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THE NON-LINEAR GEOMETRY OF BANACH SPACES AFTER
NIGEL KALTON

G. GODEFRQY, G. LANCIEN, AND V. ZIZLER

Dedicated to the memory of Nigel J. Kalton

ABSTRACT. This is a survey of some of the results which were obtained in the
last twelve years on the non-linear geometry of Banach spaces. We focus on the
contribution of the late Nigel Kalton.

1. INTRODUCTION

Four articles among Nigel Kalton’s last papers are devoted to the non-linear
geometry of Banach spaces ([55], [56], [57], [58]). Needless to say, each of these
works is important, for the results and also for the open problems it contains. These
articles followed a number of contributions due to Nigel Kalton (sometimes assisted
by co-authors) which reshaped the non-linear geometry of Banach spaces during the
last decade. Most of these contributions took place after Benyamini-Lindenstrauss’
authoritative book [12] was released, and it seems that they are not yet accessible
in a unified and organized way. The present survey adresses this need, in order to
facilitate the access to Kalton’s results (and related ones) and to help trigger further
research in this widely open field of research. Nigel Kalton cannot be replaced,
neither as a friend nor as the giant of mathematics he was. But his wish certainly
was that research should go on, no matter what. This work is a modest attempt to
fulfill this wish, and to honor his memory.

Let us outline the contents of this article. Section 2 gathers several tables, whose
purpose is to present in a handy way what is known so far about the stability of
several isomorphic classes under non-linear isomorphisms or emdeddings. We hope
that this section will provide the reader with an easy access to the state of the
art. Of course these tables contain a number of question marks, since our present
knowledge is far from complete, even for classical Banach spaces. Section 3 displays
several results illustrating the non-trivial fact that asymptotic structures are some-
what invariant under non-linear isomorphisms. Section 4 deals with embeddings of
special graphs into Banach spaces, and the use of such embeddings for showing the
stability of certain properties under non-linear isomorphisms. The non-separable
theory is addressed in Section 5. Non-separable spaces behave quite differently from
separable ones and this promptly yields to open problems (and even to undecidable
ones in ZFC). Section 6 displays the link between coarse embeddings of discrete
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groups (more generally of locally finite metric spaces) into the Hilbert space or
super-reflexive spaces, and the classification of manifolds up to homotopy equiva-
lence. This section attempts to provide the reader with some feeling on what the
Novikov conjecture is about, and some connections between the non-linear geometry
of Banach spaces and the “geometry of groups” in the sense of Gromov. Finally,
the last section 7 is devoted to the Lipschitz-free spaces associated with a metric
space, their use and their structure (or at least, what is known about it). Sections
2 and 6 contain no proof, but other sections do. These proofs were chosen in order
to provide information on the tools we need.

This work is a survey, but it contains some statements (such as Theorem 3.8,
Theorem 3.12 or the last Remark in section 5) which were not published before.
Each section contains a number of commented open questions. It is interesting to
observe that much of these questions are fairly simple to state. Answering them
could be less simple. Our survey demonstrates that non-linear geometry of Banach
spaces is a meeting point for a variety of techniques, which have to join forces in
order to allow progress. It is our hope that the present work will help stimulate
such efforts. We should however make it clear that our outline of Nigel Kalton’s
last papers does not exhaust the content of these articles. We strongly advise the
interested reader to consult them for her/his own research.

2. TABLES

This section consists of five tables: Table 1 lists a number of classical spaces and
check when these Banach spaces are characterized by their metric or their uniform
structure. Table 2 displays what is known about Lipschitz embeddings from a clas-
sical Banach space into another, and Table 3 does the same for uniform embeddings.
Table 4 investigates the stability of certain isomorphism classes (relevant to a clas-
sical property) under Lipschitz or uniform homeomorphism. And finally, Table 5
does the same for non-linear embeddability.

References are given within the tables themselves, but in order to improve read-
ability, we almost always used symbols (whose meaning is explained below) rather
than using the numbering of the reference list. Questions marks mean of course that
to the best of our knowledge, the corresponding question is still open.

Our notation for Banach spaces is standard. All Banach spaces will be real. From
the recent textbooks that may be used in the area we mention [4] and [29].

&= Benyamini-Lindenstrauss book [12].

&= Kalton recent papers.

# = Mendel-Naor papers [67] and [69].

A= Godefroy-Kalton-Lancien papers [36] and [37].
O= Godefroy-Kalton paper on free spaces [35].
O= Johnson-Lindenstrauss-Schechtman paper [47].
&= Textbook [29].

o= Basic linear theory or topology.

? = Unknown to the authors.
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TABLE 1. Spaces determined by weaker structures

Determined by | Determined by
Space its Lipschitz its uniform
Structure Structure
Ly yes yes
)
4y yes yes
l1<p<o
p#2 &
4 ? ?
co yes ?
)
L, yes ?
l<p<oo
p#2 &
Ly ? ?
10, 1] ? ?
ly(c) yes yes
)
co(c) no no
)
loo ? ?
DYy yes yes
l<p<g< o
P qF2 &b
lp @ Lo yes ?
l1<p<o
pF2 &
J yes ?
James’ space &+[20]

We say that a Banach space X is determined by its Lipschitz (respectively uni-
form) structure if a Banach space Y is linearly isomorphic to X whenever Y is
Lipschitz homeomorphic (respectively uniformly homeomorphic) to X.



TABLE 2. Lipschitz Embeddings from the 1st column into the 1st row

G. Godefroy, G. Lancien, V. Zizler

Space £l 4 /| ¢ L, Ly | C[0,1] | £a(c) | eo(e) | £oo
l<g< o l1<g< o
q 72 q#2
lo yes no no | yes yes yes yes yes | yes |yes
& & | & o o o o & o
Ly no yes iff no | yes yes iff yes iff | yes no yes | yes
l1<p<o p=q g<p<2 |p<2
or p=gq
p#2 & & & | & & & o & & | ©
2 no no yes | yes no yes yes no | yes |yes
Lo & » & ° o Lo & | ©
o no no no | yes no no yes no | yes |yes
Lo » & & Lo © Lo o | o
L, no no no | yes yes iff yes iff |  yes no | yes |yes
l<p<oo g<p<2 |p<2
orp=gq

p#2 L » o | & s s o s o
Ly no no no | yes no yes yes no | yes |yes
s L & | & L o & & | 0
C10,1] no no no | yes no no yes no | yes |yes
L L & | & L L & & | ©
l5(c) no no no | no no no no yes 7 | yes
o o o o o o o 'y
co(c) no no no | no no no no no | yes |yes
o o o o o o o & 'y
loo no no no | no no no no no 7 | yes

o o o o o o o &

A Lipschitz embedding of a Banach space X into a Banach space Y is a Lipschitz

homeomorphism from X onto a subset (in general non linear) of Y.
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TABLE 3. Uniform Embeddings from the 1st column into the 1st row

Space 62 Eq 51 Co Lq L1 C[O, 1] 62 (C) Co(c) goo
qE(l,OO) qG(l,OO)
q 72 qF#2
lo yes yes yes | yes yes yes yes yes yes | yes
& & & o o o o & o
4y yes iff yes if yes iff | yes yes iff yes iff | yes |yesiff | yes |yes
pe(lo0) | p<2| p<q |p<2 p<q |p<2 p<2
pF£2 orp <2 orp <2
[3]+
no if
p>2
and ¢ <p
s # & | & ti & o s & | o
l yes yes yes | yes yes yes yes yes yes | yes
L) L) L) il o o L) & | ©
o no no no | yes no no yes no yes | yes
& éort & dorf & & o o
L, yes iff no if yes iff | yes yes iff | yesiff | yes |yesiff | yes |yes
pe(l,o) | p<2 p>2 p<2 p<gq p<2 p<2
and ¢ <p or p <2
p#2 i
yes if
p<2
)
7 if
2<p<q| & | & § L) o () & | ©
Ly yes yes yes | yes yes yes yes yes yes | yes
L & | & » o L & o
10, 1] no no no | yes no no yes no yes | yes
L) &orf & | & ®ort & L) & | ©
ly(c) no no no | no no no no yes 7| yes
o o o o o o '
co(c) no no no | no no no no no yes | yes
o o o o o o o & ' Y
Lo no no no no no no no no ? yes
o o o o o o o &

A uniform embedding of a Banach space X into a Banach space Y is a uniform
homeomorphism from X onto a subset of Y. Let us also mention that the same
table can be written about coarse embeddings (see the definition in section 3).
The set of references to be used is the same except for one paper by Nowak [72],
where it is proved that for any p € [1,00), {5 coarsely embed into £,,.
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TABLE 4. Stability under type of homeomorphism

Property Lipschitz | uniform
hilbertian yes yes
)
superreflexivity yes yes
)
reflexivity yes no
L &
RNP yes no
& &
Asplund yes no
» &
containment of ¢ ? no
)
containment of cg ? ?
BAP yes no
O Q@
Commuting BAP ? no
Q@
Existence of Schauder basis ? ?
Existence of M-basis no no
O
Existence of unconditional basis no no
<&
renorming by Frechet smooth norm ? no
)
renorming by LUR norm ? ?
renorming by UG norm no no
&
renorming by WUR norm ? ?
renorming by AUS norm yes yes
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TABLE 5. Properties shared by embedded spaces

Property Lipschitz | coarse-Lipschitz
Hilbertian yes yes
Ll &
superreflexivity yes yes
& &
reflexivity yes no
Ll &
RNP yes no
» &
Asplund no no
» &
renorming by Frechet smooth norm no no
Ll &
renorming by LUR norm ? ?
renorming by UG norm no no
&
renorming by WUR norm ? ?
renorming by AUS norm no no
)
reflexive+renorming by AUS norm yes ?
)
reflexive+renorming by AUS norm yes yes
+renorming by AUC norm 8]

More precisely, the question addressed is the following. If a Banach space X
Lipschitz or coarse-Lipschitz (see definition in section 3) embed into a Banach space
Y which has one the properties listed in the first column, does X satisfy the same
property?
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3. UNIFORM AND ASYMPTOTIC STRUCTURES OF BANACH SPACES

In this section we will study the stability of the uniform asymptotic smoothness
or uniform asymptotic convexity of a Banach space under non linear maps such as
uniform homeomorphisms and coarse-Lipschitz embeddings.

3.1. Notation - Introduction.

Definition 3.1. Let (M,d) and (N, d) be two metric spaces and f: M — N be a
mapping.

(a) f is a Lipschitz isomorphism (or Lipschitz homeomorphism) if f is a bijection
and f and f~! are Lipschitz. We denote M " N and we say that M and N are
Lipschitz equivalent.

