree appeared after the modification.
Hence, after having repeated the same procedure for each of e1, ..., ex, there
are no two neighbouring vertices with the same weighted degree.
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3 The hardness reduction framework

3.1 Overview of the framework

All the hardness reductions performed in this paper are from the following
classical NP-complete problem.

3SAT
Instance: A 3CNF formula F over variables {x1, ..., xn} and clauses {C1, ..., Cm}.
Question: Is F satisfiable?

Note that if F has a clause C of the form (xi∨xi∨xi) (resp. (xi∨xi∨xi)),
then xi is set to true (resp. false) by any satisfying truth assignment of F .
In this situation, we thus say that xi is forced to true (resp. false) by C.
Besides, we can suppose that every possible literal appears in F . Indeed, if
xi does not appear in any clause of F , then the 3CNF formula F∧(xi∨xi∨xi)
is satisfiable if and only if F is satisfiable too. A formula equivalent to F
but involving every possible literal over its variables can then be obtained
in polynomial time.

The reduction framework used here has been frequently used in the lit-
erature to prove the hardness of some graph edge-colouring problems (see,
e.g. [2, 4]). From F , we produce a graph GF such that, given a pair {a, b}
of real weights, F is satisfiable if and only if GF admits a vertex-colouring
{a, b}-edge-weighting wF .

We use a simple analogy to describe our reduction scheme. The reduced
graph GF has to be thought of as an electrical circuit made up of gadgets,
i.e. recurrent subgraphs, connected in a specific way. These gadgets are
interconnected along several inputs and outputs that permit two signals, the
positive and the negative ones, to be propagated along GF . This propagation
fulfils properties which are inspired by the propagation of a vertex-colouring
{a, b}-edge-weighting in a graph, where the positive and negative signals may
be assimilated with the colours a and b, respectively. The structure of GF is
representative of the structure of F in the sense that the propagation of the
positive signal through the gadgets is representative of the consequences on
F of setting such or such variable of F to true. In this way, we get a straight
analogy between spreading the positive signal through GF and satisfying F .

The gadgets of GF are the following. The graph GF is composed of
one generator gadget GF (S), m clause gadgets GF (C1), ..., GF (Cm), and 2n
literal gadgets GF (`1), ..., GF (`2n). Each clause Ci in F is associated with
the clause gadget GF (Ci), and similarly for each literal `i of F and the literal
gadget GF (`i). The graph GF is obtained by originally considering GF (S),
and then successively connecting gadgets to it. The generator gadget is
first connected to all of the m clause gadgets, which are each connected
to some of the literal gadgets. In particular, if we denote by ci ∈ {1, 2, 3}
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the number of distinct literals in Ci, and by `i1 , ..., `ici these literals, then
GF (Ci) is connected to GF (`i1), ..., GF (`ici ). Each literal gadget GF (`i) of
GF thus has ni inputs, where ni ≥ 1 is the number of distinct clauses in F
that contain the literal `i. Finally, the outputs of two literal gadgets GF (`i)
and GF (`i) are connected in a specific way.

Assuming each clause gadget GF (Ci) is supplied with the positive signal
by the generator gadget, the main property of GF (Ci) is that it propagates
the positive signal through at least one of its outputs, i.e. to at least one
literal gadget GF (`j) such that `j ∈ Ci. The main property of a literal
gadget GF (`i) is that it outputs a signal if and only if the same signal comes
in from all of its ni inputs. Moreover, if a given signal comes in from the
ni inputs of GF (`i), then GF (`i) outputs the same signal, which must be
different from the one outputted by GF (`i).

Hence, we have an equivalence between satisfying F and propagating the
positive signal through GF from the generator gadget:

• each clause Ci in F must have at least one true literal and GF (Ci) must
spread the positive signal to at least one literal gadget it is connected
to,

• every literal `i must have the same truth value in all clauses it appears
in and all the inputs of GF (`i) must spread the same signal in,

• a variable xi and its negation xi must have distinct truth values and
the outputs of GF (xi) and GF (xi) must spread different signals out.

Now consider the graph theory point of view. The graph GF , which is
associated with the electrical circuit, is obtained by successively connecting
graphs to the generator gadget GF (S). These graphs, i.e. the clause and lit-
eral gadgets, must fulfil the structural and colouring properties summed up
above. In particular, assuming the colour a (resp. b) of the vertex-colouring
{a, b}-edge-weighting wF of GF is associated with the positive (resp. neg-
ative) signal, the propagation of the positive and negative signals may be
seen as successive extensions of wF to the graphs successively obtained after
the connections. We then get an analogy between satisfying F and finding
a vertex-colouring {a, b}-edge-weighting of GF .

3.2 The reduction framework into details

In this section, we go into the details of the reduction framework by pointing
out the properties that must fulfil the gadgets mentioned in Section 3.1, and
how these are connected exactly to form GF . Any implementation of the
framework reduction in further sections will thus only consists in exhibiting
gadgets and showing that these have the properties exhibited throughout
this section.
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3.2.1 Spreading gadget Gf and generator gadget GF (S)

A generator gadget GF (S) for a given pair {a, b} is obtained by connecting
several spreading gadgets Gf. A spreading gadget Gf for {a, b} has one
input, two outputs, and the following colouring property.

Property 1. Assume w is a vertex-colouring {a, b}-edge-weighting of Gf.
Then we have w(i1(G

f)) = w(o1(G
f)) = w(o2(G

f)).

Remark that by connecting two copies G1 and G2 of Gf along o1(G1) and
i1(G2), we obtain a graph G′ whose input and three outputs all receive the
same colour by any vertex-colouring {a, b}-edge-weighting. Indeed, suppose
w is a vertex-colouring {a, b}-edge-colouring of G′ initiated with G1, and
that we have w(i1(G1)) = a without loss of generality. Then, we have
w(o1(G1)) = w(o2(G1)) = a by Property 1. Note then that in any extension
of w fromG1 toG′, we have w(i1(G

′)) = w(o1(G
′)) = w(o2(G

′)) = w(o3(G
′))

since G2 satisfies Property 1, and o1(G1) and i1(G2) refer to the same edge
of G′.

Note that by repeating this construction several times, one obtains a
graph with one input and arbitrarily many outputs such that all of these
input and outputs necessarily receive the same colour by a vertex-colouring
{a, b}-edge-weighting. Now denote by P4 the path u1u2u3u4 with length 3,
let i1(P4) = u1u2 and o1(P4) = u3u4, and suppose w is a vertex-colouring
{a, b}-edge-weighting of Gf. Note thus that if G′ is the graph obtained by
connecting Gf and P4 along o1(G

f) and i1(P4) (in other words, the graph G′

results from a P4-subdivision of o1(G
f)), then, assuming w(o1(G

f)) = a, we
have w(o1(G

′)) = b in any extension of w from Gf to G′ by Observation 2.1,
where o1(G

′) = u3u4. Regarding the electric circuit analogy, this means that
we are able to invert some signal. Consequently, by connecting arbitrarily
many copies ofGf and then inverting some outputs, we are able to propagate
both the colours a and b towards an arbitrary number of directions assuming
the input colour is known.

