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ABSTRACT whereR; : RM — RY andR,: R™2 —— RY are known op-

- N = N. i
We propose a variational method for decomposing an imag%rators. The vectors, € R™ andz; € R™ to be estimated
the geometry and the texame ¢

into a geometry and a texture component. Our model involveearamete%e, regﬁet)ctlviy,. d via the followi iatio
the sum of two functions promoting separately properties oronents. ey will be obtained via the following variationa

each component, and of a coupling function modeling the in_ormulatlon_, Wh';l_:h |n\:jo_lves potentllalﬁl and ﬁQ promotln?
teraction between the components. None of these functioﬁge propeglels 0 ;]a_n_ 2 separate ¥, as well as a coupiing
is required to be differentiable, which significantly breag (€M Modeling their interaction.

the range of decompositions achievable through vanattlonqoroblem LiLet fi: RV — J—oo, 400l fo: RN —

approaches. The convergence of the proposed proximal algg-OO too], andep: RM x RNz ]—oo, +oo] be proper

rithm is guaranteed under suitable assumptions. Numerical ; . . :
: o ower semicontinuous convex functions. The problem is to
examples are provided that show an application of the algo-

rithm to image decomposition and restoration in the presenc minimize  f1(z1) + fo(x2) + @21, 22). (2)
of Poisson noise. w1 €RNL, w2 €RN2
Index Terms— Convex optimization, denoising, image Instances of Problem 1.1 have already been studied in
decomposition, image restoration, proximity operator. [2,3,4,5,7,9, 10, 13]. However, in each case, the coupling
function ¢ was differentiable, which excludes many impor-
1. INTRODUCTION ta_nt prob_ler_ns. The objective of the present paper is to remov
this restriction and to propose a proximal splitting metfard

An important problem in image processing is to decompos&©Ving (2)- , _
an image in two elementary structures. In the context of de- !N the nextsection, we provide some background on prox-
noising, this decomposition was achieved in [12] with a tomity oper_ators. In Sectlon_3, we introduce the ParalleMro
tal variation potential. In [10], a different potential wased ~Mal Algorithm (PPXA), which will be used to solve a decom-
to better penalize strongly oscillating components. The reP0Sed version of Problem 1.1, more amenable to numerical
sulting variational problem is not straightforward. Nufgar ~ Solution. Finally, in Section 4, we describe an applicatén
methods were proposed in [3, 13] and experiments were pe;!je proposed framework tp image .restoratlon and decomposi-
formed for image denoising and analysis problems based difP" in the presence of Poisson noise.
a geometry-texture decomposition. Another interestiradppr
lem is to extract meaningful components from a blurred and 2. PROXIMITY OPERATORS
noise-corrupted image. In the presence of additive Gaussia
noise, a decomposition into geometry and texture compsnent hroughout this paper, we denote R* the usual K-
is proposed in [2]. The method developed in the present pglimensional Euclidean space and byhe identity matrix.
per, will make it possible to consider general (not necessal o(R™) denotes the class of lower semicontinuous con-
ily additive and Gaussian) noise models and arbitrary fineavex functionsf: R* — ]—oo,+oc] which are proper in
degradation operator. In addition, it lends itself to theoin ~ the sense thaom f = {y € R¥ | f(y) < +oo} # @.
poration of various additional convex constraints and ffelra Let f € To(R¥). For everyy € R¥, the functionz
computing. f(2) + |ly — =||?/2 has a unique minimizer, which is denoted

In mathematical terms, our problem is to decompose aRY prox; z [11]. Thus, the proximity operator of is
imagez € R into the sum of a geometry and a texture com- 1
ponent, say prox;: y — argmin f(z) + 5 ly — 2|12 (3)

T=R; (Tl) + RQ(EQ), (1) 2€RK

This work was supported by the Agence Nationale de la Rebsamder L€t C' be a nonempty convex subset®f . Then.c denotes

grants ANR-08-BLAN-0294-02 and ANR-09-EMER-004-03. the indicator function of” (it takes on the valué in C and




