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Abstract

Let A be a line arrangement in the complex projective plane CP2. We define and

describe the inclusion map of the boundary manifold –the boundary of a close regular

neighborhood of A– in the exterior of the arrangement. We obtain two explicit descrip-

tions of the map induced on the fundamental groups. These computations provide a new

minimal presentation of the fundamental group of the complement.

1. Introduction

Line arrangements are finite collections of complex lines in the projective space CP2,

that is, plane algebraic curves whose irreducible components are all of degree one. The

general study of discriminants of curves in CP2 and their stratification leads to consid-

ering the homeomorphism type of the pair as a natural isotopy invariant. We refer to

this invariant as the topology of the embedding. O. Zariski was the first to show that the

combinatorial description of a curve (degree of the components, local type of the sin-

gularities,...) is not enough to determine the topology. The case of line arrangements is

quite motivating since lines are non-singular and two lines intersect at a single point: the

combinatorial structure of an arrangement can easily be encoded in the incidence graph.

However, S. MacLane [11] showed that it does not determine the deformation class.

Later G. Rybnikov [14] showed that combinatorics does not determine even the topo-

logical type of the complement (see also [2, 3]). This motivates the study of topological

invariants such as the fundamental group (and related: characters, Alexander invariants,

characteristic varieties,...).

On the other hand, one may consider the boundary manifold BA of an arrangement

A, defined as the boundary of a closed regular neighborhood in CP2. It is a compact

graph 3-manifold in the sense of F. Waldhausen [15], whose topology is combinatorially
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determined [16, 6]. In particular the graph structure is modeled by the incidence graph

ΓA. Its fundamental group can be computed from this description, see for example [6].

Our general aim is to study the inclusion map of the boundary manifold BA in the

exterior EA of the arrangement in CP2 and to give an explicit method to compute the

map at the level of their fundamental groups. This is related to the work of E. Hironaka

[9] on complexified real arrangements, but the complex case requires a more careful study

of generators of π1(BA), coming from cycles of the graph ΓA. From these computations,

we derive a new minimal presentation of π1(EA).

Our main motivation is a series of papers (of joint works with E. Artal [4, 8, 7]),

where applications of the map and its description are given. We observe that the inclu-

sion map captures some relevant information on the position of singularities that is not

contained in the combinatorics. Indeed, in [4], we use it to construct a new topological

invariant of arrangements, see [8, 7] for illustrations and examples. Let us also mention

that our method allows to complete the work of E. Artal [1] on the essential coordinate

components of the characteristic varieties of an arrangement. It provides a crucial ge-

ometrical ingredient to compute the depth of any characters of the fundamental group

(see in particular [1] Section 5.4). This gives the only known way —a geometrical way—

to compute this algebraic invariant of arrangements.

In Section 2, we recall the basics on combinatorics of arrangements. We construct

the boundary manifold BA from the incidence graph ΓA and give a presentation of its

fundamental group. Section 3 is devoted to the complement EA and the calculation of

its fundamental group from the braided wiring diagram. In Section 4, we present the

method to compute the inclusion map on fundamental groups. We obtain a description

of the homotopy type of the exterior where the boundary manifold appears explicitly. In

Section 5, we illustrate the method using MacLane’s arrangement.

Along the different sections, the notions and computations are illustrated with the

didactic example described by the following equations:

L0 = {z = 0} , L1 = {−(i+ 2)x+ (2i+ 3)y = 0} , L2 = {−x+ (i + 2)y = 0} ,

L3 = {−x+ 3y + iz = 0} , L4 = {−x+ (2i+ 2)y = 0} .

2. The boundary manifold

We sometimes use both projective and affine points of view on arrangements. For a

given arrangement A in CP2 with n+1 lines, the line L0 will denote an arbitrary choice

of the line at infinity. The arrangement A−L0 in P2 −L0 ≃ C2 is an affine arrangement

with n lines.

