
HAL Id: hal-00825414
https://hal.science/hal-00825414

Submitted on 23 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimizing Calibrated Loss using Stochastic Low-Rank
Newton Descent for large scale image classification

Wafa Bel Haj Ali, Michel Barlaud, Richard Nock

To cite this version:
Wafa Bel Haj Ali, Michel Barlaud, Richard Nock. Minimizing Calibrated Loss using Stochastic Low-
Rank Newton Descent for large scale image classification. 2013. �hal-00825414�

https://hal.science/hal-00825414
https://hal.archives-ouvertes.fr


Technical report
Minimizing Calibrated Loss using

Stochastic Low-Rank Newton Descent for
large scale image classification

Wafa BelHajAli, Richard Nock, Michel Barlaud

April 18, 2013

Contents

1 Introduction 2

2 Calibrated risks 3

3 SLND: Stochastic Low-Rank Newton Descent 4
3.1 Computing gradient update . . . . . . . . . . . . . . . . . . . . . 4
3.2 Core optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Experimental evaluation 7
4.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Tuning parameters of SLND . . . . . . . . . . . . . . . . . . . . 8
4.3 Convergence rate analysis . . . . . . . . . . . . . . . . . . . . . . 11

5 SLND Theoretical convergence analysis 13
5.1 Best rank k approximation . . . . . . . . . . . . . . . . . . . . . 13
5.2 A Weak Separability Assumption . . . . . . . . . . . . . . . . . . 13
5.3 Convergence theorem . . . . . . . . . . . . . . . . . . . . . . . 14

6 Conclusion 15

7 Appendix : proofsketch of Theorem 2 17

1



Abstract

A standard approach for large scale image classification involves high
dimensional features and Stochastic Gradient Descent algorithm (SGD) for
the minimization of classical Hinge Loss in the primal space. Although com-
plexity of Stochastic Gradient Descent is linear with the number of samples
these method suffers from slow convergence. In order to cope with this issue,
we propose here a Stochastic Low-Rank Newton Descent (SLND) for min-
imization of any calibrated loss in the primal space. SLND approximates
the inverse Hessian by the best low-rank approximation according to squared
Frobenius norm. We provide core optimization for fast convergence. Theo-
retically speaking, we show explicit convergence rates of the algorithm using
these calibrated losses, which in addition provide working sets of parame-
ters for experiments. Experiments are provided on the SUN, Caltech256 and
ImageNet databases, with simple, uniform and efficient ways to tune remain-
ing SLND parameters. On each of these databases, SLND challenges the
accuracy of SGD with a speed of convergence faster by order of magnitude.

1 Introduction

Large scale image classification requires computational efficiency. To cope with
these issues, current standard approaches involves involves high dimensional fea-
tures like Fischer Vectors [16] or super vectors and Support Vector Machines (SVM)
with linear kernels for training [21].

The classical approach introducing SVM first state dual formulation [19] where
the task is to minimize empirical loss with a regularization term.

The first alternative approach on primal optimization [11] used conjugate gra-
dient or cutting plane algorithms [9].

Recent state of the art papers focus on the more efficient stochastic gradient
descent algorithm SGD[24, 5] , the ”PEGASOS” algorithm [18], with linear com-
plexity in the number of samples.

Although SGDdescent methods perform as well as batch solvers at a fraction
of cost, they still suffers from slow convergence. Two approaches were recently
proposed in order to cope with this issue. The first is the natural gradient approach,
which incorporates the estimation of the Riemannian metric tensor using Fisher
information [1].

The second alternative approaches are based on a stochastic version of the quasi
Newton Broyden-Fletcher-Golfarb-Shanno (BFGS) optimization algorithm. The
first one is a low memory stochastic version of the BFGS quasi Newton method
[17]. Although their oBFGS method reduces the number of iterations, each itera-
tion requires a multiplication by a low rank matrix. Unfortunately this computa-
tional complexity is often larger than the gains associated with the quasi-Newton

2



update as pointed in [3]. In order to cope with this complexity [3, 4] proposed
a ”SGD-QN” algorithm with an update using the diagonal of the Hessian matrix.
Unfortunately there are no proof of convergence of their ”SGD-QN” algorithm.

