C. Baey, A. Didier, L. Song, S. Lemaire, F. Maupas et al., Evaluation of the predictive capacity of five plant growth models for sugar beet, 2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications, 2012.
DOI : 10.1109/PMA.2012.6524809

URL : https://hal.archives-ouvertes.fr/hal-00776389

C. Baey, A. Didier, S. Lemaire, F. Maupas, and P. Cournède, Modelling the interindividual variability of organogenesis in sugar beet populations using a hierarchical segmented model, Ecological Modelling, vol.263, p.2013
DOI : 10.1016/j.ecolmodel.2013.04.013

URL : https://hal.archives-ouvertes.fr/hal-00819919

J. Brouwer, L. K. Fussell, and L. Herrmann, Soil and crop growth micro-variability in the West African semi-arid tropics: a possible risk-reducing factor for subsistence farmers, Agriculture, Ecosystems & Environment, vol.45, issue.3-4, pp.3-4, 1993.
DOI : 10.1016/0167-8809(93)90073-X

P. Cournède, M. Z. Kang, A. Mathieu, J. Barczi, H. P. Yan et al., Structural Factorization of Plants to Compute Their Functional and Architectural Growth, SIMULATION, vol.82, issue.7, pp.427-438, 2006.
DOI : 10.1177/0037549706069341

P. Cournède, A. Mathieu, F. Houllier, D. Barthélémy, and P. De-reffye, Computing Competition for Light in the GREENLAB Model of Plant Growth: A Contribution to the Study of the Effects of Density on Resource Acquisition and Architectural Development, Annals of Botany, vol.101, issue.8, pp.1207-1219, 2008.
DOI : 10.1093/aob/mcm272

P. Cournède, V. Letort, A. Mathieu, M. Kang, S. Lemaire et al., Some Parameter Estimation Issues in Functional-Structural Plant Modelling, Mathematical Modelling of Natural Phenomena, vol.6, issue.2, pp.133-159, 2011.
DOI : 10.1051/mmnp/20116205

M. Davidian and D. Giltinan, Nonlinear Models for Repeated Measurement Data, 1995.

P. De-reffye and B. Hu, Relevant qualitative and quantitative choices for building an efficient dynamic plant growth model: Greenlab case, Proc. of the 2nd Int. Symp. on Plant Growth Modeling, Simulation, Visualization and Their Applications, pp.87-197, 2003.
URL : https://hal.archives-ouvertes.fr/inria-00126213

A. Dempster, N. Laird, and D. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society. Series B, vol.39, issue.1, pp.1-38, 1977.

E. Kuhn and M. Lavielle, Maximum likelihood estimation in nonlinear mixed effects models, Computational Statistics & Data Analysis, vol.49, issue.4, pp.1020-1038, 2005.
DOI : 10.1016/j.csda.2004.07.002

S. Trevezas and P. Cournède, A Sequential Monte Carlo Approach for MLE in a Plant Growth Model, Journal of Agricultural, Biological, and Environmental Statistics, vol.12, issue.2, p.2013
DOI : 10.1007/s13253-013-0134-1

URL : https://hal.archives-ouvertes.fr/hal-00796154

S. Trevezas, S. Malefaki, and P. Cournède, Simulation techniques for parameter estimation via a stochastic ECM algorithm with applications to plant growth modeling, preprint, 2013.

J. Vos, L. F. Marcelis, P. De-vissers, P. Struik, and J. B. Evers, Functional- Structural plant modeling in crop production, 2007.

G. C. Wei and M. A. Tanner, A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms, Journal of the American Statistical Association, vol.51, issue.411, pp.411-699, 1990.
DOI : 10.1214/aos/1176346060