The boundary manifold BA is the boundary of a closed regular neighborhood of A,

which can be constructed as a sub-complex of a triangulation of P2 –the closed star of

A in the second barycentric subdivision. This is a compact, connected, oriented graph

3-manifold, modeled on the incidence graph. In particular, it is combinatorially deter-

mined: any isomorphism of the incidence graph induces an isomorphism of the graph

manifold, [9].

2·1. Incidence graph

Let A be an arrangement with set of singular points Q. The incidence graph encodes

the combinatorial information on A, see [13] for details. For P ∈ Q, let us denote

AP = {ℓ ∈ A | P ∈ ℓ}. The number mP = #AP ≥ 2 is called the multiplicity of P .
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Definition 2·1. The incidence graph ΓA of A is a non-oriented bipartite graph where

the set of vertices V (A) decomposes as VP (A) ∐ VL(A), where

VP (A) = {vP | P ∈ Q}, VL(A) = {vL | L ∈ A}.

The vertices of VP (A) are called point-vertices and those of VL(A) are called line-vertices.

The edges of ΓA join vL to vP if and only if L ∈ AP . They are denoted e(L, P ).

A morphism between incidence graphs is a morphism of graphs preserving the ver-

tex labelings, which send elements of VP (A) (resp. VL(A)) to elements of VP (A) (resp.

VL(A)).

The incidence graph of the didactic example is pictured in Figure 1.

L0

P0,1

P0,2

P0,4

P0,3 L3

L4

L2

L1 P1,2,4

P1,3

P2,3

P3,4

Fig. 1. Incidence graph of the didactic example

2·2. Construction of BA

Let U be a compact regular neighborhood of A. We recall that the boundary manifold

BA can be defined as the boundary of U . This manifold BA is combinatorially determined

and can be computed from the incidence graph ΓA as follows:

For every singular point P ∈ Q of A, consider a 4-ball BP of radius η, centered in P . Let

SP = ∂(BP )\T, where T is an open regular neighborhood of the link LP = (∂BP ∩A).

The boundary of SP is a union of disjoint tori T indexed by the lines Li passing through

P , and TL = (L ∩ ∂BP )× S1.

Definition 2·2. Let P ∈ Q and L ∈ A be such that P ∈ L. The meridian mL and

the longitude lL of the torus TL are the pair of oriented simple closed curves in TL ⊂ ∂T

which are determined up to isotopy by the homology and linking relations:

mL ∼ 0, lL ∼ (L ∩T) in H1(T);

ℓ(mL, L ∩T) = 1, ℓ(lL, L ∩T) = 0,

where ℓ(·, ·) denotes the linking number in ∂BP ≃ S3.

Consider the surface:

F = A \
∐

P∈Q

(

A ∩
◦

BP

)

.

It is obtained by removing of A open discs from the BP ’s. One sees that F is a union
n
∐

i=0

Fi where each Fi corresponds to the line Li of A. Let Ni = Fi × S1 whose boundary

is a union of disjoint tori T indexed by the points P ∈ P ∩ Li.
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Let D be a generic line (i.e. for all P ∈ Q, P /∈ D), and consider D as the line at

infinity. We decompose Ni in the solid torus Ni ∩ T (D) = T
∞
i , where T (D) is regular

neighborhood of D, and the affine part N aff

i defined as the closure of Ni \ T∞
i . Viewed

as the affine part, N aff
i admits a natural trivialization in the affine space CP2 \D, and

we choose a section s of N aff
i .

Definition 2·3. Let Li ∈ A and P ∈ P be such that P ∈ Li. The longitude lP of

the torus TP is the intersection of the section s with TP . The meridian mP of TP is the

class in H 1(TP ) of {∗} × S1.

Remark 2·4. To reconstruct Ni from N aff
i and T

∞
i , we glue the boundary component

of N aff
i different of the TP ’s with ∂T∞

i . The gluing is done identifying the intersection of

the section in this component with the sum of a longitude of ∂T∞
i (i.e. a curve in ∂T∞

i

homologically equivalent to Li ∩ T
∞
i in T

∞
i ) and a meridian; and the meridian with a

fiber of the S1-fibration of T∞
i .