Our high-level contribution is a new stochastic Low-Rank Newton scheme and
experimental validations on three large and challenging domains: SUN and Cal-
tech256 and ImageNet. To be more specific, the novelty of our paper includes:

(i) a new Stochastic Newton descent algorithm, SLND, which approximates the
inverse Hessian by a low-rank approximation which we prove is the best ac-
cording to the squared Frobenius norm. SLND minimizes any classification
calibrated risk, that may ensure convergence towards Bayes rule;

(ii) the proof of convergence of SLND, which provides rates of convergence
and working set of parameters for the experiments, including the step size
parameter ηt, typically in the order Ω(1/m);

(iii) experimental results display that SLND has linear complexity both in term
of the number of samples and the dimension of the features and challenges
the accuracy of SGDwhile being a magnitude faster.

The remaining of the paper is organized as follows: Section 2 presents calibrated
risks, Section 3 provides our new algorithm SLND with several key steps for its
core optimization. Section 4 presents experiments on large data sets, Section 5
presents convergence proof of our new algorithm SLND and Section 6 conclude
the paper.

2 Calibrated risks

We first provide some definitions. Our setting is multiclass, multilabel classifica-
tion. We have access to an input set of m examples (or prototypes, or samples),
S

.
= {(xi,yi), i = 1, 2, ...,m}. Vector yi ∈ {−1,+1}C encodes class member-

ships, assuming yic = +1 means that observation xi belongs to class c. A classifier
h is a function mapping observations to real-valued vectors in RC . Given some ob-
servation x, the sign of coordinate c in h(x), hc, gives whether h predicts that
x belongs to class c, while its absolute value may be viewed as a confidence in
classification.

To learn this classifier h, we focus on the minimization of a total risk which
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sums per-class losses:

εF(h, S)
.

=
1

C

C∑
c=1

1

m

m∑
i=1

F(yichc(xi))︸ ︷︷ ︸
εF(hc,S)

. (1)

Recent advances in classification allow to precisely define constraints with
whom such losses have to comply, to meet statistical and computational proper-
ties particularly desirable in handling large, complex and noisy classification prob-
lems [2, 14, 20]. There are three constraints: F is convex, differentiable and meets
F (x) = −x+

∫
f , where f : R→ [0, 1] is increasing and symmetric with respect

to (0, 1/2 = f(0)). Details are out of the scope of this paper, but the fundamental
intuition is that f directly maps a real valued prediction hc to a posterior estimation
for class c. This last constraint ensures that the loss at hand F is Fisher consistent
and proper, properties with which convenient form of convergence to Bayes rule
are accessible through minimizing (1). We call losses that meet these constraints,
and the total risks by extension, as classification calibrated. Examples of classifi-
cation calibrated losses include the squared and the logistic losses. In this paper,
we first consider the logistic loss:

Flog(x)
.

= ln(1 + exp(−x)) . (2)

We also consider a classification calibrated version of the popular but not differen-
tiable Hinge loss (hinge(x)

.
= max{0,−x}, proof omitted):

Fhinge(x)
.

= hinge(x)− ln(2 + |x|) . (3)

Fig 1 shows the logistic loss and the calibrated Hinge loss. We also plot Hinge
loss and the exponential loss for comparison. Note that F′′(x) ≤ F′′(0) for the
calibrated losses (2) and (3).
Remark: there is no regularization term in (1), which is quite non-standard if we
refer to the classical SVM or SGD approaches [3]. In fact, the iterative minimiza-
tion we carry out for (1) explicitly integrates a “sparsity” term in the form of low
rank updates of the classifier h.

3 SLND: Stochastic Low-Rank Newton Descent

3.1 Computing gradient update

To carry out the minimization of (1), we adopt a mainstream 1-vs-rest training
scheme which is more efficient among different approaches [15, 22]. For each class
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Figure 1: Calibrated losses F : the logistic and calibrated Hinge losses considered
in this paper.

c = 1, 2, ..., C, we carry out separately the minimization of εF(hc, S) in εF(h, S).
To do so, it fits the cth component of w by considering the two-class problem of
class c versus all others. In what follows, we thus drop c to simplify notations.