(b) f is a uniform homeomorphism if f is a bijection and f and f~! are uniformly

continuous (we denote M TN ).
(c) If (M, d) is unbounded, we define

Vs> 0, Lips(f)zsup{W> d@.9) > s} and Lipo(f) = inf Lins().

f is said to be coarse Lipschitz if Lipoo(f) < oo.
(d) f is a coarse Lipschitz embedding if there exist A > 0, B > 0,6 > 0 such that

Ve,ye M d(z,y) 2 0 = Ad(z,y) < 6(f(), f(y)) < Bd(z,y).

CL
We denote M — N.
More generally, f is a coarse embedding if there exist two real-valued functions py
and py such that limy_, 1 p1(t) = 400 and

Vo,y € M pi(d(z,y)) < 3(f(z), f(y)) < p2(d(z,y)).

(e) An (a,b)-net in the metric space M is a subset M of M such that for every
z# 2 in M, d(z,2') > a and for every x in M, d(x, M) < b.

Then a subset M of M is a net in M if it is an (a, b)-net for some 0 < a < b.

(f) Note that two nets in the same infinite dimensional Banach space are always
Lipschitz equivalent (see Proposition 10.22 in [12]).

Then two infinite dimensional Banach spaces X and Y are said to be net equivalent

and we denote X ~ Y, if there exist a net M in M and a net N in N such that M
and N are Lipschitz equivalent.

Remark. It follows easily from the triangle inequality that a uniformly continuous
map defined on a Banach space is coarse Lipschitz and a uniform homeomorphism
between Banach spaces is a bi-coarse Lipschitz bijection (see Proposition 1.11 in
[12] for details). Therefore if X and Y are uniformly homeomorphic Banach spaces,
then they are net equivalent. It has been proved only recently by Kalton in [56] that
there exist two net equivalent Banach spaces that are not uniformly homeomorphic.
However the finite dimensional structures of Banach spaces are preserved under net
equivalence (see Proposition 10.19 in [12], or Theorem 3.3 below).
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The main question addressed in this section is the problem of the uniqueness of
the uniform (or net) structure of a given Banach space. In other words, whether
x Wy (or X N Y) implies that X is linearly isomorphic to Y (which we shall
denote X ~ Y)? Even in the separable case, the general answer is negative. Indeed
Ribe [79] proved the following.

Theorem 3.2. (Ribe 1984) Let (p,)s2; in (1,400) be a strictly decreasing se-
quence such that limp, = 1. Denote X = (37" Ly, )e,- Then X T xaL.

Therefore reflexivity is not preserved under coarse-Lipschitz embeddings or even
uniform homemorphisms. On the other hand, Ribe [80] proved that local properties
of Banach spaces are preserved under coarse-Lipschitz embeddings. More precisely.

C
Theorem 3.3. (Ribe 1978) Let X and Y be two Banach spaces such that X Ly,
Then there exists a constant K > 1 such that for any finite dimensional subspace E
of X there is a finite dimensional subspace F' of Y which is K-isomorphic to E.

Remark. If we combine this result with Kwapien’s theorem, we immediately obtain
that a Banach space which is net equivalent to {5 is linearly isomorphic to #s.

As announced, we will concentrate on some asymptotic properties of Banach
spaces. So let us give the relevant definitions.

Definition 3.4. Let (X, || ||) be a Banach space and ¢t > 0. We denote by By the
closed unit ball of X and by Sx its unit sphere. For z € Sx and Y a closed linear
subspace of X, we define

p(t,z,Y)=sup ||[x+ty]|—1 and 0(t,z,Y) = inf |z +ty| — 1.
yESy yeSy

Then

px(t) = sup inf p(t,z,Y) and dx(t) = inf sup o(t,z,Y).
x(f) z€Sx dim(X/Y)<oo ( ) () 2€SX  dim(X/Y)<oo ( )

The norm || || is said to be asymptotically uniformly smooth (in short AUS) if

i PX (@)
t—0 ¢

=0.

It is said to be asymptotically uniformly convez (in short AUC) if
VE>0  dx(t) > 0.

These moduli have been first introduced by Milman in [70]. We also refer the
reader to [48] and [24] for reviews on these.

Examples.
(1) IfX =0 Fu)e,, 1 < p < oo and the Fy,’s are finite dimensional, then
px(t) = dx(t) = (1 +t?)1/P — 1. Actually, if a separable reflexive Banach space

has equivalent norms with moduli of asymptotic convexity and smoothness of power

type p, then it is isomorphic to a subspace of an l,-sum of finite dimensional spaces
[48].



10 G. Godefroy, G. Lancien, V. Zizler

(2) For all t € (0,1), p.,(t) = 0. And again, if X is separable and px (to) = 0 for
some ty > 0 then X is isomorphic to a subspace of ¢ [36].

We conclude this introduction by mentioning the open questions that we will
comment on in the course of this section.

Problem 1. Let 1 < p < oo and p # 2. Does /£, ® {2 have a unique uniform or net
structure? Does L, have a unique uniform or net structure?

Problem 2. Assume that Y is a reflexive AUS Banach space and that X is a
Banach space which coarse-Lipschitz embeds into Y. Does X admit an equivalent
AUS norm?

Problem 3. Assume that Y is an AUC Banach space and that X is a Banach space
which coarse-Lipschitz embeds into Y. Does X admit an equivalent AUC norm?

3.2. The approximate midpoints principle. Given a metric space X, two points
z,y € X, and § > 0, the approximate metric midpoint set between x and y with
error ¢ is the set:
Mid _ { _ d(z, y)}
id(z,y,0) =< z€ X : max{d(zx,z),d(y,2)} < (1+9) 5 .

The use of approximate metric midpoints in the study of nonlinear geometry is
due to Enflo in an unpublished paper and has since been used extensively, e.g. [15],
[38] and [47].

The following version of the approximate midpoint Lemma was formulated in [60]
(see also [12] Lemma 10.11).

Proposition 3.5. Let X be a normed space and suppose M is a metric space. Let
f:X — M be a coarse Lipschitz map. If Lipso(f) > 0 then for any t,e > 0 and
any 0 < 6 < 1 there exist z,y € X with ||x —y|| >t and

fMid(z, y,0)) € Mid(f(x), f(y), (1 + €)d).

In view of this Proposition, it is natural to study the approximate metric mid-
points in £,. This is done in the next lemma, which is rather elementary and can

be found in [60].

Lemma 3.6. Let 1 < p < oco. We denote (e;)72, the canonical basis of £, and for
N €N, let En be the closed linear span of {e;, i > N}. Let now z,y € £y, § € (0,1),

u:%ﬁ (mdv:%. Then

(i) There exists N € N such that u + 6'/?||v|Bgy C Mid(z,y,?).
(11) There is a compact subset K of £, such that Mid(x,y,d) C K + 251/p||v||ng.
We can now combine Proposition 3.5 and Lemma 3.6 to obtain

Corollary 3.7. Let 1 < p < q < o©.
Then £, does not coarse Lipschitz embed into £,.

Remark. This statement can be found in [60] but was implicit in [47]. It already
indicates that, because of the approximate midpoint principle, some uniform asymp-
totic convexity has to be preserved under coarse Lipschitz embeddings. This idea
will be pushed much further in section 3.6.
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3.3. Gorelik principle and applications. Our goal is now to study the stability
of the uniform asymptotic smoothness under non linear maps. The first tool that
we shall describe is the Gorelik principle. It was initially devised by Gorelik in [3§]
to prove that ¢, is not uniformly homeomorphic to Ly, for 1 < p < oo. Then it
was developed by Johnson, Lindenstrauss and Schechtman [47] to prove that for
1 < p < 00, £, has a unique uniform structure. It is important to underline the fact
that the Gorelik principle is only valid for certain bijections. In fact, the uniqueness
of the uniform structure of ¢, can be proved without the Gorelik principle, by using
results on the embeddability of special metric graphs as we shall see in section 3.4.
Nevertheless, some other results still need the use of the Gorelik principle. This
principle is usually stated for homeomorphisms with uniformly continuous inverse
(see Theorem 10.12 in [12]). Although it is probably known, we have not found
its version for net equivalences. Note that a Gorelik principle is proved in [12]
(Proposition 10.20) for net equivalences between a Banach space and ¢,,. So we will
describe here how to obtain a general statement.

Theorem 3.8. (Gorelik Principle.) Let X and Y be two Banach spaces. Let X be
a closed linear subspace of X of finite codimension. If X andY are net equivalent,
then there are continuous maps U : X — Y and V :' Y — X, and constants
K,C,ag > 0 such that:

Vee X ||[VUz—z||<C and YyeY |[UVy—vy||<C and

for all o > ag there is a compact subset M of Y so that
miKBY C M + CBy + U(aByx,).

Proof. Suppose that N is a net of the Banach space X, that M is a net of the Banach
space Y and that N and M are Lipschitz equivalent. We will assume as we may
that A" and M are (1, A)-nets for some A > 1 and that N' = (2;)icr, M = (yi)ier
with

Vi el KYai— a5l < lyi — uyll < Kllas — a1,
for some K > 1. Let us denote by Bg(x,\) the open ball of center z and radius
A in the Banach space E. Then we can find a continuous partition of unity (f;)icr
subordinate to (Bx (z;, \))icr and a continuous partition of unity (g;);e; subordinate
to (By (yi, A))icr- Now we set:

Uz =) fi(z)y, v€X and Vy=) gi(y)zi, y €Y.
el i€l
The maps U and V are clearly continuous. We shall now state and prove two lemmas
about them.

Lemma 3.9. (i) Let x € X be such that ||x — z;|| < r, then ||[Ux —y;|| < K(A+7).
(i) Let y € Y be such that ||y — yil| <, then ||Vy —z;|| < K(A+ 7).

Proof. We will only prove (i). If f;(z) # 0, then ||z — ;|| < A. So ||z; —z;|| < A+

and ||y; — y;|| < K(A+r). We finish the proof by writing

Ur—yi= > fi@)(y—v).
Jvf](x)7é0
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Lemma 3.10. Let C = (1+ K +2K?%)\. Then
VeeX |[VUzr—z||<C and VyeY |UVy—y| <C.

Proof. We only need to prove one inequality. So let x € X and pick ¢ € I such that
| — 2;|| < A. By the previous lemma, we have ||[Uz —y;|| < 2K\ and |[VUz — ;|| <
MK +2K?). Thus |[VUz —z| < (1 + K +2K?)\. O

We now recall the crucial ingredient in the proof of Gorelik Principle (see step
(i) in the proof of Theorem 10.12 in [12]). This statement relies on Brouwer’s fixed
point theorem and on the existence of Bartle-Graves continuous selectors. We refer
the reader to [12] for its proof.