For each edge e(Li, P ) of ΓA, glue SP with Ni along TLi
and TP identifying meridian

with meridian, and longitude with longitude. The manifold then obtained is the boundary

manifold of A. From this construction of BA, we deduce its structure as a graph manifold.

Proposition 2·5 ([16, 9]). Let A be a complex line arrangement. The boundary man-

ifold BA is a graph manifold over the incidence graph ΓA.

Remark 2·6. Our construction is different from the one in [16] and [6] which uses

the blow-up Â of A and plumbing graph as defined by W.D. Neumann in [12]. Since

the incidence graph of A and the dual graph of Â are equivalent, a result of F. Wald-

hausen [15] shows that the corresponding manifolds are homeomorphic. With elementary

computations, though the gluings are described differently, one may show that the two

constructions coincide. The two constructions give different presentations of the funda-

mental group of the boundary manifold.

Corollary 2·7. The boundary manifold of a complex line arrangement depends only

on the combinatorics of the arrangement.

Proof. The plumbing used to construct BA as a graph manifold over ΓA is combina-

torial. The equivalence of ΓA and the combinatorics of A lead to the result.

2·3. Fundamental group of BA

The fundamental group of BA is the group associated to the incidence graph, see [16,

6]. Two types of generators naturally appear: the meridians of the lines and the cycles

related to the graph.

Definition 2·8. Let L be a line in CP2, and b be a point in CP2 \ A. A homotopy

class α ∈ π1(CP
2 \ A, b) is a meridian of L if α has a representative δ constructed as

follows:

• there is a smooth complex analytic disc ∆ ⊂ CP2 transverse to L at a smooth

point of A and such that ∆ ∩ L = {b′} ⊂ L, and pick out a point b′′ ∈ ∂∆ .

• there is a path a in CP2 \ A from b to b′′ ∈ ∂∆;

• δ = a−1 · β · a, where β is the closed path based in b′ given by ∂∆ (in the positive

direction).
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Choose arbitrarily a line L0 of the arrangement. Note that a meridian of L0 is the

product of the inverse of some meridians of the lines L1, · · · , Ln, in EA. Let P be the set

of singular points of the affine arrangement Aaff = A\L0. We assume that A is ordered.

In Sub-section 3·1, a particular order will be fixed.

Definition 2·9. A cycle of the incidence graph ΓA is an element of π1(ΓA, vL0).

Remark 2·10. The group π1(ΓA, vL0) is a free group on b1(ΓA) generators.

We construct a generating system E of cycles of ΓA as follows. Let T be the maximal

tree of ΓA containing the following edges:

• e(L, P ) for all P ∈ L0, and L ∈ A;

• e(Lν(P ), P ) for all P ∈ P and ν(P ) = min{ j | Li ∈ AP }.

Remark 2·11. Up to the choice of an order on A, this maximal tree is uniquely de-

termined.

An edge in ΓA \T is of the form e(Lj , P ), with P ∈ P and Lj ∈ A\L0. By definition of

a maximal tree, there exists a unique path λP,j in T joining vP and vLj
. The unique cycle

of ΓA containing the three line-vertices vL0 , vLν(P)
and vLj

, and no other line-vertex, is

denoted by:

ξν(P ),j = λP,j ∪ e(Lj, P ).

Let E be the set of cycles of ΓA of the form ξs,t. To each ξs,t in E will correspond a cycle

of π1(BA, X0) (where X0 ∈ N0), that we denote es,t.

Notation 2·12. We denote [a1, · · · , am] the equality of all the cyclic permutations

a1 · · ·am = a2 · · · ama1 = · · · = ama1 · · ·am−1.