The generator gadget GF (S) is obtained in this way, i.e. by connecting
several copies of Gf and then inverting some outputs. The number of neces-
sary connections is not clarified in this paper, but one can easily check that
this number in polynomial regarding the size of F .

From now on, we suppose that wF is a vertex-colouring {a, b}-edge-
weighting of GF initiated with GF (S), and extended progressively as GF (S)
is connected to other gadgets to form GF . Suppose w(i1(GF (S))) = a
without loss of generality. Then, according to the remarks above, we know
which outputs of GF (S) receive colour a (resp. b) by wF . We say that these
outputs are positive (resp. negative).
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3.2.2 Clause gadget GF (Ci)

Recall that ci ∈ {1, 2, 3} denotes the number of distinct literals in Ci for
every i ∈ {1, ...,m}. The structure of the clause gadget GF (Ci) for {a, b}
depends on the value of ci. If ci = 1, then a clause gadget is not necessary. In
any other situation, i.e. ci = 2 or ci = 3, the gadget GF (Ci) has a constant
number of inputs and ci outputs, and the following colouring property.

Property 2. Assume w is a vertex-colouring {a, b}-edge-weighting of GF (Ci)
such that a fixed number of inputs of GF (Ci) are coloured a by w, while its
other inputs are coloured b. Then, up to ci outputs, but at least one, are
coloured a by w.

Now connect GF (S) and every GF (Ci) in such a way that each input of
GF (Ci) which is supposed to be coloured a (resp. b) is identified with one
distinct positive (resp. negative) output of GF (S). Then, by Property 2,
we know that arbitrarily many, but at least one, outputs of GF (Ci) can be
assigned colour a in any extension of wF from GF (S) to G′F , where G′F is
the graph resulting from the connections.

3.2.3 Collecting gadget Gg and literal gadget GF (`i)

The structure of a literal gadget GF (`i) for {a, b} depends on the value of ni,
where ni is the number of distinct clauses of F that contain the literal `i for
every i ∈ {1, ..., 2n}. Once again, if ni = 1, then there is no need for a literal
gadget. In any other case, i.e. whenever ni ≥ 2, a literal gadget is obtained
by connecting exactly ni − 1 collecting gadgets Gg. A collecting gadget for
{a, b} has two “regular” inputs i1(G

g) and i2(G
g), and one output. It also

has some “forcing” inputs which are supposed to be connected with positive
or negative outputs of GF (S) so that the following property is fulfilled.

Property 3. Assume w is a vertex-colouring {a, b}-edge-weighting of Gg

such that a fixed number of forcing inputs of Gg are coloured a by w, while its
other forcing inputs are coloured b. Then we have w(i1(G

g)) = w(i2(G
g)) =

w(o1(G
g)).

Now consider every literal `i. For every distinct clause Cj that contains
`i, associate a distinct output of G′F with GF (`i) as follows:

• if `i is forced to true by Cj , then consider a positive output of GF (S),

• if `i is forced to false by Cj , then consider a negative output of GF (S),

• otherwise, consider one output of GF (Cj).
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This association has to be done in such a way that any chosen output of
G′F is associated with exactly one literal gadget. The two first items above
depicts the fact that if a clause contains only one distinct literal, then this
literal is forced to some truth value by this clause. The third item reflects
the fact that the truth value of a clause by a truth assignment of F depends
on the truth values of its literals.

The literal gadget GF (`i) is obtained as follows. First define an arbitrary
ordering (o1, ..., oni) over the outputs of G′F chosen above for GF (`i). Now
consider ni − 1 copies G1, ..., Gni−1 of Gg, and connect these with G′F as
follows. Start by connecting G′F and G1 along (o1, o2) and (i1(G1), i2(G1)).
Then connect the resulting graph andG2 along (o1(G1), o3) and (i1(G2), i2(G2)).
Next, connect the obtained graph andG3 along (o1(G2), o4) and (i1(G3), i2(G3)).
And so on. Denote by G′′F the resulting graph.

Note that if any two of the ni outputs chosen above for GF (`i) do not
share the same colour by wF , then there is no extension of wF from G′F to
G′′F by Property 3. Thus, all the outputs of G′F connected to GF (`i) must
receive the same colour by wF .

3.2.4 Connecting the literal gadgets

The reduced graph GF is finally obtained by adding some edges to G′′F .
Consider every pair {`i, `j} of F such that `j = `i. Now consider the respec-
tive output oi and oj of G′′F of the literal gadgets GF (`i) and GF (`j). More
precisely, if ni = 1 and `i is forced to true (resp. false) by the only clause of
F that contains `i, then oi is a positive (resp. negative) output of GF (S).
If ni = 1 and `i is not forced to some truth value by the only clause Cj that
contains it, then consider one distinct output of Cj . Otherwise, i.e. ni ≥ 2,
the output oi is o1(GF (`i)). Now, if u and v are the vertices with degree 1
of oi and oj , respectively, then let uv be an edge in GF .

Now suppose any two such outputs oi and oj receive the same colour in
an extension of wF from G′F to G′′F . Then note that wF cannot be extended
from G′′F to GF since the edges oi, uv and oj induce a path on 4 vertices
whose end edges have the same colour (Observation 2.1). On the contrary,
if we have wF (oi) 6= wF (oj), then assigning any colour to uv is correct. This
simulates the fact that in a truth assignment of the variables of F , a variable
and its negation must be assigned distinct truth values.

3.3 Final details

Checking whether any implementation of our reduction framework is correct
is quite tedious since, for every two neighbouring vertices u and v of GF ,
one has to check whether χwF (u) 6= χwF (v). In the three implementations
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described in this paper, we only show this to hold for neighbouring vertices
of the spreading, clause, and collecting gadgets we exhibit. But this is not
sufficient since some conflicts may arise for particular values of {a, b} when
connecting two of these gadgets.

As an illustration, suppose e.g. that uz is an output of some graph G,
and z′v is an input of some graph H. Suppose we are also given vertex-
colouring {a, b}-edge-weightings wG and wH of G and H, respectively, such
that wG(uz) = wH(z′v) = a. Now let G′ be the graph resulting from the
connection of G and H along uz and z′v, and consider the vertex-colouring
{a, b}-edge-weighting wG′ of G′ where any edge e that originally belonged
to G is coloured following wG, and following wH otherwise. Clearly the only
possible conflict is χwG′ (u) = χwG′ (v), which may occur for some particular
values of a and b.