Proposition 3.11. Let Xg be a finite-codimensional subspace of X. Then, for any
a > 0 there is a compact subset A of §Bx such that for every continuous map

¢: A= X satisfying [|¢(a) — al| < G for all a € A, we have that ¢(A) N Xo # 0.

We are now ready to finish the proof of Theorem 3.8. Fix o > 0 such that
a > max{8C,96K\} and y € g By and define ¢ : A — X by ¢(a) = V(y + Ua).
The map ¢ is clearly continuous and we have that for all a € A:

(6%
6(a) — all < [V(y +Ua) = VUal| + [VUa — al| <5 +|[V(y+Ua) - VUal.

Now, pick i so that ||[Ua — y;|] < A and j so that ||y + Ua — y;|| < A. Then
[VUa — a;|| <2KX and ||V (y + ua) — z;|| < 2K\. But

i — || < Kllyi —y;ll < Kllyi = Uall + K|[Ua +y — y;ll + Kllyll < A+ [yl K.

So
HV@+U®—VUWS6KA+KMHSMQ+€%§

Thus |6(a) ol < 5.

So it follows from Proposition 3.11 that there exists a € A such that ¢(a) € Xp.
Besides, ||al| < § and |[¢(a) —al < §, so ¢(a) = V(y + Ua) € aBx,. But we have
that UV (y+Ua) — (y+Ua)|| < C. So if we consider the compact set M = —U(A),
we have that y € M + CBy + U(aBx,). This finishes the proof of Theorem 3.8.

00| 2

0

We can now apply the above Gorelik principle to obtain the net version of a result
appeared in [37]. This result is new.

Theorem 3.12. Let X and Y be Banach spaces. Assume that X is net equivalent to
Y and that X is AUS. Then Y admits an equivalent AUS norm. More precisely, if
px(t) < CtP for C >0 and p € (1,00), then, for any e > 0, Y admits an equivalent
norm || |le so that py .(t) < CetP== for some C: > 0.

The proof is actually done by constructing a sequence of dual norms as follows:

(y*, Uz — Ux')

vyt e Yty =sup ol e = /| > 44},
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For k large enough they are all equivalent. Then for N large enough the predual
norm of the norm defined by

| k=kotN

vy e Y ly'lv = >
k=ko+1

is the dual of an equivalent AUS norm on Y with the desired modulus of asymptotic
smoothness. The proof follows the lines of the argument given in [37] but uses the
above version of Gorelik principle.

Remarks.

(1) It must be pointed out that the quantitative estimate in the above result is
optimal as it follows from a remarkable example obtained by Kalton in [57].

(2) If the Banach spaces X and Y are Lipschitz equivalent and X is AUS then

the norm defined on Y* by:
(y*, Ux — Ux')
[l — 2’|

,x;éa:’}

is a dual norm of a norm | | on Y such that py |(t) < c¢px(ct) for some ¢ > 0. When
X is a subspace of ¢g, this implies that Y is isomorphic to a subspace of ¢y. Finally,
when X = ¢, one gets that X is isomorphic to ¢y (see [36]).

ly*| = Sup{

(3) Other results were originally derived from the Gorelik principle. We have
chosen to present them in the next subsections as consequences of more recent and
possibly more intuitive graph techniques introduced by Kalton and Randrianarivony
in [60] and later developed by Kalton in [58].

3.4. Uniform asymptotic smoothness and Kalton-Randrianarivony’s graphs.
The fundamental result of this section is about the minimal distortion of some spe-
cial metric graphs into a reflexive and asymptotically uniformly smooth Banach
space. These graphs have been introduced by Kalton and Randrianarivony in [60]
and are defined as follows. Let M be an infinite subset of N and £ € N and fix

a = (ai,..,ax) a sequence of non zero real numbers. We denote
Gk(M) = {ﬁ = (nl, ..,nk), n €M np <..< nk}
Then we equip G (M) with the distance
Vi, m € Ge(M), do(mm)= > lal.
3, njFEm;
Note also that it is easily checked that py is an Orlicz function. Then, we define
the Orlicz sequence space:

00
N _ (lan|
gﬁy:{CLER y 37’>0 ley<:> <OO}7
n=

equipped with the Luxemburg norm

o
lallz, = inf{r >0, Zpy(“‘:‘) <1}
n=1
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Theorem 3.13. (Kalton-Randrianarivony 2008) Let Y be a reflexive Banach
space, Ml an infinite subset of N and f : (Gx(M),dy) — Y a Lipschitz map. Then
for any € > 0, there ewists an infinite subset M of Ml such that:

diam f(Gr(M')) < 2eLip(f)llallz, + e

The proof is done by induction on k£ and uses iterated weak limits of subsequences
and a Ramsey argument. Such techniques will be displayed in the next two sections.

Remark. The reflexivity assumption is important. Indeed, by Aharoni’s Theorem
the spaces (G(N),d,) Lipschitz embed into ¢y with a distortion controlled by a
uniform constant. But HCLHECO = ||a||oo, while diam G(M’) = ||al|;.

As it is described in [58] one can deduce the following.

Corollary 3.14. Let X be a Banach space and Y be a reflerive Banach space.
Assume that X coarse Lipschitz embeds into Y. Then there exists C > 0 such
that for any normalized weakly null sequence (z,,)52; in X and any sequence a =
(a1, ..,a) of non zero real numbers, there is an infinite subset M of N such that:

k
I ZaifUmH < Cllallp,, for every n € Gp(M).
i=1

Proof. The result is obtained by applying Theorem 3.13 to f = g o h, where g is a
coarse-Lipschitz embedding from X into Y and h : (Gx(N),d,) — X is defined by

h(m) = A Zle a; Ty, for some large enough A > 0. O
In fact, this is stated in [58] in the following more abstract way.

Corollary 3.15. Let X be a Banach space and Y be a reflexive Banach space.
Assume that X coarse Lipschitz embeds into Y. Then there exists C' > 0 such that
for any spreading model (e;); of a normalized weakly null sequence in X (whose
norm is denoted || ||s) and any finitely supported sequence a = (a;) in R:

1D " aeills < Clallz, -

3.5. Applications. The first consequence is the following.

Corollary 3.16. Let 1 < g # p < oc.
Then £y does not coarse Lipschitz embed into £,.

Proof. If ¢ < p, this follows immediately from the previous results.
If ¢ > p, this is Corollary 3.7. O

Then we can deduce the following result, proven in [47] under the assumption of
uniform equivalence.

Theorem 3.17. (Johnson, Lindenstrauss and Schechtman 1996)
Let 1 < p < oo and X a Banach space such that X X ly. Then X ~ £,
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Proof. Suppose that X N lp, with 1 < p < oco. We may assume that p # 2.
Then the ultra-products Xz, and (¢y,)y are Lipschitz isomorphic and it follows from
the classical Lipschitz theory that X is isomorphic to a complemented subspace of
L, = L,([0,1]). Now, it follows from Corollary 3.16 that X does not contain any
isomorphic copy of ¢5. Then we can conclude with a classical result of Johnson and
Odell [49] which asserts that any infinite dimensional complemented subspace of L,,
that does not contain any isomorphic copy of £ is isomorphic to £, O

Remark. These linear arguments are taken from [47]. Note that the key step was
to show that that X does not contain any isomorphic copy of ¢5. In the original
paper [47] this relied on the Gorelik principle. We have chosen to present here a
proof using this graph argument. In fact, more can be deduced from this technique.

Corollary 3.18. Let 1 <p < q < oo. and r > 1 such that r ¢ {p,q}.
Then £, does not coarse Lipschitz embed into £, © {,.

Proof. When r > ¢, the argument is based on a midpoint technique. If r < p, it
follows immediately from Corollary 3.14. So we assume now that 1 <p <r < ¢ < o0
and f = (g,h) : €, = €, P {4 is a coarse-Lipschitz embedding. Applying the
midpoint technique to the coarse Lipschitz map g and then Theorem 3.13 to the
map h o ¢ with ¢ of the form (7)) = u + 7k~ (en, + .. + €n, ), Where (e,,) is the
canonical basis of £, and 7 > 0 is large enough, leads to a contradiction. O

We can now state and prove the main result of [60].

Theorem 3.19. If1 < p; < .. < p, < o0 are all different from 2, then l, ©...DLp,
has a unique net structure.

Proof. We will only sketch the proof for ¢, ® ¢4, with 1 < p < ¢ < oo such that

2 ¢ {p,q}. Assume that X is Banach space such that X X ¢, @ {,. The key point
is again to show that X does not contain any isomorphic copy of f5. This follows
clearly from the above corollary. To conclude the proof, we need to use a few deep
linear results. The cases 1 < p < g < 2 and 2 < p < q, were actually settled in
[47] for uniform homeomorphisms. So let us only explain the case 1 < p < 2 < gq.
As in the proof of Theorem 3.17, we obtain that X C. L, ® L,. Since {5 & X and
q > 2, a theorem of Johnson [45] insures that any bounded operator from X into
L, factors through ¢, and therefore that X C. L, ® ¢,. Then we notice that L,
and /, are totally incomparable, which means that they have no isomorphic infinite
dimensional subspaces. We can now use a theorem of Edelstein and Wojtaszczyk
[26] to obtain that X ~ F' & G, with F C. L, and G C, {,. First it follows from
[75] that G is isomorphic to £, or is finite dimensional. On the other hand, we know
that fo & F, and by the Johnson-Odell theorem [49] F is isomorphic to ¢, or finite
dimensional. Summarizing, we have that X is isomorphic to £, £, or £, &{,. But we
already know that ¢, and ¢, have unique net structure. Therefore X is isomorphic
to £, @ 4. O
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Remark. Let 1 < p < co and p # 2. It is clear that the above proof cannot work
for ¢, @ ¢5. As we already mentioned, it is unknown whether ¢, @ ¢» has a unique
uniform structure. The same question is open for L,, 1 < p < oo (see Problem 1).

However, let us indicate a few other results from [60] that can be derived from
Theorem 3.13. The following theorem is related to a recent result of [41] stating
that if 2 < p < o0, a subspace X of L, which is not isomorphic to a subspace of
¢, & ly contains an isomorphic copy of £,(¢2).

Theorem 3.20. Let 1 < p < 0o and p # 2.
Then £y(L2) and therefore L, do not coarse Lipschitz embed into £, & ls.

It follows from Ribe’s counterexample that reflexivity is not preserved under uni-
form homeomorphisms. However, the following is proved in [8].

Theorem 3.21. Let X be a Banach space and Y be a reflexive Banach space with
an equivalent AUS norm. Assume that X coarse Lipschitz embeds into Y. Then X
is reflerive.