For i = 0, · · · , n, let αi be a meridian of Li contained in the boundary of a regu-

lar neighborhood of L0, and for ξs,t ∈ E , let es,t be a non trivial cycle contained in
(

⋃

vP∈ξs,t

SP

)

∪

(

⋃

vL∈ξs,t

NL

)

, coming from the gluing over the edge e(Lt, P ) where P is

Ls ∩ Lt. We assume that (s, t) 6= (s′, t′) is equivalent to es,t ∩ es′,t′ = X0.

Proposition 2·13. Let αi and es,t be as previously defined. For any singular point

P = Pi1,··· ,im with multiplicity m and i1 = ν(P ), let

RP = [α
cim
im

, · · · , α
ci2
i2

, αi1 ], where cij = ei1,ij for all j = 2, · · · ,m.

The fundamental group of the boundary manifold BA admits the following presentation:

π1(BA, X0) = 〈α0, α1, · · · , αn, es1,t1 , · · · , esl,tl |
⋃

P∈P

RP 〉.

It is worth noticing that the es,t are not uniquely defined (see details in the proof).

Proof. Consider P ∈ Q. Assume that P = Pi1,··· ,im . Let yP,i1 , . . . , yP,im be the ’local’

meridians of the line Li in ∂BP . We have the following presentation of π1(SP ):

π1(SP ) = 〈yP,i1 , · · · , yP,im | [yP,im , · · · , yP,i1 ]〉.

Remark that, according with Definition 2·2, yP,ij is a meridian of Tij and a longitude is

the product of the other yP,ik .
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Consider k ∈ {0, · · · , n}. Let Q ∩ Lk = {Pk1 , · · · , Pkl
}. Let gk,ki

be the image of a

meridian in Fk around Pki
, viewed in Fk × {1} ⊂ Nk, and αk ∈ π1(Nk) a meridian

of Lk contained in a regular neighborhood of L0. We have the following presentation of

π1(Nk):

π1(Nk) = 〈gk,k1 , · · · , gk,kl
, αk | ∀i ∈ {1, · · · , l} , α−1

k · gk,ki
· αk = gk,ki

〉.

Remark that according with Definition 2·3, gk,ki
is a longitude and αk is a meridian of

TPi
.

As a first step, we only glue the Nk’s and the SP ’s over the edges of T . To do this, we

use Seifert-Van Kampen’s Theorem, and we consider a contractible set Θ homeomorphic

to T and joining the base points of the Nk’s and the SP ’s. The fundamental group of

BA is computed relative to Θ.

As a second step, we glue over the edges of ΓA−T (or equivalently the elements of E ).

Then we use Seifert-Van Kampen’s Theorem and HNN-extension; and we denote by es,t

the cycle coming from the glue due to the edge e(Lt, P ), with P = Ls ∩ Lt.

Note that if Pi ∈ Lj , then the meridian αj is identified with yPi,j and gj,i is identified

with the product of generators of π1(SPi
) not equal to yPi,j . After first doing a simplifi-

cation, we obtain the following presentation of the fundamental group of the boundary

manifold:

π1(BA) = 〈α0, α1, · · · , αn, es1,t1 , · · · , esl,tl |
⋃

P∈Q

RP 〉.

By construction of T , the relations RP , for P ∈ L0, are of the form:

[α0m , α0m−1 , · · · , α02 , α0].

But, the presentation of π1(N0) implies that α0 commutes with the g0,i and by identi-

fication it commutes with αi, for i ∈ {1, · · · , n}. Which implies that for all P ∈ L0, the

relations RP are trivial.

Example 2·14. The fundamental group of the didactic example boundary manifold is:

< α0, α1, α2, α3, α4, ε1,2, ε1,3, ε1,4, ε2,3, ε3,4 |

[α
ε1,4
4 , α

ε1,2
2 , α1], [α

ε1,3
3 , α1], [α

ε3,4
3 , α4], [α

ε2,3
3 , α2] > .

3. The complement

Let EA be the complement of a tubular neighborhood of A. As before, we choose an

arbitrary line L0 ∈ A, and let C2 be CP2 − L0.