In this paper we focus on the classical linear classifier defined as h(xi) =
w>xi. The Goal is to learn w for each class c = 1, 2, ..., C minimizing the follow-
ing criterion:

εF(w, S)
.

=
1

m

m∑
i=1

F(yicw
>xi) . (4)

To approximate the optimal w∗, we carry out stochastic Newton updates of a cur-
rent w, noted wt. At iteration t, we pick randomly a sample xi ∈ S and perform
the update:

wt+1 = wt − ηt
(
∂2εF(wt, xi)

∂2wt

)−1
∂εF(wt, xi)

∂wt︸ ︷︷ ︸
∆wt

, (5)
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where ηt > 0 controls the strength of the update, the first derivative or the gradient
∇ is:

∂εF(wt, xi)

∂wt
= yiF′

(
yiw

T
t xi
)
xi , (6)

and the second derivative, or the Hessian H, is:

∂2εF(wt, xi)

∂2wt
= F′′

(
yiw

T
t xi
)
xix

T
i . (7)

Computing the inverse of such a Gram matrix is an ill posed problem as the rank of
H is one. Computing a pseudo-inverse is possible but on such pointwise estimates,
the effect of noise in data can be dramatic for generalization [3]. We circumvent
these problems by first replacing H by its average over a subset of m′ ≤ m exam-
ples, which increases its rank. H becomes an estimation of the covariant matrix
computed over the subset of examples. Then, for some typically small k > 0, we
compute a low-rank pseudo-inverse, i.e. a low-rank approximation of its inverse,
H∗, as follows, where rank(H′) = k is user-fixed. First, we perform a diago-
nalization of H = PDP> where (non-negative) diagonal values are ordered in
decreasing order, d11 ≥ d22 ≥ ... ≥ duu = 0 = ...dnn, where u ≥ k. Denote P|k
the m × k matrix containing the first k columns of P, and resp. D|k as the k × k
diagonal matrix of their eigenvalues. We finally compute H∗:

H∗ = P|kD
−1
|k P>|k . (8)

The update (5) becomes:

wt+1 = wt − ηtyiF ′
(
yiw

T
t xi
)
H∗xi . (9)

3.2 Core optimization

Since we use 1-vs-rest training scheme, the training set is usually highly unbal-
anced when the number of class increases, examples not in class c outnumbering
those in class c, for any c. When class c is a minority class, this is even more dra-
matic. To dampen the negative consequences, we follow the sampling balancing
approach proposed by [15]. When learning class c against the rest, we use all ex-
amples from class c (the positives), while sampling a subset of the rest of the other
classes (the negatives) of the same size.

Furthermore, in order to optimize computational complexity, once H∗ is com-
puted, we precompute for all the training set a weighted preprocessing of the fea-
tures:

x∗i = H∗xi . (10)
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Notice that this is done only once for a given H∗. This saves significant training
time and the computational complexity of each iteration in SLND is basically of
the same order as classical SGD [3]. The final update in SLND is:

wt+1 = wt − ηtyiF ′
(
yiw

T
t xi
)
x∗i . (11)

Finally, the tuning of ηt is a non-trivial problem for gradient or Newton approaches
[3]. In general, small positive values are chosen but little can be said as to whether
convergence holds, and if so, under which rates. We prove an explicit convergence
rate for SLND in Theorem 2 hereafter which provides us with expressions for ηt
typically in the order Ω(1/m) and O(1/

√
m). The values we have chosen in our

implementation of SLND belong to this range and are thus compatible with the
formal convergence rates shown for SLND.

3.3 Remarks

There are several comparisons to make about SLND with respect to other promi-
nent approaches. First, SLND is not related to (linear) SVM, as there is no regu-
larization term in the criterion (4), which explains the difference between the right
hand-side term in wt in (4) and the term in (1 − λ)wt which would follow from
the classical linear SVM cost function, where λ controls the strength of regular-
ization [3]. Also, SLND is significantly different from dimensionality reduction
techniques like PCA or general non-linear manifold learning, which would carry
out dimensionality reduction as a preconditioning on data and on w, thus working
on the reduced domain. Notice also that (10) is not a preconditioning of data, as
each iteration in (11) makes use of both xi and x∗i . In addition, SLND is also
different from the quasi newton (L)BFGS family [13] [17] as the approximation to
the Hessian inverse is carried out in a different way. Moreover SLND differs from
quasi-Newton methods for SVM [3] since we do not restrict the Hessian approxi-
mation to be diagonal (thus omitting all covariance terms). Finally, SLND is not a
natural gradient approach (which incorporates Riemannian metric tensor [1]) and
thus SLND does not require the computation of the Fisher information matrix.