The proof has three ingredients: a result of Odell and Schlumprecht [73] asserting
that Y can be renormed in such a way that py < p, , James’ characterization of
reflexivity and Theorem 3.13.

Remark. Note that Theorems 3.21 and 3.13 seem to take us very close to the
solution of Problem 2. See also Corollary 4.6 below.

3.6. Uniform asymptotic convexity. Until very recently, there has been no cor-
responding result about the stability of convexity. The only thing that could be
mentioned was the elementary use of the approximate midpoint principle that we
already described. In a recent article [58], Nigel Kalton made a real breakthrough
in this direction. Let us first state his general result.

Theorem 3.22. Suppose X and Y are Banach spaces and that there is a coarse
Lipschitz embedding of X into Y. Then there is a constant C' > 0 such that for any
spreading model (ex)7>, of a weakly null normalized sequence in X (whose norm
will be denoted || ||s), we have:

H€1 4+ ..+ engY < C’Hel 4+ ..+ ek||5.

We will not prove this in detail. We have chosen instead to show an intermediate
result whose proof contains one of the key ingredients. Let us first describe the main
idea. We wish to use the approximate midpoints principle. But, unless the space
is very simple or concrete (like ¢, spaces), the approximate midpoint set is difficult
to describe. Kalton’s strategy in [58] was, in order to prove the desired inequality,
to define an adapted norm on an Orlicz space associated with any given weakly
null sequence in X. Then, by composition, he was able to reduce the question to
the study of a coarse-Lipschitz map from that space to the Orlicz space associated
with the modulus of asymptotic convexity of Y. Finally, as in ¢,, the approximate
midpoints are not so difficult to study in an Orlicz space. Before stating the result,
we need some preliminary notation.
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Let ¢ be an Orlicz Lipschitz function. Then, Ng(1,t) = 1 + ¢(|t|) (for t € R)
extends to a norm Nq% defined on R?. We now define inductively a norm on R/ by

Né(wl,..,xj) = Nz(Ngfl(ajl,..,:vj,l),xj) for 7 > 2. These norms are compatible
and define a norm Ag on co. One can check that 3| [l < || [|a, < | [l4-
We also need to introduce the following quantities:

0x(t) = inf sup inf { (lz + tyll + [z — tyll) — 1}
r€0Bx E y€OBE

where again £ runs through all closed subspaces of X of finite codimension. The
function 0 x (t)/t is increasing and so dx is equivalent to the convex function

Sx(t) = /Ot Ox(8) 4.

S

Theorem 3.23. Let (&;)72, be a sequence of independent Rademacher variables on
a probability space 2. Assume that X and Y are Banach spaces and that there is a
coarse Lipschitz embedding of X into Y. Then, there is a constant ¢ > 0 such that
given any (x,) weakly null normalized 0-separated sequence in X and any integer k,
there exist n1 < .. < ny so that:

cller + -+ +exls, < llerwn, +- - +epan,llniox),

where (ey)72, is the canonical basis of coo.

Proof. For k € N, let o3, = sup{H Z?:l €iTn; | 1,.x), M1 <ng << nk} For
each k, define the Orlicz function Fj by

ort/k, 0<t<1/oy
t—i—l/k—l/Uk, 1/0k§t<oo.

(3.1) Fi(t) = {

We introduce an operator T : coo — L1(§2%; X) defined by T'(§) = >°72, §je; ® ;.
We omit the proof of the fact that for all £ € coo: || T¢]| < 2[|€[|r, < 4[[€]|A, -
Assume now that f: X — Y is a map such that f(0) =0 and

[z =2 =1 <[[f(x) = ) < Kllz = 2[[+1,  =z,zeX.

We then define g : (coo, Ar,) = L1(2;Y) by g(§) = f o T€. It can be easily checked
that g is coarse-Lipschitz and that Lips(g) > 0. So we can apply the approximate
midpoint principle to the map ¢ and obtain that for 7 as large as we wish, there
exist 7, ¢ € coo with ||n — CHANk = 27 such that

g(Mid(n,(,1/k)) C Mid(g(n), 9(¢),2/k).

Let m € N so that 7, € span {e1,...,en—1}. It follows from the definition of Ay,
that for j > m: 54—7‘0,;16]- € Mid(n, (,1/k), where £ = %(174— Q).
Thus the functions
m—1
hjZfO(Z&&Z‘@mi—‘rTUk_lEj@xj), j=>m
i=1
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all belong to Mid(g(n), g(¢),2/k). Since the g;’s are independent so do the functions
m—1
W= Gei@mi+ oy lem @), j>m.
i=1
Therefore, for all j > m:
lg(n) = Rl + 119(C) = B3Il = llg(m) — g(O)Il < 2k~ lg(m) — g(Q)]I-

We shall now use without proof the following simple property of N = IV gy: for any
bounded t-separated sequence in Y and any z € Y,

(3:2) tim inf(ly — yal + 11— yal) = N(ly - 2I.,)
Note that for any w € 2 we have
|hi(w) — By(w)|| > 0o, =1, i>j>m.
Hence, using (3.2), integrating and using Jensen’s inequality we get
lim inf(|lg(n) = A5ll + llg(¢) = #51) = N(llg(n) = 9(C), 070" = 1).
Now |lg(n) —g(Q)|| < 8K7+ 1 and N(t,1) —t is a decreasing function so
Ny (8KT+1,070;' —1) — (8KT + 1) < %Hg(n) -9l <2(8KT+ 1)k

Multiplying by (8K 7 + 1)~! and letting 7 tend to 400 we obtain that
5( 6 0
16K oy, 32Ky,

2 = 1
) < z and therefore §( ) < %

or
lex + -+ exll;, <32K0 'oy.
O

We will end this section by stating two theorems proved by Kalton in [58]. Their
proofs use, among many other ideas, the results we just explained on the stability
of asymptotic uniform convexity under coarse-Lipschitz embeddings.

Theorem 3.24. (Kalton 2010) Suppose 1 < p < oo. Then

(i) If X is a Banach space which can be coarse Lipschitz embedded in C,, then X is
linearly isomorphic to a closed subspace of £,.

(11) If X is a Banach space which is net equivalent to a quotient of ¢, then X is
linearly isomorphic to a quotient of C,.

(111) If X can be coarse Lipschitz embedded into a quotient of ¢, then X is linearly
isomorphic to a subspace of a quotient of .

Remark. On the other hand, Kalton constructed in [57] two subspaces (respectively
quotients) of £, (1 < p # 2 < 0o) which are uniformly homeomorphic but not linearly
isomorphic.

Problem 4. It is not known whether a Banach space which is net equivalent
to a subspace (respectively a quotient) of ¢y is linearly isomorphic to a subspace
(respectively a quotient) of cy.
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As we have already seen, a Banach space Lipschitz-isomorphic to a subspace of ¢
is linearly isomorphic to a subspace of ¢g [36]. It is not known if the class of Banach
spaces linearly isomorphic to a quotient of ¢ is stable under Lipschitz-isomorphisms.
However, this question was almost solved by Dutrieux who proved in [23] that if a
Banach space is Lipschitz-isomorphic to a quotient of ¢y and has a dual with the
approximation property, then it is linearly isomorphic to a quotient of c¢y.

Finally, let us point one last striking consequence of more general results from
[58].

Theorem 3.25. (Kalton 2010) Suppose 1 < p,r < oo are such that p < min(r,2)

or p > max(r,2), then the space (3,2, £})¢, has a unique net structure.

4. EMBEDDINGS OF SPECIAL GRAPHS INTO BANACH SPACES

In this section we will study special metric graphs or trees that are of particular
importance for the subject. More precisely we will study the Banach spaces in which
they embed. This will allow us to characterize some linear classes of Banach spaces
by a purely metric condition of the following type: given a metric space M (generally

i
a graph), what are the Banach spaces X so that M 2 x. Or, given a family M of
metric spaces, what are the Banach spaces X for which there is a constant C' > 1

so that for all M in M, M rg> X (i.e. M Lipschitz embeds into X with distorsion
at most C').

Most of the time these linear classes were already known to be stable under
Lipschitz or coarse-Lipschitz embeddings, when such characterizations were proved.
However, we will show one situation (see Corollary 4.6) where this process yields
new results about such stabilities.

The section will be organized by the nature of the linear properties that can be
characterized by such embedding conditions.

4.1. Embeddings of special metrics spaces and local properties of Banach
spaces. We already know (see Theorem 3.3) that local properties of Banach spaces
are preserved under coarse Lipschitz embeddings. This theorem gave birth to the
“Ribe program” which aims at looking for metric invariants that characterize local
properties of Banach spaces. The first occurence of the “Ribe program” is Bour-
gain’s metric characterization of superreflexivity given in [15]. The metric invariant
discovered by Bourgain is the collection of the hyperbolic dyadic trees of arbitrarily
large height N. We denote Ag = {0}, the root of the tree. Let Q; = {—1,1}¢,
Ay = Uf\io Q; and Ay = U2, Q. Then we equip Ay, and by restriction every
Ay, with the hyperbolic distance p, which is defined as follows. Let s and s’ be two
elements of Ay, and let © € Ay be their greatest common ancestor. We set

p(s,s') = Is| +1s'| = 2ful = p(s,u) + p(s', u).

Bourgain’s characterization is the following;:
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Theorem 4.1. (Bourgain 1986) Let X be a Banach space. Then X is not su-
perreflerive if and only if there exists a constant C' > 1 such that for all N € N,

(An.p) S X.

Remark. It has been proven by Baudier in [7] that this is also equivalent to the
metric embeddability of the infinite hyperbolic dyadic tree (A, p). It should also
be noted that in [15] and [7], the embedding constants are bounded above by a
universal constant.

We also wish to mention that Johnson and Schechtman [51] recently characterized
the super-reflexivity through the non embeddability of other graphs such as the
“diamond graphs” or the Laakso graphs. We will only give an intuitive description
of the diamond graphs. Dy is made of two connected vertices (therefore at distance
1), that we shall call T' (top) and B (bottom). D; is a diamond, therefore made
of four vertices T, B, L (left) and R (right) and four edges : [B, L], [L,T], [T, R]
and [R, B]. Assume Dy is constructed, then Dy is obtained by replacing each
edge of Dy by a diamond D;. The distance on Dy is the path metric of this new
discrete graph. The graph distance on a diamond Dy will be denoted by d. The
result is the following.

Theorem 4.2. (Johnson, Schechtman 2009) Let X be a Banach space. Then
X is not super-reflexive if and only if there is a constant C' > 1 such that for all

NeN, (Dy,d) S X.

The metric characterization of the linear type of a Banach space has been initiated
by Enflo in [28] and continued by Bourgain, Milman and Wolfson in [16]. Let us
first describe a concrete result from [16]. For 1 <p <2 and n € N, H} denotes the
set {0, 1}" equipped with the metric induced by the ¢, norm. The metric space H{'
is called the Hamming cube. One of their results is the following.