3·1. Braided wiring diagrams

Consider a linear projection π : C2 → C, generic in the sense that:

• For all i ∈ {1, . . . , n}, the restriction of π|Li
is a homeomorphism.

• Each multiple point lie in a different fiber of π.

We suppose that the points xi = π(Pi) have distinct real parts, and that we can

order the points of π(P) by increasing real parts, so that Re(x1) < Re(x2) · · · < Re(xk).

A smooth path γ : [0, 1] → C emanating from x0 with Re(x0) < Re(x1), passing through

x1, · · · , xk in order, and horizontal in a neighborhood of each xi is said to be admissible.
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Definition 3·1. The braided wiring diagram associated to an admissible path γ is

defined by:

WA = {(x, y) ∈ A | ∃t ∈ [0, 1], p(x, y) = γ(t) } .

The trace ωi = WA ∩ Li is called the wire associated to the line Li.

Note that if A is a real complexified arrangement, then γ = [x0 − η, xk + η] ⊂ R; and

WA ≃ A∩R2.

Remark 3·2.

i) The braided wiring diagram depends on the path γ, and on the projection π.

ii) The set of singular points P is contained in WA.

We re-index the lines L1, · · · , Ln such that:

Ii < Ij ⇐⇒ i < j,

where Ii = Im(Li ∩ π−1(x0)). On the representation described bellow of the braided

wiring diagram, this re-indexation implies that the lines are ordered at the left of the

diagram from the top to bottom. This fixes an order on A.

Since the x coordinates of the points of WA are parametrized by γ, the wiring diagram

can be seen as a one dimensional object inside R3 ≃ [0, 1] × C. Consider its image by

a generic projection γ([0, 1]) × C → R2. If we take a plane projection of this diagram

(assume, for example, that it is in the direction of the vector (0, 0, 1) -that is, in the

direction of the imaginary axis of the fibre-), we obtain a planar graph. Observe that

there are nodes corresponding to the image of actual nodes in the wiring diagram in R3

(that is, to a singular point of the arrangement). Other nodes appear from the projection

of undergoing and overgoing branches of the wiring diagram in R
3. The two types of

nodes are called by W. Arvola actual and virtual crossing.

If we represent the virtual crossings in the same way that they are represented as in

the case of braid diagrams, we obtain a schematic representation of the wiring diagram

as in Figure 3. From now on, we will refer to this representation as the wiring diagram

itself. By genericity, we assume that two crossings (actual or virtual) do not lie on the

same vertical line.

It is worth noticing that from the braided wiring diagram, one may extract the braid

monodromy of A, related to the generic projection π. The local equation of a multiple

point is of the form ym − xm, where m is the multiplicity, and the corresponding local

monodromy is a full twist in the braid group with m strands.

3·2. Fundamental group of the complement

We recall briefly the method due to W. Arvola [5] to obtain a presentation of the

fundamental group of the complement from a braided wiring diagram WA. The algorithm

goes as follows: start from the left of the diagram, assigning a generator αi to each strand.

Then follow the diagram from the left to the right, assigning a new word to the strands

going through each crossing. The rules for this new assignation are given in Figure 2,

where the ai’s are words in the αi’s.

The notation in Figure 2 is a
aj

i = a−1
j aiaj .

For each actual crossing P that corresponds to a singular point of A, suppose that the

strands are labeled with the words a1, . . . , am with respect to their order in the diagram
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am

am−1

...

a2

a1

a1

(a2)
a1

...

(am−1)
am−2···a1 ≡ (am−1)

a−1
m

(am)am−1···a1 ≡ am

real crossing

(A)

aj

ai

ai

a
ai
j

positive virtual crossing

(B)

aj

ai

a
a
−1
j

i

aj

negative virtual crossing

(C)

Fig. 2. Computation of Arvola’s words

at this point P , from top to bottom, where m = mP is the multiplicity of P . Then the

following relations are added to the presentation:

RP = [am, . . . , a1] = {am · · ·a1 = a1am · · · a2 = · · · = am−1 · · · a1am}.