4 Experimental evaluation

4.1 Settings

We mainly report and discuss experiments of SLND versus SGD which represents
the state of art among the classifiers on large scale datasets [24, 5] , [18], [15].
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We use Fisher vectors (FV) [16] as efficient features to represent images.
Fisher Vectors are computed over densely extracted SIFT descriptors (FVs) and lo-
cal color features (FVsc), both projected with PCA in a subspace of dimension 64.
Since the goal of the paper is to compare SLND versus SGDwe use Fisher Vec-
tors using a vocabulary of only 16 Gaussian to limit memory requirement. Each
Fisher Vectors are normalized separately for both channels and then combined by
concatenating the two features vectors (FVs+sc). This approach leads to to a 4K
dimensional features vector.

We report experimental results on three datasets, Caltech256, SUN and Ima-
geNet which are among the most challenging datasets publicly available for large
scale image classification:

• Caltech256 [8]: This dataset is a collection of 30607 images of 256 object
classes. Following classical evaluation, we use 30 images/class for training
and the rest for testing.

• SUN [23]: This dataset is a collection of 108656 images divided into 397
scenes categories. We set the number of training images per class to 50 and
we test on the remaining.

• ImageNet [6]: We use the dataset of the ImageNet Large Scale Visual Recog-
nition Challenge 2010 (ILSVRC2010)1 with its 1000 categories. It provides
1.2M of images for training step and 150K for testing.

To compare algorithms, we use top1 and top5 accuracies (ACC), defined re-
spectively as the proportion of examples that was correctly labelled and the pro-
portion of those for which the correct class belongs to the top5 predicted images
[12]. We first analyse parameter of SLND and then the convergence of SLND.

4.2 Tuning parameters of SLND

Our algorithm requires the tuning of only three parameters: the step size parameter
ηt , the rank k and the number of sample m′ for the computation of the covariance
matrix. The step size parameter ηt is typically in the order Ω(1/m).
Let us study the influence of parameters k and m′.

1http://image-net.org/challenges/LSVRC/2010/index
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Figure 2: Eigenvalues of the covariance matrix on Caltech256 (left), SUN (center)
and ImageNet (right).
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Figure 3: Accuracy as a function of the rank of the Hessian matrix on Caltech256
(blue), SUN (red) and ImageNet (green).
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Figure 4: Accuracy as a function of the number of samples used for the computa-
tion of the Hessian matrix on Caltech256 (blue), SUN (red) and ImageNet (green,
see text).

Fig 2 shows the eigenvalues of the covariance matrix, ordered from the largest
to the smallest. All curves have the same sigmoid shape, and our choices of k
ensure that we get all the significantly large eigenvalues. Recall that although the
covariance matrix is positive-definite, the condition number is very large resulting
in an ill-conditioned problem.

In order to cope with this issue, we study the accuracy as a function of the rank
of the inverse of the Hessian: Fig 3 shows that accuracy curve has its max in a large
rank plateau, and furthermore this plateau is similar regardless of the domain. Fig 4
shows the accuracy as a function of samples m′ used for computing the covariance
matrix. Fluctuations of m′ imply fluctuations in the accuracy, but the range of the
accuracy is not very large for reasonable values of m′.

To summarize, the eigenvalues curve, the curve accurary as a function of the
rank k and to a lesser extent the curve accuracy as a function of m′ have the same
behavior for all databases. Thus, based on the above-experiments, both rank k and
m′ in SLND can be quite easily tuned.
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4.3 Convergence rate analysis
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Figure 5: Top1 accuracies as a function of number of passes (iterations / skips) for
SGD and SLND on Caltech256
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Figure 6: Top1 accuracies as a function of number of passes (iterations / skips) for
SGD and SLND on SUN.