Theorem 4.3. (Bourgain, Milman, Wolfson 1986) Let X be a Banach space
and 1 < p < 2. Define px to be the supremum of all r’s such that X is of linear
type . Then, the following assertions are equivalent.

(i) px <p.
(ii) There is a constant C > 1 such that for alln € N, H} S x,

C
In particular, X is of trivial type if and only if H* — X, for alln € N and for
some universal constant C > 1.

The fundamental problem of defining a notion of type for metric spaces is behind
this result. Of course we expect such a notion to coincide with the linear type for
Banach spaces and to be stable under reasonable non linear embedddings. This
program was achieved with the successive definitions of the Enflo type [28], the
Bourgain-Milman-Wolfson type [16] and finally the scaled Enflo type introduced
by Mendel and Naor in [68]. An even more difficult task was to define the right
notion of metric cotype. This was achieved by Mendel and Naor in [69]. We will
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not address this subject in this survey, but we strongly advise the interested reader
to study these fundamental papers.

Let us also describe a simpler metric characterization of the Banach spaces with-
out (linear) cotype. First let us recall that a metric space (M,d) is called locally
finite if all its balls of finite radius are finite. It is of bounded geometry if for any
r > 0 there exists C'(r) € N such that the cardinal of any ball of radius 7 is less than
C(r). We will now construct a particular metric space with bounded geometry. For
k,n € N, denote

Mn,k = anngo N nZ".
Let us enumerate the M, ;’s: My, ..., M;,.. with M; = M,, ., in such a way that
diam(M;) is non decreasing. Note that lim; diam(M;) = +oo. Then let My be the
disjoint union of the M;’s (i > 1) and define on M) the following distance:
If x,y € M;, d(z,y) = ||z — y||co, Where || ||oo is the £ norm.
If v € M; et y € Mj, with i < j, set d(z,y) = F(j), where F' is built so that F' is
increasing and

1
Vi Vi<j F(j) > §diam(Mi).

Note that lim; F'(i) = +o0o. We leave it to the reader to check that (My,d) is a
metric space with bounded geometry. We can now state the following.

Theorem 4.4. Let X be a Banach space. The following assertions are equivalent.
(i) X has a trivial cotype.
(i) X contains uniformly and linearly the €7 s.

. . . c
(iii) There exists C' > 1 such that for every locally finite metric space M, M — X.
(iv) There exists C' > 1 such that for every metric space with bounded geometry

M, MSE x.
C
(v) There exists C > 1 such that My — X.
C
(vi) There exists C > 1 such that for every finite metric space M, M — X.

Proof. The equivalence between (i) and (ii) is part of classical results by Maurey
and Pisier [64].

(ii)= (iii) is due to Baudier and the second author [9)].

(iii)= (iv) and (iv)= (v) are trivial.

For any k,n € N, the space My contains the space M,y = knBg N nZ™ which
is isometric to the %—net of Bpn : Ben N %Z”. But, after rescaling, any finite metric
space is isometric to a subset of By , for some n € N. Thus, for any finite metric
space M and any € > 0, there exist k,n € N so that M is (1 4 ¢)-equivalent to a
subset of My, ,. The implication (v)= (vi) is now clear.

The proof of (vi)=- (ii) relies on an argument due to Schechtman [82]. So assume
that (vi) is satisfied and let us fix n € N. Then for any k£ € N, there exists a map

fit (RZ" N Ben_, || |los) — X such that f;(0) = 0 and

1
Va,y € 12" N By lz = ylleo < |lfa(2) = i@ < Kllz = yllo.
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Then we can define a map Ay : B — %Z” N Bgn such that for all x € Byn :
[Ae(2) = z||oo = d(x, £Z" N Byn ). We now set @r = fi 0 Ay
Let U be a non trivial ultrafilter. We define ¢ : By — Xy C X by o(z) =
(¢r(x))y. Tt is easy to check that ¢ is a Lipschitz embedding. Then it follows from
results by Heinrich and Mankiewicz on weak*-Gateaux differentiabilty of Lipschitz
maps [42] that ¢ is K-isomorphic to a linear subspace of X;7*. Finally, using the
local reflexivity principle and properties of the ultra-product, we get that /7 is
(K + 1)-isomorphic to a linear subspace of X.

O

4.2. Embeddings of special graphs and asymptotic structure of Banach
spaces. We will start this section by considering the countably branching hyper-
bolic trees. For a positive integer N, Ty = Ui]io Ni, where N? := {()}. Then
T = UN-1 T is the set of all finite sequences of positive integers. The hyperbolic
distance p is defined on T, as follows. Let s and s’ be two elements of T, and let
u € T be their greatest common ancestor. We set

p(s,s') = Is| + |s'] = 2Jul = p(s,u) + p(s', u).

The following result, that appeared in [8], is an asymptotic analogue of Bourgain’s
characterization of super-reflexivity given in Theorem 4.1 above.

Theorem 4.5. Let X be a reflexive Banach space. The following assertions are
equivalent.

(i) There exists C > 1 such that Too S x.

.. . . c
(ii) There exists C > 1 such that for any N in N, Ty — X.
(iii) X does not admit any equivalent asymptotically uniformly smooth norm or
X does not admit any equivalent asymptotically uniformly conver norm.

We will only mention one application of this result.

Corollary 4.6. The class of all reflexive Banach spaces that admit both an equiva-
lent AUS norm and an equivalent AUC norm is stable under coarse Lipschitz em-
beddings.

Proof. Assume that X coarse Lipschitz embeds in a space Y which is reflexive, AUS
renormable and AUC renormable. First, it follows from Theorem 3.21 that X is
reflexive. Now the conclusion is easily derived from Theorem 4.5. O

Note that this class coincide with the class of reflexive spaces X such that the
Szlenk indices of X and X* are both equal to the first infinite ordinal w (see [37]).

Problem 5. We do not know if the class of all Banach spaces that are both AUS
renormable and AUC renormable is stable under coarse Lipschitz embeddings, net
equivalences or uniform homeomorphisms.

Problem 6. We now present a variant of Problem 2. As we already indicated,
we do not know if the class of reflexive and AUS renormable Banach spaces is
stable under coarse Lipschitz embeddings. The important results by Kalton and
Randrianarivony on the stability of the asymptotic uniform smoothness are based
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on the use of particular metric graphs, namely the graphs G (N) equipped with the
distance:

vn,m € Gy(N), d(n,m) = [{j, nj # m;}|.
It seems interesting to try to characterize the Banach spaces X such that there

exists a constant C' > 1 for which G (N) cg X, for all kK € N. In particular, one may
ask whether a reflexive Banach space which is not AUS renormable always contains
the G;(N)’s with uniform distortion (the converse implication is a consequence of
Kalton and Randrianarivony’s work). A positive answer would solve Problem 2.

4.3. Interlaced Kalton’s graphs. Very little is known about the coarse embed-
dings of metric spaces into Banach spaces and about coarse embeddings between
Banach spaces (see Definition 3.1. for coarse embeddings). For quite some time
it was not even known if a reflexive Banach space could be universal for separable
metric spaces and coarse embeddings. This was solved negatively by Kalton in [53]
who showed the following.

Theorem 4.7. (Kalton 2007) Let X be a separable Banach space. Assume that co
coarsely embeds into X. Then one of the iterated duals of X has to be non separable.
In particular, X cannot be reflexive.

The idea of the proof is to consider a new graph metric § on G (M), for M infinite
subset of N. We will say that m # m € G (M) are adjacent (or 6(m,m) = 1) if they
interlace or more precisely if

mp <np <..<mp<ng or ng <myp << ng < my.

For simplicity we will only show that X cannot be reflexive. So let us assume that X
is a reflexive Banach space and fix a non principal ultrafilter &/ on N. For a bounded
function f : Gx(N) — X we define 0f : Gx_1(N) = X by

vn € Gi-1(N) 9f(n) = w — 112%{ f(na, . ng—1, k).
ng
Note that for 1 <1 < k, 9'f is a bounded map from G}_;(N) into X and that 9" f

is an element of X. Let us first state without proof a series of basic lemmas about
the operation 0.

Lemma 4.8. Let h : Gx(N) — R be a bounded map and € > 0. Then there is an
infinite subset M of N such that

Vi € Gp(M)  |h(7) — 0%h| < e.
Lemma 4.9. Let f : Gx(N) - X and g : Gx(M) — X* be two bounded maps.
Define f ® g : Gor,(N) = R by
(f ®g)(n,..,n2k) = (f(n2,na, .., n2), g(n1, .., n2k—1))-
Then 9*(f ® g) = 0f ® Og.

Lemma 4.10. Let f : Gx(N) — X be a bounded map and € > 0. Then there is an
infinite subset Ml of N such that

v € Ge(M) [[f@)| < 0" FI| +wp(1) +e,
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where wy is the modulus of continuity of f.

Lemma 4.11. Let ¢ > 0, X be a separable reflerive Banach space and I be an
uncountable set. Assume that for each i € I, f; : Gx(N) — X is a bounded map.
Then there exist i # j € I and an infinite subset M of N such that

Vi€ Gi(M) [1£:(m) — F(A)]| < wp,(1) +wp, (1) + <.

We are now ready for the proof of the theorem. As we will see, the proof relies on
the fact that ¢y contains uncountably many isometric copies of the G (N)’s with too
many points far away from each other (which will be in contradiction with Lemma
4.11).

Proof of Theorem 4.7. Assume X is reflexive and let h : cg — X be a map which is
bounded on bounded subsets of cg. Let (e;)?2; be the canonical basis of cy. For an
infinite subset A of N we now define

Vn €N sa(n) = Z ek

k<n, k€A

and
k

Vi = (n1,..,n;) € Gx(N) fa(n) = ZSA(TLZ').
i=1
Then the ho f4’s form an uncountable family of bounded maps from G(N) to X.
It therefore follows from Lemma 4.11 that there are two distinct infinite subsets A
and B of N and another infinite subset M of N so that:

Vi € Gr(M) [lho fa(m) = ho fa(@)] < whoga (1) +whops(1) + 1 < 2wp(1) + 1.

But, since A # B, there is m € Gi(M) with ||fa(n) — fp(n)| = k. By taking
arbitrarily large values of k we deduce that h cannot be a coarse embedding. O

Remarks.
(1) Similarly, one can show that h cannot be a uniform embedding, by composing
h with the maps ¢ f4 and letting ¢ tend to zero.

