Second Order PDEs with Dirichlet White Noise Boundary Condition

Abstract : In this paper we study the Poisson and heat equations on bounded and unbounded domains with smooth boundary with random Dirichlet boundary conditions. The main novelty of this work is a convenient framework for the analysis of such equations excited by the white in time and/or space noise on the boundary. Our approach allows us to show the existence and uniqueness of weak solutions in the space of distributions. Then we prove that the solutions can be identified as smooth functions inside the domain, and finally the rate of their blow up at the boundary is estimated. A large class of noises including Wiener and fractional Wiener space time white noise, homogeneous noise and Lévy noise is considered.
Type de document :
Pré-publication, Document de travail
2013
Liste complète des métadonnées

https://hal.inria.fr/hal-00825120
Contributeur : Francesco Russo <>
Soumis le : jeudi 23 mai 2013 - 08:26:28
Dernière modification le : jeudi 5 janvier 2017 - 01:52:52
Document(s) archivé(s) le : samedi 24 août 2013 - 03:20:09

Fichiers

bgpr_22-05-13_submitted.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00825120, version 1
  • ARXIV : 1305.5324

Collections

Citation

Zdzislaw Brzezniak, Ben Goldys, Szymon Peszat, Francesco Russo. Second Order PDEs with Dirichlet White Noise Boundary Condition. 2013. 〈hal-00825120〉

Partager

Métriques

Consultations de
la notice

186

Téléchargements du document

109