Training time and convergence of algorithms are very important for large scale data
base processing.
We plot on fig 5 and 6 the convergence of SGD with logistic loss, SLND both
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for Logistic Loss and calibrated Hinge Loss and SGD-QN for logistic Loss on
Caltech256 and SUN data bases. One sees from the plots that the convergence
of our Stochastic Low-Rank Newton approach SLND is a magnitude faster than
the classical SGD. Note that accuracy of Logistic Loss and calibrated Hinge Loss
SLND are very similar. Accuracy of SGD-QN is very close to SGD; we get
similar results when using only a diagonal approximation of the Hessian matrix in
our SLND method.
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Figure 7: Accuracies as a function of number of passes for SGD and SLND on
ImageNet. On top, the top-1 accuracy and at the bottom the top-5 accuracy.

Plots of convergence in Fig 7 on ImageNet shows again that SLND is faster
of a magnitude than classical SGD both for the top-1 accuracy and top-5 accu-
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racy. Training using SLND with 10 passes on 1,2 millions samples requires only
one CPU hours while training SGD requires 20 CPU hours on a 2 X Intel Xeon
E5-2687W 3,1GHz and 64 GB of RAM. Thus fast convergence of SLND results
in sparse training set requirement well adapted for large scale image classification.
Moreover SLND improves significantly accuracy of the SGD baseline.

5 SLND Theoretical convergence analysis

5.1 Best rank k approximation

We first show that H∗, as computed in (8), is the best rank k approximation of the
inverse of H according to squared Frobenius norm.

Lemma 1 H∗ satisfies:

H∗ = min
H′∈Rm×m,rank(H′)=k

‖I−HH′‖2F (12)

Proof: We use the fact that H = PDP>, PP> = I and trace tr is cyclic in-
variant, and we have: ‖I −HH′‖2F = tr((I −HH′)(I −HH′)) = tr(PP>(I −
HH′)PP>(I−HH′)) = tr(P>(I−HH′)PP>(I−HH′)P) = tr((I−D(P>H′P)))2),
out of which is comes that P>H′P is diagonal, and so H′ can be diagonalized in
the same basis as H. Finally, to minimize the squared Frobenius norm, the non
zero entries in its diagonal must equal the k greatest non-zero entries in D.

5.2 A Weak Separability Assumption

We now prove a convergence result on SLND. For this objective, we define ptj
.

=
−F′(yjw>t xj) ≥ 0 as a weight over the examples. For any classification calibrated
loss, −F′ is decreasing. Hence, weight ptj is all the smaller as example j is all the
better classified by wt. Intuitively, an example gets better classified as yj agrees
with the sign of w>t xj and the magnitude |w>t xj | is large. We let pt ∈ Rm be the

vector of weights. We let x◦j
.

= (P|k
√
D−1
|k )>xj denote vector xj expressed in the

normalized eigenvectors’ basis of H∗ (8). Finally, we define st ∈ Rm as the vector
whose coordinates are:

stj
.

= yjx
>
j H
∗xit = yj(x

◦
j )
>x◦it , ∀j , (13)

where example it is the one chosen to update wt in (11).
Our result relies on the following Weak Separability Assumption:
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• (WSA) There exists γ > 0 a constant such that for any iteration t in SLND,

p>t st
‖st‖1

≥ γ . (14)

x◦
it

x◦
3

y2 = −1x◦
2

y1 = +1

y3 = −1

x◦
1

H

Figure 8: x◦it is a better classifier for examples 1 and 2 (st1, st2 > 0) than it is for
example 3 (st3 < 0).