Thanks to Lemma 2.3, we actually do not need to deeply study every
possible connection between two gadgets of a given implementation, i.e. for a
given value of {a, b}, in order to find out the conflicts which may arise when
extending an {a, b}-edge-weighting. Assuming we are given one (x1, y1)-,
one (x2, y2)-, and one (x3, y3)-replacement gadget for {a, b} such that the
xi’s are distinct and the yi’s are distinct, we could “replace” a conflicting
edge by one of these gadgets so that we solve the conflict locally, and this
without altering the colouring properties of GF , i.e. without providing new
ways for colouring GF . In this way, the equivalence between satisfying F
and colouring GF would be preserved.

Hence, even if we do not know exactly which edges are conflicting in a
vertex-colouring {a, b}-edge-weighting of GF for a specific value of {a, b}, we
know that an implementation of our reduction framework can be adapted
for {a, b} by simply replacing some edges of GF by a convenient replacement
gadget among a triplet of three replacement gadgets for {a, b}. Each of our
framework implementations, i.e. for a given of {a, b}, is thus provided with
a replacement triplet, i.e. a triplet (R1, R2, R3) where each Ri is a (xi, yi)-
replacement gadget for {a, b}, and such that the xi’s are distinct and the
yi’s are distinct.

4 First implementation: 0 6∈ {a, b} and b 6= −a

In this section, we give a first implementation of our reduction framework
for showing that {a, b}-VCEW is NP-complete whenever 0 6∈ {a, b} and
b 6= −a. For this purpose, we introduce several graphs and show that they
are spreading, clause, collecting and replacement gadgets, respectively, for
{a, b}. Throughout this section, the thick (resp. thin) edges of our fig-
ures represent edges coloured a (resp. b) by a vertex-colouring {a, b}-edge-
weighting.
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u1

u2 u3

u1

u2 u3

u1

u2 u3

Figure 3: The graphs T0, T1 and T2, and vertex-colouring {a, b}-edge-
weightings of T0, T1 and T2.

4.1 Auxiliary gadget Tk and replacement triplet for {a, b}

We define the graphs Tk, where k ≥ 0, which are used in further gadgets
to “force” the propagation of a vertex-colouring {a, b}-edge-weighting. For
a given value of k ≥ 0, the graph Tk is obtained as follows. First consider
a triangle u1u2u3. If k = 0, then we are done. Now, if k ≥ 1, then identify
u2 with one arbitrary vertex of each of k new triangles. Finally, repeat the
last step but with u3 instead of u2. We refer to the vertex u1 as the root
of Tk. This construction is depicted in Figure 3. In the figures of the next
sections, any triangle marked “Tk” indicates that a vertex is identified with
the root of a graph Tk.

Any graph Tk with k ≥ 0 has the following colouring properties.

Lemma 4.1. Assume w is an {a, b}-edge-weighting of Tk for some k ≥ 0. If
χw(u2) 6= χw(u3), then one of u2 and u3 has weighted degree (k+ 1)(a+ b),
while the other vertex has weighted degree (k + 2)a + kb or ka + (k + 2)b.
Besides, we have {w(u1u2), w(u1u3)} = {a, b}.

Proof. Note that for any triangle v1v2uiv1 different from u1u2u3u1 where i ∈
{2, 3}, we have w(uiv1) 6= w(uiv2) since otherwise we would have χw(v1) =
χw(v2). Therefore, the colouring of the triangles attached to v2 and v3
provide k(a+ b) in the weighted degree of both u2 and u3. Since χw(u2) 6=
χw(u3), we necessarily have w(u2u1) 6= w(u3u1). Depending on whether
w(u2u3) = a or w(u2u3) = b, one of u2 and u3 has weighted degree (k +
2)a+kb or ka+(k+2)b, respectively. The other vertex has weighted degree
(k + 1)(a+ b).

Lemma 4.2. Let k ≥ 0 be fixed. There is a vertex-colouring {a, b}-edge-
weighting w of Tk, unless 0 ∈ {a, b}, or b = −a, or χw(u1) ∈ {χw(u2), χw(u3)}.

Proof. Recall that for two adjacent vertices of Tk which have the same de-
gree, we only have to make sure that their multisets of colours by w are
different according to Lemma 2.2. Note next that, for any triangle v1v2uiv1
different from u1u2u3u1 where i ∈ {2, 3}, one of v1 and v2 has weighted
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degree a + b, while the other vertex has weighted degree either 2a or 2b
depending on how v1v2uiv1 is coloured (but we can “choose” this weighted
degree thanks to local recolouring). Besides, one of u2 and u3 has weighted
degree (k+1)(a+ b) by w, while the other vertex has weighted degree either
(k+ 2)a+kb or ka+ (k+ 2)b according to Lemma 4.1. Once again, this last
weighted degree can be “chosen” freely by recolouring the edge u2u3.

Suppose χw(u2) = (k + 1)(a + b), and χw(u3) is either (k + 2)a + kb or
ka + (k + 2)b without loss of generality. On the one hand, consider u2 and
any triangle attached to it. Note first that if we have χw(u2) = a + b, i.e.
(k + 1)(a + b) = a + b, then either k = 0 or b = −a. Now, observe that
we cannot both have χw(u2) = 2a and χw(u2) = 2b, unless a = b which
is impossible. On the other hand, consider u3. Firstly, if we have both
(k+ 2)a+kb = a+ b and ka+ (k+ 2)b = a+ b, then a = b. Secondly, if both
χw(u3) = 2a and χw(u3) = 2b hold, then a = b once again. Hence, the only
possible conflict by w under our assumptions on a and b is χw(u1) = χw(u2)
or χw(u1) = χw(u3).

Let k ≥ 1 be fixed, and assume v1v2v3 is the path of length 2. As T ′k,
we refer to the graph obtained by identifying v2 and the root of each of k
graphs Tk. The two inputs of T ′k are i1(T

′
k) = v1v2 and i2(T

′
k) = v2v3. We

show that T ′k is a replacement gadget for {a, b} under our assumptions on a
and b.

Lemma 4.3. Let k ≥ 1 be fixed. The graph T ′k is a ((k+ 2)a+kb, ka+ (k+
2)b)-replacement gadget for {a, b} when 0 6∈ {a, b} and b 6= −a.