(2) It is now easy to adapt this proof in order to obtain the stronger result stated
in Theorem 4.7. Indeed, one just has to change the definition of the operator 9 as
follows. If f : Gx(N) — X is bounded, define 9f : G_1(N) — X** by

vn € Gi_1(N) 8f(ﬁ) =w* — hrerb f(nl, ey M1, T ) -
ng

We leave it to the reader to rewrite the argument.

(3) On the other hand, Kalton proved in [52] that ¢y embeds uniformly and
coarsely in a Banach space X with the Schur property. Note that X does not
contain any subspace linearly isomorphic to cg.

(4) We will see in the next section that Kalton recently used a similar operation

0 and the same graph distance on G (w1 ), where w; is the first uncountable ordinal
(see [55]) in order to study uniform embeddings into {.
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Problem 7. In view of this result, the metric graphs (G (N), §) are clearly of special
importance. It is a natural question to characterize the Banach spaces containing
the spaces (Gi(N),d) with uniformly bounded distortion.

In [53] Kalton pushed the idea behind the proof of Theorem 4.7 much further and
introduced the following abstract notions in order to study the coarse or uniform
embeddings into reflexive Banach spaces.

Let (M,d) be a metric space, ¢ > 0 and n > 0. We say that M has property
Q(e, n) if for every k € N and every map f : (Gi(N),0) — (M, d) with ws(1) < n
there exists an infinite subset M of N such that:

d(f(o), f(r) <e o<, o71€GLM).

Then Aj/(e) is the supremum of all 7 > 0 so that M has property Q(e,n) and Kalton
proves the following general statement.

Theorem 4.12. Let M be a metric space and X be a reflexive Banach space.
(1) If M embeds uniformly into X, then Apr(e) > 0, for all € > 0.
(i1) If M embeds coarsely into X, then lim._, 4o Apr(e) = +00.

Let us now turn to the case when our metric space is a Banach space that we
shall denote E. Then it easy to see that the function Ag is linear. We denote Qg
the constant such that for all ¢ > 0, Ag(e) = Qpe. Finally, we say that E has the
O-property if Qp > 0. It follows from Lemma 4.10 that a reflexive Banach space
has the Q-property. Thus we have:

Corollary 4.13. If a Banach space E fails the Q-property, then E does not coarsely
embed into a reflexive Banach space and Bg does not uniformly embed into a reflez-
we Banach space.

The fact that ¢q fails the Q-property follows from Theorem 4.7 but it is actually
an ingredient of its proof. Then Kalton continues his study of the links between
reflexivity and the Q-property. Let us mention without proof a few of the many
interesting results obtained in [53].

(1) A non reflexive Banach space with the alternating Banach-Saks property (in
particular with a non trivial type) fails the Q-property.

(2) The James space J and its dual fail the Q-property.

(3) However, there exists a quasi-reflexive but non reflexive Banach space with
the Q-property.
Problem 8. Is there a converse to Corollary 4.137 More precisely: if E is a sepa-
rable Banach space with the Q-property, does Bg uniformly embed into a reflexive
Banach space or does E coarsely embed into a reflexive Banach space? The answer
is unknown for the space constructed in the above statement (3).

5. NONSEPARABLE SPACES

We collect here a few recent results obtained by Nigel Kalton on nonseparable
Banach spaces together with some related open problems. All the results presented
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in this section are taken from Kalton’s paper [55]. They mainly concern embeddings
of nonseparable Banach spaces into £,,. We start with a positive result.

Theorem 5.1. If X has an unconditional basis and is of density character at most
¢ (the cardinal of the continuum), then it is Lipschitz embeddable into {o,.

Sketch of the main ideas in the proof. Assume that the basis is 1— unconditional
and that it is indexed by the set R of real numbers. Denote by (e} ):cr the biorthog-
onal functionals of the basis. If x € X, we write z(t) = e; (). Suppose that a,b,c €
Q™. We write typically, a = (a1, aq, ..., a,) and denote by —a = (—aq, —az, ..., —ay).
Define then a subset U(a,b,c) C R™ by (t1,t2,...,tn) € U(a,b,c) if b; < t; < ¢; for
i=12,...,n,t <ta <...,t, and

n
1> aje; lx- < 1.
7j=1

For t € R write ¢, = max(t,0) and define f(,40) : X — R by f(q,) is identically 0
if U(a, b, c) is empty and otherwise

fape @) =sup { Y@z (t) 1. (t1,t2, . ) € Ula,b,0)}.

j=1
Finally define the map

F(.ZL‘) = (f(a,b,c) (x>)(a’b70)eun Qn
It can then be shown that F' is a Lipschitz embedding of X into /. O

Problem 9. Let X be reflexive of density < c¢. Is X Lipschitz embeddable in /.7

We now proceed with other spaces of density < c. Let I be a set of cardinality c.
It is easy to show, using almost disjoint families, that the space cy([) is isometric to
a subspace of {o,/cp, and it follows that there is no linear continuous injective map
from lo/co into fo. But by Theorem 5.1 above, cy(I) Lipschitz embeds into {.
This was shown much earlier [2] using the space JL, and it can also be seen by
applying Theorem VI. 8. 9 in [22] to any separable compact space K with weight ¢
and with some finite derivative empty. Hence the linear argument does not extend
to the non-linear case. However, Kalton showed:

Theorem 5.2. C[0,w1] or {x/co cannot be uniformly embedded into lo.

Before discussing the main ideas in the proof of this result, we need some prepara-

tion. Forn > 0, let Q,, = Q[ln] be the collection of all n—subsets of ; = [1,w;). For
n =0, Qy = {0}. We write a typical element of €, in the form a = {aq,...,an},
where a1 < ag < - < anp. If n > 1, and A C Q,, we define A C wgnfl] by
{ag,...,ap_1} € A if and only if {8 : {a1,...,an_1,8} € A} is uncountable. If

n = 1, this means that () € A if and only if A is uncountable.
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We will say that A C Q,, is large if ) € 0" A. Otherwise A is small. We will
say that A C Q,, is very large if its complement is small. Then one can show the
following Ramsey type result.

Lemma 5.3. If A is a very large subset in ,, then there is an uncountable set
O C Q4 such that el c A.

We will now make €2, into a graph by declaring a # [ to be adjacent if they
interlace, namely if

<< ZLa,<Byoor fr<ar << By < ap,
and we define d to be the least path metric on €2,, which then becomes a metric
space.
We write a < fif ag <+ < < f1 < -+ Bp. If a < f, then d(a, 5) =n so ,
has diameter n.
The next lemma relies on basic properties of the ordered set €.

Lemma 5.4. (i) If A and B are large sets in §),, then there exist « € A and € B
so that o and 3 interlace.

(ii) If f is a Lipschitz map from Q,, into R, with Lipschitz constant L, then there
is € € R so that {a, |f(a) —&| > L/2} is small.

It yields:
Proposition 5.5. If f is a Lipschitz map from (2, d) — Lo with Lipschitz constant
L, then there is £ € oy and an uncountable subset © of 1 so that

If(a) =gl <L/2,  acoll

Sketch of the proof of Theorem 5.2. For the case of C[0,w1], let (x,)u<., be defined
by 2, = Xo,,)- Assume that X = C[0,w;] uniformly homeomorphically embeds into
l and let f: Bx — f« be a uniformly homeomorphic embedding.

Under the notation above, for each n, consider the map f, : Q, — ¢ given by

fn(a) = f(% Zxaj)
j=1

If @ and  interlace, then by a telescopic argument

n

1
”ﬁ Z(xﬂj - xaj)” <

J=1

2
n

and from the definition of the distance in €2, we get that f,, has Lipschitz constant
1/1f(%), where ¢ is the modulus of uniform continuity of f.
By Proposition 5.5, we may pick an uncountable subset ©,, of {21 so that

(o) = (B < 0(0), B e Oy

Hence

2 < 2 & 9
12>, = Dyl Sw(s(),  anfe Oy
J=1 j=1
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Pick now oy < ag < ++- < ap, € O,,. If v > 4 > ayy, we can find in Gy, ..6, in O, so
that 8, > Bp—1 > --- > 1 > v. Then

1 — 1 — 2
|2y —zpull < Hg Z% - Zwajll < wg(wf(;))
j=1 j=1

Thus
2
O(p) :=sup [lzg —zpull < Pg(Pr(-)), 1> an
o>p n
Applying this for every n, since limy, o 1g(t f(%)) =0, we get O(u) = 0 eventually,
which is not true.
For l+ /co, Theorem 5.2 follows from the case of C[0,w;] and from the result that

C[0,w1] is linearly isometric to a subspace of ¢ /co [74].
O

Note that Theorem 5.2 implies that there is no quasi-additive Lipschitz projection
from ¢~ onto co (see [12]). As another application of Theorem 5.2, Kalton obtains
the following fundamental example.

Theorem 5.6. There is a (nonseparable) Banach space Z that is not a uniform
retract of its second dual.

Before starting on discussing the ideas in the proof, let us include the following
useful lemma of independent interest.

Lemma 5.7. Let X be a Banach space and let Q) : Y — X be a quotient mapping.
In order that there is a uniformly continuous selection f : Bx — Y of the quotient
mapping Q, it is sufficient that for some 0 < A < 1 there is a uniformly continuous
map ¢ : Sx — Y with ||Q(¢(x)) — x| < A for x € Sx.

Proof. We extend ¢ to Bx to be positively homogeneous and ¢ remains uniformly
continuous. Define g(x) = z — Q(¢(x)), so that g is also positively homogeneous.
Then | g(x)|| < Al|lz| and so ||g™(z)|| < A"||z||™ for € Bx. Let ¢°(z) = z. Let

fl@)=>"o(g"(x)).
n=0

The series converges uniformly in x € Bx and so f is uniformly continuous. Fur-

thermore,
o

Qf(x) =) (9"(x) —g"'(2) ==
n=0

0

Sketch of the proof of Theorem 5.6. The space Z that we shall consider was con-
structed by Benyamini in [11]. Consider the quotient map @ : oo — loo/co. For
each n, pick a maximal set D, in the interior of B,/ so that ||z — /| > 1
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for x,2’ € D, and x # z’. Then for each n define a map h,, : D,, — By with
Qhn(x) = x for x € D,, and denote by Y,, the space ¢, with the equivalent norm

1
Iylly,, = max {—llylle, 1Ryl ., }-

Note that @) remains a quotient map for the usual norm on £, /co.

Let Z = (3. Yn)e, and assume that there is a uniformly continuous retraction of
Bz« onto Bz. Then it follows that there is a sequence of retractions g, : Y** — Y,
which is equi—uniformly continuous, i.e their moduli of uniform continuity satisfy

Vg, (1) S 9(t) 0<t <2, with limy(t) =0.