To interpret WSA and see why it is indeed a Weak Separability Assumption, con-
sider the interpretation of st and assume x◦it is used as a linear classifier. Then,
stj ≥ 0 iff the class yj agrees with the sign of this classifier, and it is all the larger
as the classifier’s output is large. On the other hand, stj ≤ 0 iff the class yj dis-
agrees with the sign of the classifier, and it is all the smaller as the classifier’s output
is large. Hence, stj quantifies the goodness of fit of classifier x◦it on xj (see Figure
8). Thus, p>t st is a weighted average of this goodness of fit, in which weights are
all the larger as examples have received a bad fitting so far by wt. Hence, WSA
implies that xit must contribute to classify better at least a small fraction of the
examples with respect to wt. To see why it is “Weak”, informally, picking xit at
random in any set satisfying mild constraints would make an expected value of
p>t st equal to zero. So, we require the choice of xit in SLND to beat a random
linear classifier by at least a small amount. For the informed reader, the WSA par-
allels in our setting the popular weak learning assumptions in boosting algorithms
[7].

5.3 Convergence theorem

The following Theorem shows that under the WSA, there exists a guaranteed de-
crease rate of the calibrated risk at each iteration, and this holds for whichever of
the logistic and calibrated Hinge loss chosen to run SLND. The result would also
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hold for various other possible choices of classification calibrated losse, including
the squared loss.

Theorem 2 Assume WSA is satisfied at each step of SLND. Then, for any ε ∈
(0, 1) there exists a value of ηt in Ω(1/m) and O(1/

√
m) such that the following

rate of decrease is guaranteed for the calibrated risk at hand:

εF(wt+1, S) ≤ εF(wt, S)− 2γ2ε(1− ε)
mF′′(0)

,∀t . (15)

Since SLND is initialized with w0 = 0, the null vector, to guarantee εF(wT , S) ≤
F◦ for any chosen real F◦ ≤ F(0) such that F◦ is in the image of F, it is enough to
make

T ≥ (F(0)− F◦)F′′(0)

2γ2ε(1− ε) ×m = Ω

(
m

γ2

)
iterations of SLND. In order not to laden the paper’s body, a proofsketch of the
Theorem is provided in an Appendix. The proof exhibits and discusses the expres-
sion of ηt which guarantees (15).

6 Conclusion

In this paper we have proposed a new Stochastic Low Rank Newton descent algo-
rithm (SLND) for the minimization of calibrated risk with linear complexity both
in term number of samples and dimension of the features. SLND performs update
of the current classifier with pseudo-inverses of the Hessian that are the most ac-
curate low-rank approximations of the inverse according to Frobenius norm. We
show the convergence of SLND using a Weak Separability Assumption which
states that each example chosen to update the classifier must provide a weighted
margin at least larger than some (possibly small) constant γ > 0. Under this weak
assumption, SLND guarantees that its classifier has reached some fixed upper-
bound on the claibrated risk at hand after Ω(m/γ2) iterations. No convergence
rates are known to date for SGD-like approaches. Furthermore, the theory pro-
vides us with a set of working parameters for the experiments, including a step
parameter ηt typically in the order Ω(1/m).

We validate these theoretical properties by benchmarking it against state-of-
the-art SGD algorithm on three challenging domains: Caltech256, SUN and Ima-
geNet. The results on large scale image classification display that SLND improves
significantly accuracy of the SGD baseline while being faster by orders of magni-
tude. Experiments also display that the parameters of SLND may be easily fixed
and used from a domain onto another.
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7 Appendix : proofsketch of Theorem 2

In order to make it fit into the paper, we sketch the proof of the Theorem. To make
it more readable, the proofsketch is partitioned into blocks starting by symbol “•”.
The proofsketch of Theorem 2 involves there steps: • Bregman divergence estima-
tion • Calibrated loss properties •Weak Separability Assumption.

We first make some simplifications in notations. We remove the c subscript and
make the analysis for class c, and thus focus on the analysis of εF(hc, S), noted for
short εF(h, S). To avoid confusion, we also rename example chosen at iteration t
in (11) as example it, so that (11) reads:

wt+1 = wt − ηtyitF ′
(
yitw

T
t xit

)
x◦it . (16)

• Bregman divergence estimation: let us define the Legendre conjugate and the
notion of Bregman divergence. F̃(x)

.
= F?(−x), where ? denotes the Legendre

conjugate (F?(x)
.

= x(F′)−1(x)− F((F′)−1(x))), and DF̃(u‖v)
.

= F̃(u)− F̃(v)−
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(u− v)F̃
′
(v) denotes the Bregman divergence with generator F̃ [14].