Proof. Assume w is a vertex-colouring {a, b}-edge-weighting of T ′k. Suppose
w(i1(T

′
k)) = a without loss of generality. For each of the graphs Tk attached

to v2, one of the two edges incident with v2 is coloured a by w, while the
one is coloured b according to Lemma 4.1. Hence, the graphs Tk attached to
v2 provide k(a+ b) in the weighted degree of v2. Besides, in each graph Tk
there is a vertex neighbouring v2 which has weighted degree (k + 1)(a+ b),
while we may suppose that the other vertex neighbouring v2 has weighted
degree ka+ (k + 2)b.

Note then that if w(v2v3) = b, then we get χw(v2) = (k + 1)(a + b)
and v2 has the same weighted degree as some of its neighbours. Therefore,
we have w(v2v3) = a. In this situation we have χw(v2) = (k + 2)a + kb
while the vertices from the graphs Tk neighbouring v2 have weighted degree
(k+1)(a+b) and ka+(k+2)b, respectively. Since v2 and these vertices have
the same degree, these weighted degrees are distinct by Observation 2.1.

Corollary 4.4. Any triplet (T ′i , T
′
j , T

′
k) is a replacement triplet for every

pair {a, b}, such that 0 6∈ {a, b} and b 6= −a, when i, j and k are distinct.
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Figure 4: The spreading gadget Gf for the main implementation of the
reduction framework, and a vertex-colouring {a, b}-edge-weighting of Gf.

4.2 Spreading gadget Gf for {a, b}

Now consider the graph Gf depicted in Figure 4, whose input is u1u2, and
whose two outputs are u9u10 and u12u13. We show that Gf is a spreading
gadget for {a, b}, i.e. that Gf satisfies Property 1, under our assumptions
on a and b.

Proposition 4.5. The graph Gf satisfies Property 1 for {a, b} under our
assumptions on a and b.

Proof. Assume w is a vertex-colouring {a, b}-edge-weighting w of Gf. Note
that we cannot have w(u3u5) 6= w(u4u6). Indeed, suppose e.g. that w(u3u5) =
a and w(u4u6) = b. Because u5 and u6 are both attached to two graphs T2,
which form a graph T ′2, then we have w(u5u7) = a and w(u6u7) = b by
Lemma 4.3. Besides, we have χw(u5) = 4a + 2b and χw(u6) = 2a + 4b.
We also know that a neighbour of u7 from the graph T2 attached to it
has weighted degree 3a + 3b, and that this graph T2 provides a + b in the
weighted degree of u7 according to Lemma 4.1. Then, the vertex u7 has
weighted degree at least 2a + 2b, and the two edges u7u8 and u7u11 are
coloured in such a way that the weighted degree of u7 does not meet any
value in {2a+ 4b, 3a+ 3b, 4a+ 2b}, but this is impossible.

On the contrary, if w(u3u5) = w(u4u6) = a without loss of generality,
then w can be vertex-colouring. Because of the arguments above, we have
w(u5u7) = w(u6u7) = a and χw(u5) = χw(u6) = 4a+2b. Recall that we may
assume that the colouring of the graph T2 attached to u7 is such that the two
vertices that are adjacent with u7 have weighted degree 3a+ 3b and 4a+ 2b.
Besides, the colouring of this graph T2 provides a+ b in the weighted degree
of u7. Thus, the weighted degree of u7 is at least 3a+ b, and the edges u7u8
and u7u11 are coloured in such a way that the weighted degree of u7 is not
3a+ 3b or 4a+ 2b. The only possibility is to have w(u7u8) = w(u7u11) = a
since, in this situation, we get χw(u7) = 5a+ b.
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(a) Case ci = 2.
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(b) Case ci = 3.

Figure 5: The two forms of the clause gadget GF (Ci) for the main im-
plementation of the reduction framework, and vertex-colouring {a, b}-edge-
weightings of GF (Ci).

Now suppose w(u1u2) = a, and consider the edges u2u3 and u2u4. First,
if w(u2u3) = w(u2u4), then note that w cannot be vertex-colouring according
to the arguments above since we would necessarily have w(u3u5) 6= w(u4u6)
so that χw(u3) 6= χw(u4). Thus, w(u2u3) = a and w(u2u4) = b without loss
of generality, and χw(u2) = 2a + b. Now note that if w(u3u4) = a, then
we necessarily get that χw(u3) or χw(u4) is equal to χw(u2) since we need
w(u3u5) = w(u4u6). Thus w(u3u4) = b. We then have w(u3u5) = b so that
χw(u3) 6= χw(u2), and also w(u4u6) = b so that χw(u4) 6= χw(u3).

According to the arguments above, we have w(u3u5) = w(u4u6) = b
and w(u7u8) = w(u7u11) = b under the assumption w(u1u2) = a. By
Observation 2.1, we have w(u9u10) = w(u12u13) = a.

4.3 Clause gadgets GF (Ci) for {a, b}

We distinguish two forms for GF (Ci), depending on whether ci = 2 or ci = 3.
These two forms are depicted in Figure 5. In the first case, i.e. ci = 2, the
inputs of GF (Ci) are u3u4, which is supposed to be coloured a, and u1u2,
which is supposed to be coloured b, while the two outputs of GF (Ci) are
u4u5 and u4u6. In the second case, i.e. ci = 3, the three inputs of GF (Ci)
are u1u2, which is supposed to be coloured b, and u3u5 and u4u5 which are
supposed to be coloured a. The three outputs of GF (Ci) are u5u6, u5u7 and
u5u8 in this case.

We prove that these two types of gadgets satisfy Property 2 under our
assumptions on a and b.

Proposition 4.6. The graph GF (Ci) for ci = 2 satisfies Property 2 for
{a, b} under our assumptions on a and b.
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Figure 6: The collecting gadget Gg for the main implementation of the
reduction framework, and a vertex-colouring {a, b}-edge-weighting of Gg.

Proof. Assume w is a vertex-colouring {a, b}-edge-weighting of GF (Ci) such
that w(u1u2) = b and w(u3u4) = a. By Lemma 4.3, we have w(u2u4) = b,
and χw(u2) = a+3b. Note then that we cannot have w(u4u5) = w(u4u6) = b
since otherwise we would get χw(u4) = a + 3b = χw(u2). Hence, we have
either {w(u4u5), w(u4u6)} = {a, a} or {w(u4u5), w(u4u6)} = {a, b}.

Proposition 4.7. The graph GF (Ci) for ci = 3 satisfies Property 2 for
{a, b} under our assumptions on a and b.