Consider the map h,, : D,, — Y,,. If x # 2’ € D,,, then

2
1on(2) = ha ()| < max { =, & = ']} < 2]}z — 2.
Since By« is a 1-absolute Lipschitz retract, there is an extension f,, : By jc, — By;+
of hy, with Lip(f,) < 2. Now, if & € By__/,, there is 2’ € Dy, with ||z — 2/[| < 2.
Thus

4

19 (fn(@)) = gn(ful@NI < $(=)

and hence

4 2
Qgn(fule)) = 2ll < H() + =
Then for n large enough, we have

4 2
P(=)+—- <1

n n

By Lemma 5.7, this means that there is a uniformly continuous selection of the
quotient map Q : By ey — Yn. Thus By /., uniformly embeds into Y;, which is

isomorphic to £+, and this is a contradiction with Theorem 5.2.
O

Problem 10. Does there exist a separable, or at least a weakly compactly generated
(WCG) Banach space X which is not a Lipschitz retract of its bidual?

We note that if X is Lipschitz embedded in ¢, then X admits a countable
separating family of Lipschitz real valued functions on X. Let us also recall that
Bourgain proved in [14] that ¢ /cy has no equivalent strictly convex norm. This
somehow suggests the following problem.

Problem 11. If X is Lipschitz embeddable into £, does X have an equivalent
strictly convex norm?

We will finish this section by discussing a few more examples of nonisomorphic
nonseparable spaces that have unique Lipschitz structure. We will discuss one way
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of getting many examples by using the so called pull-back construction in the theory
of exact sequences (see [19]). First, we need some preparation.

A diagram 0 - Y — X — Z — 0 of Banach spaces and operators is said to
be an exact sequence if the kernel of each arrow coincides with the image of the
preceding one. Hence, in the diagram above, the second arrow denotes an injection
and the third one is a quotient map. This means, by the open mapping theorem,
that Y is isomorphic to a closed subspace of X and that the corresponding quotient
is isomorphic to Z. We say that X is a twisted sum of Y and Z or an extension of
Y by Z.

We say that the exact sequence splits if the second arrow ¢ admits a linear retrac-
tion (i.e. an arrow r from X into Y so that ri = Idy) or equivalently if the third
arrow ¢ admits a linear section, or selection, i.e. if there is an arrow s from Z into
X such that gs = Idz. This implies that then X is isomorphic to the direct sum
YoZ.

Let A: U — Z and B : V — Z be two operators. The pull-back of {A, B} is the
space PB = {(u,v) : Au = Bv} C U x V considered with the canonical projections
of U x V onto U and V respectively.

If0 - Y - X — Z — 0is an exact sequence with quotient map gand T : V — Z
is an operator and PB denotes the pull-back of of the couple {¢, T'}, then the diagram

0 Y X Z ——0
[
0 Y —— PB Vv 0

is commutative with exact rows. It follows that the pull-back sequence splits if and
only if the operator T' can be lifted to X, i.e. there exists an operator 7 : V — X
such that g7 =T.

Kalton’s Lemma [55] says that if the quotient map in the first row admits a
Lipschitz section then so does the quotient map in the second row.

We now consider the following pull-back diagram.

0 co JLse co(I) —— 0
ICOT TT T

0 co JLs 0(I) —— 0
ICOT ST s[

0 co y CC b — 0

In this diagram, the operator 7' is the inclusion map and the operator S is the
Rosenthal quotient map [81]. Therefore we get that the space JLs of Johnson and
Lindenstrauss is an example of a non WCG space that it is Lipschitz isomorphic
to lo(I) ® ¢p and Lipschitz embeds into £o,. However, it is known that it does not
linearly isomorphically embeds into fo, (see [46]).

The space C'C in the third row is then an example of a space that is Lipschitz
homeomorphic to £ P cg, but is not linearly isomorphic to it. Note also that C'C' is



The non-linear geometry of Banach spaces after Nigel Kalton 31

linearly isomorphic to a subspace of £, because J L, linearly embeds into /., and
CC is a subspace of JLs @ lo (see [18] for details).

Similarly, Kalton obtained for instance that any nonseparable WCG space that
contains an isomorphic copy of ¢q fails to have unique Lipschitz structure.

Problem 12. Does every reflexive (superreflexive) space have unique Lipschitz
structure?

Problem 13. Does /, have unique Lipschitz structure?

Remark: It turns out that the undecidability of the continuum hypothesis (and of
related statements) casts a shadow on the Lipschitz classification of non-separable
spaces. Let I be a set of cardinality ¢. We assume that the space co(I) is Lipschitz-
isomorphic to a WCG Banach space X. Does it follow that X is linearly isomorphic
to co(I)? It follows from [36] that the answer is positive if ¢ < R, where R,
denotes the wp-th cardinal. On the other hand, it follows from [10] and [65] that
the answer is negative if ¢ > R, (see also [6] for a related result on the failure of
a non-separable Sobczyk theorem at the density R,,,). Since (ZFC) does not decide
if ¢ is strictly less or strictly more than N, , the above question is undecidable in
(ZFC).

6. COARSE EMBEDDINGS INTO BANACH SPACES AND GEOMETRIC GROUP THEORY

Two topological spaces M and N are homotopically equivalent if there exist
continuous maps f : M — N and g : N — M such that f og and g o f are both
homotopic to the identity map on the space on which they operate. For instance,
any topological vector space is homotopically equivalent to a point (in other words,
is contractible).

We consider the case where M and N are real compact manifolds. In order to
understand their geometry, it is of course important to find quantities which are
invariant under homotopy equivalence. A basic example is the signature of the
manifold, which can be defined as follows when the dimension n = 4k is divisible
by 4. If d; denotes the exterior derivative acting on the differential forms of degree
J, then Fy, = Ker(dy) is the vector space of closed forms of degree 2k and Ej =
Im(dgg—1) is its subspace of exact forms of degree 2k. If w; and ws are two forms
in Fj and if we define ) by

Q(w17w2)=/ w1 A wo

M
then @ is a bilinear symmetric form, and an easy computation shows that the value

of () depends only upon the classes of wy; and wy in the finite-dimensional quotient
space Hip(M) = Fj/Ey. Therefore @) defines a quadratic form on Hy (M), and its
signature is called the signature of the manifold M. This signature is invariant
under homotopy equivalence. Actually, a theorem of Novikov asserts (for simply
connected manifolds) that the signature is the only homotopy invariant which can
be computed in terms of quantities called Pontryagin polynomials.

We now recall the basics of geometric group theory. Let G be a finitely generated
group, and S be a finite set generating G. We can equip G with the word distance
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dg associated to S, as follows: if ||g||s is the minimal length of a word written with
elements of S and S~! representing ¢, then we define the left-invariant distance
ds on G by ds(g1,92) = ||gflgg|]g. If for instance G is the group Z™ and S is its
generating set consisting of the unit vector basis, then dg coincide with the distance
induced by the ¢; norm on R"™. It is easily checked that if S and S’ are two finite
generating sets, then the identity map is a coarse Lipschitz isomorphism between
the metric spaces (G,dg) and (G,dg/). A property of finitely generated groups is
said to be geometric if it depends only upon the space (G, dg) up to coarse Lipschitz
equivalence, Many natural properties of groups (such as amenability, hyperbolicity,
or being virtually nilpotent, i.e. containing a nilpotent subgroup of finite index)
turn out to be geometric.

We denote again by M a real compact manifold. Novikov’s conjecture asserts that
certain “higher signatures” are homotopy invariants. We would have to introduce
several highly non-trivial concepts before providing a precise statement of this con-
jecture and this is not the purpose of this survey. However it is easy to describe the
link between Novikov’s conjecture and geometric group theory. Indeed, let 71 (M)
be the first homotopy group of the manifold M. Mikhail Gromov conjectured a
link between the geometry of the finitely generated group 71 (M) and the Novikov
conjecture, and this conjecture was confirmed by Yu: Novikov’s conjecture (and
even the stronger coarse Baum-Connes conjecture) holds true if the group m (M)
equipped with the word distance coarsely embeds into the Hilbert space [83]. This
important result was later generalized by Kasparov and Yu [61] who showed that
the Hilbert space can be replaced in this statement by any super-reflexive space.
This is indeed a generalization since the spaces £, with p > 2 do not coarsely embed
into the Hilbert space [50]. Note that conversely, it is an open question to know if
the separable Hilbert space coarsely embeds into every infinite-dimensional Banach
space, in other words if coarse embedding into #» is the strongest possible property
of that kind. A word of warning is needed here: what we call “coarse embedding”
is often called (after Gromov) “uniform embedding” in the context of differential
geometry. In this survey however, the word uniform bears another meaning.

Let us recall that a metric space E is called locally finite if every ball of E is
finite, and it has bounded geometry if for any r > 0, the cardinality of subsets
of diameter less than 7 is uniformly bounded. The left invariance of the distance
dg shows that any finitely generated group has bounded geometry. Therefore the
question occurs to decide which finitely generated group, and more generally which
space with bounded geometry coarsely embeds into a super-reflexive space. For
instance, could it be that every space with bounded geometry coarsely embeds into
a super-reflexive space?

This question is now negatively answered. A first example of a locally finite space
which does not coarsely embed into the Hilbert space is obtained in [21], using in
particular a construction of Enflo [27]. Then Gromov shows [39] through a random
approach the existence of finitely generated groups G such that the metric space
(G, dg) coarsely contains a sequence of expanders F; - that is, a sequence of graphs
such that the first positive eigenvalue of the Laplacian is uniformly bounded below
- such that the girth of F;, namely the length of the shortest closed curve, increases
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to infinity. As shown in [63], embeddings of expanders into the Hilbert space have
maximal distortion. It follows that G cannot be coarsely embedded into a super-
reflexive space, and since such a group can be realized as an homotopy group (see
[40]) it cuts short hopes to prove the full Novikov conjecture through the coarse
embedding approach (see also [43]).

On the other hand, the problem remains open to decide which metric spaces
coarsely embed into Banach spaces of given regularity. Any metric space with
bounded geometry coarsely embeds into a reflexive space [17]. This result is widely
generalized in [53] where it is shown that every stable metric space (where “stable”
means that the order of limits can be permuted in limy lim,, d(zg,y,) each time
all limits exist) can be coarsely embedded into a reflexive space. This is indeed
extending [17] since every metric space whose balls are compact, and thus every
locally finite metric space, is stable. Moreover, it follows from Theorem 4.4 that any
locally finite metric space Lipschitz embeds into the following very simple reflexive
space: (D02 0% ), (note that this space is both AUC and AUS). On the other
hand, Theorem 4.7 states that ¢y does not coarsely embed into a reflexive space,
nor into a stable metric space (by the above, or directly by [78]). Note that the
important stable Banach space L' coarsely embeds into the Hilbert space [50],[77].