We get the following equality

εF(wt+1, S)− εF(wt, S)

=
1

m

m∑
i=1

F(yicw
>
t+1xi)−

1

m

m∑
i=1

F(yicw
>
t xi)

= − 1

m

m∑
i=1

DF̃(p(t+1)i‖pti)

−ηt
m

m∑
i=1

p(t+1)iyiyitπ(it, i) , (17)

where

π(i, it)
.

= ptitx
>
itH

?xi = ptit(x
◦
i )
>x◦it , (18)

• Calibrated loss properties: since F′′(x) ≤ F′′(0) for the classification calibrated
losses we consider, we also have the following quadratic lower-bound which can
be obtained following [10]:

m∑
i=1

DF̃(p(t+1)i‖pti) ≥
1

2F′′(0)

m∑
i=1

(p(t+1)i − pti)2 . (19)

Cauchy-Schwartz inequality brings:

m∑
i=1

(yiyitπ(it, i))
2

m∑
i=1

(p(t+1)i − pti)2 (20)

≥
(

m∑
i=1

yiyitπ(it, i)(p(t+1)i − pti)
)2

. (21)

Define for short vt
.

=
∑m

i=1 p(t+1)iyiyitπ(it, i), et
.

=
∑m

i=1 ptiyiyitπ(it, i) and
Πt

.
=
∑m

i=1 π
2(it, i). Plugging (19) and (21) into (17) and simplifying, we obtain:

εF(wt+1, S)− εF(wt, S)

≤ − (vt − et)2

2F′′(0)mΠt
− ηtvt

m︸ ︷︷ ︸
.
=

∆t(vt)
m

. (22)
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• ∆t(vt) takes its maximum for vt = v◦ = et − F′′(0)ηt
∑m

i=1 (yiyitπ(it, i))
2 =

et − F′′(0)ηtΠt, for which we have:

∆t(v
◦) =

F′′(0)ηtΠt

2
×
(
ηt −

2et
F′′(0)Πt

)
.

Assume we pick, for some ε ∈ (0, 1):

ηt
.

=
2(1− ε)et
F′′(0)Πt

. (23)

For this choice of ηt, we have:

∆t(v
◦) = −2ε(1− ε)

F′′(0)
ρ(it,H

∗) , (24)

with

ρ(it,H
∗) .

=

(∑m
i=1 ptiyi(x

◦
i )
>x◦it

)2∑m
i=1 ((x◦i )

>x◦it)
2

.

•Weak Separability Assumption: Now, the Weak Separability Assumption implies
|∑m

i=1 ptiyi(x
◦
i )
>x◦it | ≥ γ‖st‖1 ≥ γ‖st‖2 = γ

√∑m
i=1 ((x◦i )

>x◦it)
2, which leads

to ρ(it,H
∗) ≥ γ2.

Finally, the fact that ∆t(vt) ≤ ∆t(v
◦) and (24) imply:

∆t(vt) ≤ −2γ2ε(1− ε)
F′′(0)

.

Plugging this into (22) achieves the proof of the theorem.
Remarks on ηt (23) gives, under the WSA:

ηt =
2(1− ε)∑m

i=1 ptiyiyitπ(it, i)

F′′(0)Πt

=
2(1− ε)γ′‖st‖1

F′′(0)|ptityit |‖st‖22
,

for some γ′ ≥ γ > 0 as in the WSA. Because ‖st‖2 ≤ ‖st‖1 ≤
√
m‖st‖2, it

comes:

2(1− ε)γ′
F′′(0)ptit‖st‖1

≤ ηt ≤
2(1− ε)γ′√m
F′′(0)ptit‖st‖1

.
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Letting µt
.

= (1/m)
∑m

i=1 |(x◦i )>x◦it | denote the average value of |stj |, we obtain:

2(1− ε)γ′
mF′′(0)ptitµt

≤ ηt ≤
2(1− ε)γ′√
mF′′(0)ptitµt

.

Hence, omitting ptit in big-Oh notations to simplify the analysis, the value ηt
which guarantees the rate of convergence of Theorem 2 is indeed roughly between
Ω(1/m) and O(1/

√
m).
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