Proof. Assume similarly that w is a vertex-colouring {a, b}-edge-weighting
of GF (Ci) such that w(u1u2) = b and w(u3u5) = w(u4u5) = a. Then we
have w(u2u5) = b and χw(u2) = 2a + 4b according to Lemma 4.3 since the
two graphs T2 attached to u2 form a graph T ′2. Now note that if w(u5u6) =
w(u5u7) = w(u5u8) = b, then χw(u5) = 2a + 4b = χw(u2). Thus, at least
one of u5u6, u5u7 and u5u8 has colour a by w.

4.4 Collecting gadget Gg for {a, b}

The collecting gadget Gg for this main implementation is depicted in Fig-
ure 6. The two regular inputs of Gg are v1v3 and v2v3, and its output is v3v4.
The edges u1u4, u2u4, u5u8, u6u8, u9u11, u12u15, u13u15, u

′
3u
′
4, u

′
7u
′
8, u

′
10u
′
11

and u′14u
′
15 of Gg are forcing inputs which are supposed to be coloured a.

The edges u3u4, u7u8, u10u11, u14u15, u
′
1u
′
4, u

′
2u
′
4, u

′
5u
′
8, u

′
6u
′
8, u

′
9u
′
11, u

′
12u
′
15

and u′13u
′
15 are forcing inputs supposed to be coloured b.

Under our assumptions on a and b, we prove that Gg is a collecting
gadget, i.e. it satisfies Property 3.

Proposition 4.8. The graph Gg satisfies Property 3 for {a, b} under our
assumptions on a and b.
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Figure 7: The graphs Y1, Y2 and Y3, and vertex-colouring {a, b}-edge-
weightings of Y1, Y2 and Y3.

Proof. Assume w is a vertex-colouring {a, b}-edge-weighting of Gg such that
the forcing inputs of Gg are coloured as requested. Consider first the left
side of Gg, i.e. the subgraph of Gg induced by the ui’s. Note first that
we have w(u4u11) 6= w(u8u11) so that χw(u4) 6= χw(u8). Now note that we
cannot have w(u4u8) = b, since otherwise we would have {χw(u4), χw(u8)} =
{2a+3b, 3a+2b}, and we would necessarily get χw(u11) ∈ {χw(u4), χw(u8)}
whatever is w(u11u15). Thus w(u4u8) = a, and {χw(u4), χw(u8)} = {4a +
b, 3a+ 2b}. Note now that we have w(u11u15) = b since otherwise we would
have χw(u11) = 3a + 2b. It follows that χw(u11) = 2a + 3b, and we have
w(u15v3) = a since otherwise we would have χw(u15) = 2a + 3b = χw(u11).
Besides, χw(u15) = 3a+ 2b.

Thanks to the symmetric structure of Gg, we can deduce similar facts
regarding the right side of Gg, i.e. the subgraph of Gg induced by the
u′i’s. In particular, we have w(v3u

′
15) = b and χw(u′15) = 2a + 3b. Now

observe that we cannot have w(v1v3) 6= w(v2v3) since otherwise by having
w(v3v4) = a or w(v3v4) = b we would get χw(v3) = 3a + 2b = χw(u15) or
χw(v3) = 2a + 3b = χw(u′15), respectively. Therefore, we have w(v1v3) =
w(v2v3), and also w(v3v4) = w(v1v3) since otherwise we would get χw(v3) ∈
{χw(u15), χw(u′15)}.

5 Second implementation: b = 0

The second implementation of our reduction framework is dedicated to the
case where one of the two weights from {a, b} is 0. We assume throughout
this section that b = 0. The thick (resp. thin) edges in our figures represent
edges coloured a (resp. 0) by a vertex-colouring {a, 0}-edge-weighting.

5.1 Auxiliary gadget Yk and replacement triplet for {a, 0}

Similarly as in the first implementation, we first give an auxiliary graph
which is used in our gadgets to “force” the propagation of a vertex-colouring
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{a, 0}-edge-weighting. The graphs Yk with k ≥ 1 are defined inductively. By
construction, any graph Yk has only one vertex with degree 1, called the root
of Yk. Start with an edge u1u2. To build Y1, just identify u2 and one vertex
from a triangle. Now for the general case, i.e. k ≥ 2, start over from the
edge uv, and identify u2 and the root of each of k − 1 copies of Y1 and one
copy of Yk−1. This construction is depicted in Figure 7. In the figures of
the following sections, any pendant triangle marked “Yk” indicates that a
vertex is identified with the root of a graph Yk.

Any graph Yk has the following colouring property.

Lemma 5.1. Assume w is a vertex-colouring {a, 0}-edge-weighting of Yk
for some k ≥ 1. Then w(u1u2) = a and χw(u2) = (k + 1)a.

Proof. We prove this lemma by induction on k. Consider Y1 first, and
denote the vertices of the triangle attached to u2 by u2u3u4u2. Note that
if w(u2u3) = w(u3u4), then χw(u3) = χw(u4). Then w(u2u3) = a and
w(u2u4) = 0 without loss of generality, and w(u3u4) = 0 since otherwise
we would have either χw(u2) = χw(u3) or χw(u2) = χw(u4) by setting
w(u1u2) = a or w(u1u2) = 0, respectively. Then {χw(u3), χw(u4)} = {0, a},
and we have w(u1u2) = a since otherwise we would have χw(u2) = a. In
particular, we have χw(u2) = 2a.

Now suppose the claim is true for every k up to some i, and consider
k = i + 1. The graph Yk is made of k − 1 copies of Y1 and one copy
of Yk−1 whose roots are identified with u2. By the induction hypothesis,
these copies are coloured by w in such a way that their respective edge
incident with u2 is coloured a, and the vertex from Yk−1 neighbouring u2
has weighted degree ka. Thus, these copies provide ka in the weighted
degree of u2. Finally, we have w(u1u2) = a so that χw(u2) 6= ka, and we get
χw(u2) = (k + 1)a.

Let k ≥ 1 be fixed, and let v1v2v3 denote the vertices of a path with
length 2. As Lk, we refer to the graph obtained by identifying v2 and the
roots of k copies of the graphYk. The two inputs of Lk are the edges v1v2
and v2v3. We show that Lk is a replacement gadget for {a, 0}.
Lemma 5.2. Let k ≥ 1 be fixed. The graph Lk is a ((k+2)a, ka)-replacement
gadget for {a, 0}.

Proof. Assume w is a vertex-colouring {a, 0}-edge-weighting of Lk. By
Lemma 5.1, the k copies of Yk attached to v2 provide ka to the weighted
degree of v2, and v2 is adjacent to vertices with weighted degree (k + 1)a.
Note then that if {w(v1v2), w(v2v3)} = {a, 0}, then the weighted degree of
v2 is (k + 1)a, and w is not vertex-colouring. On the contrary, if w(v1v2) =
w(v2v3) = a or w(v1v2) = w(v2v3) = 0, then the weighted degree of v2 is
(k + 2)a or ka, respectively.
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Figure 8: The spreading gadget Gf for the second implementation of the
reduction framework, and a vertex-colouring {0, a}-edge-weighting of Gf.