As seen before, coarse embeddings of special graphs bear important consequences
on the non-linear geometry of Banach spaces. Sequences of expanders shed light on
the geometry of groups and its applications to homotopy invariants. It is plausi-
ble that such expanders could provide several interesting examples in geometry of
Banach spaces.

For the record, we recall the

Problem 14. Does {5 coarsely embed into every infinite dimensional Banach space?

7. LIPSCHITZ-FREE SPACES AND THEIR APPLICATIONS

Let M be a pointed metric space, that is, a metric space equipped with a distin-
guished point denoted 0. The space Lipy(M) is the space of real-valued Lipschitz
functions on M which vanish at 0. Let F(M) be the natural predual of Lipy(M),
whose w*-topology coincide on the unit ball of Lipy(M) with the pointwise con-
vergence on M. The Dirac map 0 : M — F(M) defined by (g,d(z)) = g(z) is
an isometric embedding from M to a subset of F(M) which generates a dense lin-
ear subspace. This predual F(M) is called in [35] the Lipschitz-free space over M.
When M is separable, F(M) is separable as well since §( M) spans a dense subspace.
Although Lipschitz-free spaces over separable metric spaces constitute a class of sep-
arable Banach spaces which are easy to define, the structure of these spaces is very
poorly understood to this day. Improving our understanding of this class is a fasci-
nating research program. Note that if we identify (through the Dirac map) a metric
space M with a subset of F(M), any Lipschitz map from M to a metric space N
extends to a continuous linear map from F(M) to F(N). So Lipschitz maps become
linear, but of course the complexity is shifted from the map to the free space: this
may explain why the structure of Lipschitz-free spaces is not easy to analyze. A first
example is provided by the real line, whose free space is isometric to Ly. Actually,
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metric spaces M whose free space is isometric to a subspace of L1 are characterized
in [31] as subsets of metric trees equipped with the least path metric. On the other
hand, the free space of the plane R? does not embed isomorphically into L' [71].

Banach spaces X are in particular pointed metric spaces (pick the origin as distin-
guished point) and we can apply the previous construction. Note that the isometric
embedding 6 : X — F(X) is of course non linear since there exist Lipschitz functions
on X which are not affine.

This Dirac map has a linear left inverse g : F(X) — X which is the quotient map
such that z*(8(p)) = (z*, p) for all z* € X*; in other words, [ is the extension to
F(X) of the barycenter map. This setting provides canonical examples of Lipschitz-
isomorphic spaces. Indeed, if we let Zx = Ker(3), it follows easily from 86 = Idx
that Zx @ X = G(X) is Lipschitz-isomorphic to F(X).

Following [35], let us say that a Banach space X has the lifting property if there
is a continuous linear map R : X — F(X) such that SR = Idx, or equivalently,
if for Y and Z Banach spaces and S : Z — Y and T : X — Y continuous linear
maps, the existence of a Lipschitz map £ such that T" = SL implies the existence of a
continuous linear operator L such that T'= SL. A diagram-chasing argument shows
that G(X) is linearly isomorphic to F(X) if and only if X has the lifting property
[35]. It turns out that all non-separable reflexive spaces, and also the spaces £ (N)
and co(I") when I is uncountable, fail the lifting property and this provides canonical
examples of pairs of Lipschitz but not linearly isomorphic spaces.

On the other hand, the following result is proved in [35]:

Theorem 7.1. : Every separable Banach space X has the lifting property.

Proof. We will actually give two proofs. First, one can pick a Gaussian measure ~
whose support is dense in X and use the result that (0 %+) is Gateaux-differentiable.
Then in the above notation R = (§ % y)’(0) satisfies Idx = SR.

The second proof is essentially self-contained. It consists into replacing the Gauss-
ian measure by a cube measure, and this will be useful later. It underlines the simple
fact that being separable is equivalent to being “compact-generated”. Again, we use
differentiation, but only in the directions which are normal to the faces of the cube.

Let (x;);>1 be a linearly independent sequence of vectors in X such that

span [(zi)iz1] = X

and ||z;|| = 277 for all i. Let H = [0,1]Y be the Hilbert cube and H,, = [0, 1]""
be the copy of the Hilbert cube where the factor of rank n is omitted; that is,
N, = N\{n}. We denote by A (resp. A,) the natural probability measure on H
(resp. H,) obtained by taking the product of the Lebesgue measure on each factor.

We denote E = span [(z;);>1] and R : E — F(X) the unique linear map which
satisfies for all n > 1 et all f € Lipy(X)

o oo

R(za)(f) = / Fant S ) — £ Y ta)]dia)

n i=Lj#n j=Lj#n
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Pick f € Lipy(X). If the function f is Gateaux-differentiable, Fubini’s theorem
shows that for all x € £

R(z)(f) = /H <AV ta)w > AA()
j=1

Thus |R(z)(f)| < ||z||||f|lz in this case. But since X is separable, any f €
Lipy(X) is a uniform limit of a sequence (f;) of Gateaux-differentiable functions
such that || f;||z < |/ f]lz. It follows that

IR| < 1.

We may now extend R to a linear map R : X — F(X) such that |[R|| = 1 and it
is clear that R(x)(z*) = z*(z) for all x € X and all 2* € X*. Hence SR = Idx.
U

The above proof follows [35]. We refer to [32] for an elementary approach along
the same lines, which uses only finite-dimensional arguments and is accessible at the
undergraduate level.

The lifting property for separable spaces forbids the existence of a separable Ba-
nach space X such that F(X) and G(X) are not linearly isomorphic, but on the
other hand it shows that if there exists an isometric embedding from a separable
Banach space X into a Banach space Y, then Y contains a linear subspace which is
isometric to X. Indeed a theorem due to Figiel [30] states that if J: X — Y is an
isometric embedding such that J(0) = 0 and span[J(X)] =Y then there is a linear
quotient map with ||Q|| = 1 and QJ = Idx, and then the lifting property provides a
linear contractive map R such that QR = Idx, and this map R is a linear isometric
embedding. We note that P = R(Q is a contractive projection from Y onto R(X).
This remark is developed further in [33] where it is shown that the existence of a
non-linear isometric embedding from X into Y is a very restrictive condition on the
couple (X,Y).

Nigel Kalton constructed the proper frame for showing the gap which sepa-
rates Holder maps from Lipschitz ones [52]. If (X,|| ||) is a Banach space and
w : [0,+00) — [0,+00) is a subadditive function such that lim;,ow(t) = w(0) = 0
and w(t) = ¢ if t > 1, then the space Lip,(X) of (w o d)-Lipschitz functions on
X which vanish at 0 has a natural predual denoted F,(X), and the barycentric
map B, @ Fu(X) — X (whose adjoint is the canonical embedding from X* to
Fuw(X)) is still a linear quotient map such that 5,0 = Idx. However, the Dirac map
§: X — Fu(X) is now uniformly continuous with modulus w - e.g. a- Holder when
w(t) = max(t*,t) with 0 < a < 1. Uniformly continuous functions fail the differ-
entiability properties that Lipschitz functions enjoy, and thus one can expect that
this part of the theory is more “distant” from the linear theory than the Lipschitz
one. It is indeed so, and [52, Theorem 4.6], reads as follows.

Theorem 7.2. If w satisfies limy_,q @ = 00, then F,(X) is a Schur space - that

is, weakly convergent sequences in F,(X) are norm convergent.
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It follows from Theorem 7.2 that the uniform analogue of the lifting property
fails unless X has the (quite restrictive) Schur property. Moreover, F,(X) is (3w)-
uniformly homeomorphic to [X @& Ker(fB,)] and as soon as lim;_,q th) = 0 and
X fails the Schur property we obtain canonical pairs of uniformly (even Holder)
homeomorphic separable Banach spaces which are not linearly isomorphic. We refer
to [79, 47] for other examples of such pairs.

Along with Hélder maps between Banach spaces, one may as well consider Lip-
schitz maps between quasi-Banach spaces, and this is done in [5] where similar
methods provide examples of separable quasi-Banach spaces which are Lipschitz
but not linearly isomorphic.

We now observe that the proof (with cube measures) of Theorem 7.1 provides
the existence of compact metric spaces whose free space fails the approximation
property (in short, A.P.). This has been observed in [34].

Theorem 7.3. There exists a compact metric space K whose free space F(K) fails
the approximation property.

Proof. We use the notation of the proof of Theorem 7.1. Let C be the closed convex
hull of the sequence (z;);>1, and let K = 2C. It is easily seen that the map R takes
its values in the closed subspace F(K) of F(X), and so does R. It follows that X
is isometric to a 1-complemented subspace of F(K), through the projection RQ. If
this construction is applied to a Banach space X which fails A.P. | then F(K) fails
A. P. as well since A. P. is carried to complemented subspaces.

O

Problem 15. Let X be a separable Banach space, and Y a Banach space which is
Lipschitz-isomorphic to X. Does it follow that Y is linearly isomorphic to X?

This question amounts to know if every separable Banach space is determined by
its metric structure. It is open for instance if X = ¢; or if X = C(K) with K a
countable compact metric space, unless C(K) is isomorphic to ¢y. Note that by the
above the answer to this question is negative if we drop the separability assumption,
or if we replace Lipschitz by Holder, or if we replace Banach by quasi-Banach.

Problem 16. Is the Lipschitz-free space F(¢1) over {1 complemented in its bidual?
A motivation for this question is that if F(¢;) is complemented in its bidual, it

follows that every space X which is Lipschitz-isomorphic to ¢; is complemented in

its bidual, and then [12, Corollary 7.7] shows that X is linearly isomorphic to /.

Problem 17. Theorem 7.3 leads to the question of knowing for which compact
spaces K the space F(K) has A. P. or its metric version M. A. P. So far, very
little is known on this topic, which is related with the existence of linear extension
operators for Lipschitz functions (see [13], [34]).

Problem 18. Let M be an arbitrary uniformly discrete metric space, that is, there
exists § > 0 such that d(z,y) > 0 for all z # y in M. Does F(M) have the B.
A. P? Note that A. P. holds by ([52, Proposition 4.4]). A positive answer to this
question would imply that every separable Banach space X is approximable, that
is, the identity Idx is the pointwise limit of an equi-uniformly continuous sequence
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of maps with relatively compact range. By [56, Theorem 4.6], it is indeed so for X
and X* when X* is separable, and in particular every separable reflexive space is
approximable. On the other hand, a negative answer to this question would provide
an equivalent norm on ¢; failing M. A. P. and this would solve a famous problem in
approximation theory, by providing the first example of a dual space - namely, £
equipped with the corresponding dual norm - with A. P. (and even B. A. P.) but
failing M. A. P.
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