A proximal approach for constrained cosparse modelling

Abstract : The concept of cosparsity has been recently introduced in the arena of compressed sensing. In cosparse modelling, the ℓ0 (or ℓ1) cost of an analysis-based representation of the target signal is minimized under a data fidelity constraint. By taking benefit from recent advances in proximal algorithms, we show that it is possible to efficiently address a more general framework where a convex block sparsity measure is minimized under various convex constraints. The main contribution of this work is the introduction of a new epigraphical projection technique, which allows us to consider more flexible data fidelity constraints than the standard linear or quadratic ones. The validity of our approach is illustrated through an application to an image reconstruction problem in the presence of Poisson noise.
Type de document :
Communication dans un congrès
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on, Mar 2012, Kyoto, Japan. pp.3433 - 3436, 2012, 〈10.1109/ICASSP.2012.6288654〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00826002
Contributeur : Giovanni Chierchia <>
Soumis le : mardi 28 mai 2013 - 06:38:31
Dernière modification le : jeudi 9 février 2017 - 15:20:14
Document(s) archivé(s) le : mardi 3 septembre 2013 - 09:41:08

Fichier

icassp2012.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Giovanni Chierchia, Nelly Pustelnik, Jean-Christophe Pesquet, Béatrice Pesquet-Popescu. A proximal approach for constrained cosparse modelling. Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on, Mar 2012, Kyoto, Japan. pp.3433 - 3436, 2012, 〈10.1109/ICASSP.2012.6288654〉. 〈hal-00826002〉

Partager

Métriques

Consultations de
la notice

586

Téléchargements du document

140