Corollary 5.3. Any triplet (Li, Lj , Lk) is a replacement triplet for {a, 0}
when i, j and k are distinct.

5.2 Spreading gadget Gf for {a, 0}

Consider, as Gf, the graph depicted in Figure 8, whose input is u1u2, and
whose two outputs are u6u7 and u6u8. We show that Gf is a spreading
gadget for {a, 0}.

Proposition 5.4. The graph Gf satisfies Property 1 for {a, 0}.

Proof. Assume w is a vertex-colouring {a, 0}-edge-weighting of Gf. Recall
that the graphs Y2, Y3 and Y4 attached to u6 provide 3a in the weighted
degree of u6, and that u6 is adjacent to vertices with weighted degree 3a, 4a,
and 5a according to Lemma 5.1. Then we cannot have {w(u4u6), w(u5u6)} =
{0, 0} since otherwise we would have χw(u6) ∈ {3a, 4a, 5a} whatever are
w(u6u7) and w(u6u8). Observe also that if {w(u4u6), w(u5u6)} = {0, a},
then we have w(u6u7) = w(u6u8) = a. In this situation, we have χw(u6) =
6a.

Consider the edge u1u2. By Lemma 5.1, the weighted degree of u2 is
at least 2a, and u2 is adjacent with vertices whose weighted degrees are 2a
and 3a. Then we have w(u1u2) = w(u2u3) = a since otherwise we would
have χw(u2) ∈ {2a, 3a}. In particular, we have χw(u2) = 4a. Now note that
we cannot have w(u3u4) = w(u3u5) = 0 since one of u4 or u6 would have
weighted degree χw(u3) = a. Indeed, no matter what is the colour of u4u5,
we have {w(u4u6), w(u5u6)} = {0, a} so that χw(u4) 6= χw(u5). But then,
one of u4 or u6 necessarily gets weighted degree a, which is χw(u3).

Suppose now w(u3u4) = w(u3u5) = a. In this situation, we have
χw(u3) = 3a. Note that if w(u4u5) = a, then we have {w(u4u6), w(u5u6)} =
{0, a} so that u4 and u5 have distinct weighted degrees. But then, one of
these two vertices has weighted degree 3a. So w(u4u5) = 0. Once again,
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Figure 9: The two forms of the clause gadget GF (Ci) for the second im-
plementation of the reduction framework, and vertex-colouring {0, a}-edge-
weightings of GF (Ci).

we have {w(u4u6), w(u5u6)} = {0, a} so that u4 and u5 are distinguished.
According to the remarks above, we then have w(u6u7) = w(u6u8) = a, as
requested.

Suppose finally that w(u3u4) = a and w(u3u5) = 0 without loss of
generality. Then χw(u3) = 2a. Note that we cannot have w(u4u5) = 0
since otherwise we would have w(u4u6) = 0 so that χw(u4) 6= χw(u3), and
w(u5u6) = 0 so that χw(u4) 6= χw(u5). But then {w(u4u6), w(u5u6)} =
{0, 0}, and w is not vertex-colouring. Thus, w(u4u5) = a. Because χw(u4) 6=
χw(u3) and χw(u5) 6= χw(u3), we have both w(u4u6) = a and w(u5u6) = 0.
According to the arguments above, we have w(u6u7) = w(u6u8) = a once
again.

5.3 Clause gadgets GF (Ci) for {a, 0}

The two forms of GF (Ci) for {a, 0}, i.e. for the cases ci = 2 and ci = 3,
are depicted in Figure 9. In both cases, the input of GF (Ci) is u1u2 and is
supposed to be coloured 0. The outputs of GF (Ci) are u4u5, u4u6, and also
u4u7 when ci = 3. We show that GF (Ci) satisfies Property 2 in any of the
two cases.

Proposition 5.5. The graph GF (Ci) satisfies Property 2 for {a, 0} whatever
is the value of ci.

Proof. Assume w is a vertex-colouring {a, 0}-edge-weighting of GF (Ci) such
that w(u1u2) = 0. Recall that the edge of the graph Y1 incident with u3 has
colour a, and that the vertex of the graph Y1 adjacent with u3 has weighted
degree 2a (Lemma 5.1). Therefore, we have w(u3u2) = 0 so that χw(u3) =
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Figure 10: The collecting gadget Gg for the second implementation of the
reduction framework, and a vertex-colouring {a, b}-edge-weighting of Gg.

a 6= 2a, and w(u2u4) = 0 so that χw(u2) 6= χw(u3). In particular, we get
χw(u2) = 0. Then note that at least one of the outputs of GF (Ci) receives
colour a by w since otherwise we would have χw(u4) = 0 = χw(u2).

5.4 Collecting gadget Gg for {a, 0}

Now consider the graph depicted in Figure 10 as Gg. The two regular inputs
of Gg are v1v3 and v2v3, and its output is v3v4. The forcing inputs of Gg

are u1u2 and u′1u
′
2, which are supposed to be coloured a. We prove that Gg

satisfies Property 3 for {a, 0}.
Proposition 5.6. The graph Gg satisfies Property 3 for {a, 0}.

Proof. Suppose w is a vertex-colouring {a, 0}-edge-weighting of GF (Gg)
such that w(u1u2) = w(u′1u

′
2) = a. We have w(u2v3) = w(u′2v3) = a accord-

ing to Lemma 5.2. Plus, we have χw(u2) = 3a and χw(u′2) = 4a. Under
these assumptions, we cannot have w(v1v3) 6= w(v2v3). Indeed, in such a
situation, by having w(v3v4) = a or w(v3v4) = 0, we would get χw(v3) = 4a
or χw(v3) = 3a, respectively.

Now suppose w(v1v3) = w(v2v3). On the one hand, if w(v1v3) =
w(v2v3) = a, then we have w(v3v4) = a since otherwise we would get
χw(v3) = 4a = χw(u′2). In this situation, we get χw(v3) = 5a. On the
other hand, suppose w(v1v3) = w(v2v3) = 0. Note that if w(v3v4) = a,
then χw(v3) = 3a = χw(u2). On the contrary, we have χw(v3) = 2a when
w(v3v4) = 0.

6 Third implementation: b = −a

In this section, we give the gadgets for implementing our reduction frame-
work in the case where {a, b} = {a,−a}. In all the figures of this section,
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the thick (resp. thin) edges represent edges coloured a (resp. −a) by a
vertex-colouring {a,−a}-edge-weighting.