+o0 in RE \ C), i C the relative interior of”, and, ifC'is  Theorem 3.1Let (y1.n)nenN, ---» (Ymn)nen b€ the se-

closed,Pc = prox,, its projection operator. For a detailed quences generated by the following routine.

account of the theory of proximity operators, see [9] and the

pioneering work in [11]. Closed-form expressions of proxim  Initialization

ity operators can be found in [7, 8, 9, 11] and the references | Sety e 10, +-00[ and take{w;}1<j<, C ]0,1]

therein. P

The following fact will be used subsequently. such thaty w; =1

j=1

Fori=1,....m
Forj=1,....p
L 8i,5,0 € R¥:

P
Yi,o = E Wy Si,5,0
j=1

Lemma 2.1 Letx > 0 and set

[ R = R: (q1,m2) — x/Im 2+ |n2]?. (4)

Then, for everyn;,n2) € R?,

Forn=0,1,...
prOXf(nlanQ)_ FOT]Zl,,p
X . [ (Qi '.n)1<i<m = ProX.; . ,(Sz‘.j n)1<i<m
1— ————|(n,m2), if /Im|>+n2l> > x; S Y[R TRIN SIS
< /|771|2+|772|2) Fori=1,....m
p
0,0 otherwise
(0,0), Yin+1 = ij i,g,n
j=1
3. DECOMPOSITION: PRODUCT SPACE PPXA Forj=1,....p
L L L Sigm+1 = Sigm + 2¥int1 — Yin — Gijn-
Problem 1.1 can be rewritten as (7
minimize  h(zy,z2) + @(z1, T2), (5) Then, for every € {1,...,m}, the sequencl@i,n)neN.con-
x1 €ERN1, 25 €RN2 verges to a poiny; € R%: and(yi,...,yx) is a solution to
Problem 3.1.

whereh: (z1,22) — fi(z1) + f2(z2). Sinceh is separa-
ble, proxy,: (z1,22) = (prox;, z1,prox;, x2). Hence, if

the proximity operators of; and f> are easily computable,
so isprox,,. In addition, if prox,, were also easy to imple-

4. EXPERIMENTAL RESULTS

We illustrate the use of the proposed product space PPXA in

mslznt, t5her|1_| Douglas_—Rachford spl|tt|trr1]g [8] c_ou_ld be usfd Yhe context of a simple geometry-texture decompositiomfro
solve (5). However, in many cases, the proximity operator o degraded observation. In our scenario, the observed im-

the_couplmg tgrm,a will not be epr|C|t.. Qur strategy is to age- € RV of Figure 2 (V — 512 x 512) is obtained by
derive an equivalent decomposed variational formulatipn bblurring the original electron microscopy imagec RY of
introducing auxiliary variables and functions. This deeom Figure 1 with a matrix” € RN, which models a uniform

posed problem assumes the following form. blur of size5 x 5. Furthermoreg is contaminated by a Pois-
son noise with scaling parameter= 0.6. We consider a
Problem 3.1 Let (%) <<, be proper lower semicontinuous simple instance of (1) with a linear mixture modal; = N,
convex functions fronR%s x ... x REm to]—oco, +oo] sat-  Ry: a1 — z1, andRy: x5 — F 'y, whereFT ¢ RNV*Ne
isfying()_, ridom h; # @. The problem is to is a linear tight frame synthesis operator. In other worids, t
information regarding the texture component pertains & th
o P coefficientsz, of its decomposition in the frame. The tight-
Jyeptinimize ; hj(yis - ym), ()  ness condition implies that

, , _ F'F =vl, for somev € |0, 400]. (8)
under the assumption that a solution exists.