They correspond to the action of a half-twist on the free group, whereas the action of

a virtual crossing is given by the corresponding braid.

1

2

3

4

α1

α2

α3

α4

α
α3
4

α3

α
α
−1
3

1

α1

α
α1
2

α
α3
4

α
α1α

−1
3

2

α3 α
α1
2

α3

α1 α3

α1

α
α1α

−1
3

2

α4

α3 α4

α3

α3

α
α1
2

Fig. 3. The braided wiring diagram of the affine part of the didactic example

Theorem 3·3 (Arvola [5]). For i = 0, . . . , n, let αi be the meridians of the lines Li.

The fundamental group of the exterior of A admits the following presentation

π1(EA) =< α1, · · · , αn |
⋃

P

RP >,

where P ranges over all the actual crossings of the wiring diagram WA.
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Example 3·4. The braided wiring diagram of the didactic example is pictured in Fig-

ure 3. Its fundamental group is :

< α1, α2, α3, α4 | [αα3
4 , α2, α1], [α3, α1], [α4, α3], [α3, α

α1
2 ] > .

4. The inclusion map

The main result of the paper is a complete description of the map induced on the

fundamental groups, by the inclusion of the boundary in the exterior of an arrangement

A. The computation is done in two main steps.

Let WA be the wiring diagram associated to the choice of a generic projection π and

an admissible path γ. We start by choosing a generating system E = {ξs,t} of cycles of

the incidence graph ΓA. These cycles can be directly seen in WA, since it contains all the

singular points and the vertices of ΓA can be identified with their corresponding wires

between two singular points. Then, the first step is to "push" each cycle ξs,t from WA

to the boundary manifold BA. The procedure is described in Section 4·1, and gives an

explicit family {εs,t} of π1(BA), indexed by E . This family, with the set of meridians of

the lines, generates π1(BA). The second step is to compute the images of these generators

εs,t by the inclusion map. We use an ad hoc Arvola’s algorithm to make the computations

directly from WA, see Section 4·2. Then the map is described in Theorem 4·3.

In Section 4·3, we examine the kernel of the map; this provides an exact sequence

involving π1(BA) and π1(EA), see Theorem 4·5. We deduce in Section 4·4 a presentation

of π1(EA) where the generators of π1(BA) appear explicitly. This presentation defines a

complex whose homotopy type is the same that EA, see Proposition 4·9.

4·1. Cycles of the boundary manifold

We suppose that the admissible path γ emanates from x0 and goes through x1, . . . , xk,

the images of the singular points of A by π, ordered by their real parts. Let E = {ξs,t}

be the generating set of cycles of ΓA defined in Section 2·3.

Each cycle ξs,t ∈ E is sent to BA via WA, as follows. Let X0 = (x0, y0) be a point of

N0 such that x0 = γ(0). The vertices of ξs,t of the form vL0 or vP with P ∈ L0 and the

edges of the form e(L0, P ), with P ∈ L0, are all sent to the point X0. The edges e(Li, P ),

with i 6= 0 and P ∈ L0, are sent to segments from X0 to the points Li ∩ π−1(x0). Then

the remaining vertices of the form vL ∈ VL(A) are sent to L ∩ π−1(x0). Let ξs,t denote

now the cycle of WA, relative to the left endpoints, where the vertices vP ∈ VP (A) are

identified with the singular points P , and the edges with their corresponding wire of WA.

A framed cycle is obtained by pushing a cycle ξs,t to BA. This cycle ξs,t consists of

four arcs. Two of them are segments in N0, the two others are the parts in Ls and Lt, see

Figure 5. The last two arcs go through several actual crossings of WA and can be viewed

as a union of small arcs. Each of them is projected to BA in the direction [0 : i : 0] and

their images are glued together as follows. For each actual crossing P , modify γ slightly

so that it makes a half circle of (small) radius ηP around x = π(P ) in the positive sense.