6.1 Auxiliary gadget T and replacement triplet for {a,−a}

Once again, we use a graph to force the propagation of a vertex-colouring
{a,−a}-edge-weighting in a graph. This graph, denoted T , is just a triangle
u1u2u3u1 whose vertex u1 is the root of T . Hence, every triangle marked
“T” in our figures of further sections refers to the graph T . This graph T
has some interesting properties when dealing with vertex-colouring {a,−a}-
edge-weightings.

Lemma 6.1. Assume w is an {a,−a}-edge-weighting of T . If χw(u2) 6=
χw(u3), then one of u2 and u3 has weighted degree 0, while the other vertex
has weighted degree 2a or −2a. Besides, we have {w(u1u2), w(u1u3)} =
{a,−a}.

Proof. The proof is similar to the one of Lemma 4.1 since T is isomorphic
to T0. Because χw(u2) 6= χw(u3), we have w(u1u2) 6= w(u1u3). Suppose
e.g. w(u1u2) = a and w(u1u3) = −a without loss of generality. Now,
by setting either w(u2u3) = a or w(u2u3) = −a, we get χw(u3) = 0 or
χw(u2) = 0, respectively. Besides, we have χw(u2) = 2a or χw(u3) = −2a,
respectively.

We now introduce the replacement gadgets for {a,−a}. The first re-
placement gadget R1 is obtained by identifying the root of T and v2, where
v2 denotes the inner vertex of some path v1v2v3 with length 2. The two
inputs of R1 then are v1v2 and v2v3.

Lemma 6.2. The graph R1 is a (2a,−2a)-replacement gadget for {a,−a}.

Proof. Assume w is a vertex-colouring {a,−a}-edge-weighting of R1. By
Lemma 6.1, the weighted degrees of the vertices adjacent with v2 which be-
long to the graph T are 0, and either 2a or −2a, where this last weighted
degree can be “chosen” thanks to local recolouring of T . Besides, the
colouring of T provides a + (−a) = 0 in the weighted degree of v2. Note
then that if w(v1v2) 6= w(v2v3), then we have χw(v2) = 0. Hence, we
have w(v1v2) = w(v2v3), and χw(v2) = 2a or χw(v2) = −2a depending on
w(v1v2) = a or w(v1v2) = −a, respectively.

The second replacement gadget R2 for {a,−a} is obtained as follows.
As for R1, start from a path v1v2v3 with length 2, and identify v2 and u1,
where u1u2u3u4u5u1 is a cycle with length 5. The inputs of R2 are v1v2 and
v2v3.
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Lemma 6.3. The graph R2 is a (4a,−4a)-replacement gadget for {a,−a}.

Proof. Assume w is a vertex-colouring {a,−a}-edge-weighting of R2. Note
first that w(u1u2) = w(u5u1) according to Observation 2.1. Besides, we have
{χw(u2), χw(u5)} = {0, 2 · w(u1u2)} and the cycle attached to v2 provides
2 ·w(u1u2) in the weighted degree of v2. Suppose now w(u1u2) = w(u5u1) =
a. Then note that if w(v1v2) = w(v2v3) = −a or w(v1v2) 6= w(v2v3), then
we have χw(v2) = 0 or χw(v2) = 2a, and w is not vertex-colouring. Hence
w(v1v2) = w(v2v3) = a and χw(v2) = 4a in this situation. The proof follows
similarly from the assumption w(u1u2) = w(u5u1) = −a.

The other replacement gadgets for {a,−a} are defined inductively. To
obtain the graph Rk with k ≥ 3, start from a path v1v2v3 with length 2.
Next identify v2 and the root of each of k−1 copies of the graph T . For every
ith resulting copy v2u2u3v2 of T , with i ∈ {1, ..., k − 1}, now Ri-subdivide
each of the edges v2u2 and v2u3. This results in a cycle s1s2s3s4s5s1 with
length 5 such that s1 = v2, and the edges s1s2 and s2s3, and s1s5 and s5s4
are the inputs of two replacement gadgets Ri. To finish the construction of
Rk, identify v2 and one vertex of each of k − 1 cycles with length 5. The
inputs of Rk are v1v2 and v2v3.

Lemma 6.4. Let k ≥ 3 be fixed. The graph Rk is a (2ka,−2ka)-replacement
gadget for {a,−a}.

Proof. Assume the claim is true for every k up to some value of i, and
consider k = i+1. Let w be a vertex-colouring {a,−a}-edge-weighting of Rk.
Consider first every cycle v2s2s3s4s5v2 with length 5 such that the edges v2s2
and s2s3, and s4s5 and s5v2 are the inputs of two graphs Rk′ , with k′ < k.
Note that we cannot have w(s2s3) = w(s4s5) since otherwise we would
have χw(s3) = χw(s4) (Observation 2.1). Thus we have w(s2s3) = a and
w(s4s5) = −a without loss of generality, and w(v2s2) = a and w(v2s5) = −a
according to the induction hypothesis. Besides, χw(s2) = 2k′a and χw(s5) =
−2k′a. Hence, the k−1 cycles of this form attached to v2 provide (k−1)(a+
(−a)) = 0 in the weighted degree of v2, and v2 is adjacent with vertices
whose weighted degrees lie in {−2(k − 1)a,−2(k − 2)a, ...,−2a, 2a, ..., 2(k −
2)a, 2(k − 1)a}.

Now consider any “regular” cycle v2s2s3s4s5v2 with length 5 attached
to v2. For the same reasons as those given in the proof of Lemma 6.3, we
have w(v2s2) = w(v2s5), and 0 ∈ {χw(s2), χw(s5)}. Hence, each regular
cycle provides either 2a or −2a in the weighted degree of v2. Is is then easy
to check that the only way for w to be vertex-colouring is to have each of
the k − 1 regular cycles providing 2a (resp. −2a) to the weighted degree
of v2, and w(v1v2) = w(v2v3) = a (resp. w(v1v2) = w(v2v3) = −a). In
this situation, we get χw(v2) = 2ka (resp. χw(v2) = −2ka). For every other
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Figure 11: The spreading gadget Gf for the third implementation of the
reduction framework, and a vertex-colouring {a,−a}-edge-weighting of Gf.

possible colouring, we necessarily get that χw(v2) lies in {−2(k−1)a,−2(k−
2)a, ...,−2a, 0, 2a, ..., 2(k − 2)a, 2(k − 1)a}.

Corollary 6.5. Any triplet (Ri, Rj , Rk) is a replacement triplet for {a,−a}
when i, j and k are distinct.

6.2 Spreading gadget Gf for {a,−a}

The spreading gadget Gf for {a,−a} is depicted in Figure 11. The input
of Gf is u1u2, while its outputs are u9u10 and u12u13. We prove that Gf

satisfies the spreading gadget property.