_ . ) The original image is therefore decomposedras- z; +

In practice, the objective is to choose functighs) <<, FT%,. Itis known a priori tha& € C; N Cs, whereC =

for which the proximity operatoréprox;, )i<;<, are easily 1y 955N models the constraint on the numerical range of the
implementable. In turn, this allows us to solve Problem 3-1pixe|s and

by applying [7, Theorem 3.4] in the Euclidean sp&& x

... x REm as follows. .
Cy = {x e RN | T = (mk)1<k<n, Z Ine|? < 5} 9

kel



models an energy bound in the frequency domaid€notes In [1], a similar reformulation is considered in the case whe
the 2D Discrete Fourier Transform (DFT) of the imagand  m = 2, and solved by an alternating direction method of mul-
I corresponds to some set of discrete frequency indices). ftipliers.

addition, to limit the total variation of the geometricalnce The proximity operators associated with and D(z, -)

ponent, we use the potential— (Hz, V), with can be obtained from [9]. On the other hapthx,, is derived
from Lemma 2.1 and, as seen earlipfoxLCl = Pg, and

N _ .
prox, . = Pc,. Furthermore, if we set

v (()1<esn, (Gehrshen) = x D VIl + 1P, e
FT -1 0 0

k=1 I 0
(10) 0o 0 T -1 0 0

wherey € 0, +oc[, and whered € RV*YN andV € RV*V L=1lg 0o o o -1 o} (16)
are matrix representations of the horizontal and vertical d VvV o0 0 0 0 -I

crete differentiations, respectively. Furthermore, torpote we deduce from (15) thats = 1o, o L. Lastly, since the ma-

the sparglty in the frame of the texture component of the ImfricesT, H, andV are associated with periodic convolution
age, we introduce the potential

operators, they are diagonalized by the DFT. Hence, using

N (8), prox;,, can be deduced from the well-known expression
fo: (M) 1<k<n, — Z T (11)  of the projection onto the kernel di.
o =1 The convergence of the employed algorithm is guaranteed

under the assumptions of Problem 3.1. SineéC, N Cy) #
o, these assumptions are satisfied due to the fact/tmabd-
els a uniform blur and thus has positive entries and eack of it
lines is nonzero.
Figure 3 shows the results of the decomposition into ge-
min Y(Hzy, Vo) + folxe)+D(z, To1+TF Tzy),  Oometry and texture components. The paramgtef (10) and
xleRN,TmeRN? the parameter&r )1 <x<n, Of (11) are selected so as to max-
iiiirizgg; imize the signal-to-noise ratio (SNR). The matfixs a tight
(12) frame version of the dual-tree transform proposed in [6] us-
which is a particular case of (2) witfy : 2 — ¢(Hxz,Vz)  ing symlets of length 6 over 3 resolution levels £ 2 and
and N> = 2N). The same discrete gradient matridésandV as
in [7, Section 4.2] are used.

where {7 }1<k<n, C ]0,+oc[. Finally, as a data fidelity
term, we use the generalized Kullback-Leibler divergebce
which is well adapted to Poisson noise. Altogether, we arriv
at the variational problem

o: (z1,22) — D(2,Tx1 + TFT:EQ)+
Loy (21 + FTxg) + 1oy (x1 + FTxg). (13)

Sinceprox,, andprox, are not easily computable, a strategy
is to decompose (12) into the equivalent problem

min w(yf)ayfi) +f2(y2) +D(Zay4)a (14)
(Y1,Y2,Y3,Y4,Y5,Y6)
ys=y1+F " y2
y3€C1, y3€Cs
ya=Ty3
ys=Hy1, y6=Vu1

where we have changed the variables, z2) into (y1,y2) P
and introduced the auxiliary variablégs, y4,ys, ys). Prob- A
lem (14) is a particular case of (6) with = 6, p = 3, : A

K1=K3:K4:K5=K6=N,K2=N2,and

Fig. 1. Original imagez.
hi: (y1,---,96) = f2(y2) +tcy (y3) + D(z,y4)
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Fig. 2. Degraded image: SNR = 15.7 dB — SSIM = 0.55.
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