Proposition 6.6. The graph Gf satisfies Property 1 for {a,−a}.

Proof. Suppose w is a vertex-colouring {a,−a}-edge-weighting of Gf. Note
first that we cannot have w(u3u5) 6= w(u4u6). Indeed, suppose e.g. that
w(u3u5) = a and w(u4u6) = −a. Then w(u5u7) = a and w(u6u7) = −a
according to Lemma 6.2. Besides, χw(u5) = 2a and χw(u6) = −2a. Note
further that the colouring of the T graph attached to u7 provides a+(−a) = 0
in the weighted degree of u7, and that u7 has a neighbour with weighted
degree 0 (Lemma 6.1). Then note that for any value of {w(u7u8), w(u7u11)},
i.e. {a, a}, {a,−a} or {−a,−a}, we get that χw(u7) is either 2a, 0 or
−2a, respectively. Hence w is not vertex-colouring under the assumption
w(u3u5) 6= w(u4u6).

On the contrary, note that if w(u3u5) = w(u4u6) = −a, then w can be
vertex-colouring. Note first that we have w(u5u7) = w(u6u7) = −a accord-
ing to Lemma 6.2. Besides, χw(u5) = χw(u6) = −2a. Recall that u7 has a
neighbour with weighted degree 0, and that the graph T attached to u7 pro-
vides 0 to the weighted degree of u7. Now note that if {w(u7u8), w(u7u11)}
is {a, a} or {a,−a}, then we have χw(u7) = 0 or χw(u7) = −2a, respectively.
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Figure 12: The two forms of the clause gadget GF (Ci) for the third imple-
mentation of the reduction framework, and vertex-colouring {a,−a}-edge-
weightings of GF (Ci).

On the contrary, if w(u7u8) = w(u7u11) = −a, then we get χw(u7) = −4a.
Besides, we have w(u9u10) = w(u12u13) = a by Observation 2.1.

Now assume w(u1u2) = a. First, note that we cannot have w(u2u3) =
w(u2u4). Indeed, in this situation, we would have w(u3u5) 6= w(u4u6) so
that u3 and u4 have distinct weighted degree, and this whatever is w(u3u4).
According to the arguments above, w is not vertex-colouring under this
assumption. Then, w(u2u3) = a and w(u2u4) = −a without loss of gen-
erality. In this situation, χw(u2) = a. On the one hand, if w(u3u4) = a,
then w cannot be vertex-colouring. Indeed, we would have w(u3u5) = a so
that χw(u3) 6= χw(u2), and w(u4u6) = −a so that χw(u4) 6= χw(u2). But
then w(u3u5) 6= w(u4u6), and w is not vertex-colouring, again according
to the arguments above. On the other hand, i.e. w(u3u4) = −a, then we
have w(u3u5) = −a so that χw(u2) 6= χw(u3), and w(u4u6) = −a so that
χw(u3) 6= χw(u4). As pointed out above, we have w(u9u10) = w(u12u13) = a
as requested.

6.3 Clause gadgets GF (Ci) for {a,−a}

Consider, as GF (Ci), the graphs depicted in Figure 12. In the first (resp.
second) form, i.e. for ci = 2 (resp. ci = 3), the inputs of GF (Ci) are u1u3
and u2u3 (resp u1u4, u2u4 and u3u4) and are supposed to be coloured a.
The outputs of GF (Ci) are u3u4 and u3u5 (resp. u4u5, u4u6 and u4u7). We
show that the two forms of GF (Ci) satisfy the clause gadget property.

Proposition 6.7. The graph GF (Ci) satisfies Property 2 for {a,−a} what-
ever is the value of ci.
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Figure 13: The collecting gadget Gg for the third implementation of the
reduction framework, and a vertex-colouring {a,−a}-edge-weighting of Gg.

Proof. Assume w is a vertex-colouring {a,−a}-edge-weighting of GF (Ci)
such that all the inputs of GF (Ci) are coloured a. We show the claim to be
true when ci = 2, but the proof is similar for the case ci = 3. Recall that
the graph T attached to u3 provides a+ (−a) = 0 in the weighted degree of
u3, and that one of its vertices has weighted degree 0 (Lemma 6.1). Note
then that if w(u3u4) = w(u3u5) = −a, then χw(u3) = 0. Therefore, at least
one output of GF (Ci) receives colour a by w.

6.4 Collecting gadget Gg for {a,−a}

Let Gg be the graph depicted in Figure 13. The two regular inputs of Gg

are v1v3 and v2v3, while its output is v3v4. The forcing inputs of Gg are
u1u2 and u3u4, which are supposed to be coloured −a, and u′1u

′
2 and u′3u

′
4

which are supposed to be coloured a. We show that Gg is a collecting gadget
for {a,−a}.

Proposition 6.8. The graph Gg satisfies Property 3 for {a,−a}.

Proof. Suppose w is a vertex-colouring {a,−a}-edge-weighting of Gg such
that w(u1u2) = w(u3u4) = −a and w(u′1u

′
2) = w(u′3u

′
4) = a. Note that

we cannot have w(u2u4) = a. Indeed, in this situation, we would have
w(u2u5) 6= w(u4u5) so that χw(u2) 6= χw(u4). But then we would get
{χw(u2), χw(u4)} = {a,−a} and we would have χw(u5) ∈ {a,−a} no matter
what is w(u5v3). Therefore w(u2u4) = −a. For the same reasons, we have
w(u2u5) = a and w(u4u5) = −a without loss of generality. Then, χw(u2) =
−a and χw(u4) = −3a, and we have w(u5v3) = a since otherwise we would
have χw(u5) = −a. Besides, we have χw(u5) = a.

Repeating the same arguments for the graph induced by {u′1, u′2, u′3, u′4, u′5, v3},
we get that w(u′5v3) = −a and χw(u′5) = −a. Therefore, the edges u5v3 and
u′5v3 provide a + (−a) = 0 in the weighted degree of v3, and v3 is adjacent
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to vertices with respective weighted degree a and −a. Now observe that we
cannot have w(v1v3) 6= w(v2v3). Indeed, by then having w(v3v4) = a or
w(v3v4) = −a, we would get χw(v3) = a or χw(v3) = −a, respectively. On
the contrary, if w(v1v3) = w(v2v3) = a (resp. w(v1v3) = w(v2v3) = −a),
then we have w(v3v4) = a (resp. w(v3v4) = −a) since otherwise we would
have χw(v3) = a (resp. χw(v3) = −a). In particular, we get χw(v3) = 3a
(resp. χw(v3) = −3a).
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