Choose ηP so that the preimage of this half circle lies in Ni ∩ SP ⊂ BA (also called TP

or TLi
in Sub-section 2·2), where i ∈ {s, t}. See Figure 4(a). We avoid the intersection

point P : (xP , yP ) of Ls and Lt as follows. Consider SP as a polydisc, and join the two

end points with the union of the two segments joining these end points with the point of

π−1(xP − ηP ) ∩ SP having the smallest real part, see Figure 4(b).
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The class of the obtained cycle in π1(BA, X0), denoted by εs,t, equals es,t in the

presentation of π1(BA) found in Proposition 2·13.

SP ′

•

•

P ′

Lt

Ls

(a) Near P ′ 6= Ls ∩ Lt

SP

•

•

•
Ps,t

Lt

Ls

(b) Near P = Ls ∩ Lt

Fig. 4. Construction of εs,t near singular points

•
x1

•
x2

•
x3

•
x0 = γ(0) γ

N0 ∩ π−1(x0)

•X0

L1

L2

L3

P1

P2

P3

C2

C

π

Fig. 5. Construction of δ(ε)

In order to compute the images of the framed cycles in the complement EA, we in-

troduce geometric cycles Es,t, defined as parallel copies of the ξs,t’s. Indeed, let Es,t in

π1(BA) be the image of ξs,t by the projection in the direction [0 : i : 0]. Remark that the

difference between εs,t and Es,t is local and takes place near the singular points. We also
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define the unknotting map by:

δ :







π1(BA, X0) −→ π1(BA, X0)

αi 7−→ αi

εs,t 7−→ Es,t

.

Let us define δls,t (resp. δrs,t) as the products over all actual crossings P of the arc Ls

(resp. Lt) of ξs,t, different from Ls ∩ Lt, of the following words:

Suppose that P = Li1 ∩ · · · ∩Lim where the order of the lines corresponds to Figure 6.

- If P ∈ Ls, let h ∈ {1, · · · ,m} be such that ih = s, then P contributes to δls,t by:

ε−1
i1,ih

(

α−1
i1

(

εi1,i2α
−1
i2

ε−1
i1,i2

)

· · ·
(

εi1,ih−1
α−1
ih−1

ε−1
i1,ih−1

))

εi1,ih ,

- If P ∈ Lt, let h ∈ {1, · · · ,m} be such that ih = t, then P contributes to δrs,t by:

ε−1
i1,ih

((

εi1,ih−1
αih−1

ε−1
i1,ih−1

)

· · ·
(

εi1,i2αi2ε
−1
i1,i2

)

αi1

)

εi1,ih .

...

...

...

...

Li1

Li2

Lih

Lim

Fig. 6. Indexation of a crossing

Proposition 4·1. The image of a framed cycle by the unknotting map δ is:

δ(εs,t) = Es,t = δls,t εs,t δ
r
s,t.

Proof. The contribution of P is induced by the action of a half-twist, given by the

pre-image by γ of the half circle around each x = π(P ), in the positive sense. We obtain

the description of δls,t and δrs,t above, and then εs,t =
(

δls,t
)−1

Es,t
(

δrs,t
)−1

.

Example 4·2. The images of the εs,t of the didactic example by the unknotting map

are:

δ(ε1,2) = ε1,2, δ(ε1,4) = ε1,4, δ(ε1,3) = ε1,3,

δ(ε2,3) = (ε−1
1,2α

−1
1 ε1,2)ε2,3(ε

−1
1,3α1ε1,3),

δ(ε3,4) = (ε−1
1,3α

−1
1 ε1,3)ε3,4(ε

−1
1,4(α1ε1,2α2ε

−1
1,2)ε1,4).

4·2. Inclusion map

Geometric cycles were constructed by taking parallel copies of cycles of ΓA, via WA,

to the boundary manifold BA. Their image in EA can then be computed directly from

WA.

Let ξs,t be a cycle of WA, relative to the left endpoints. An over arc ς is an arc of

WA that goes over ξs,t through a virtual crossing. Denote sgn(ς) ∈ {±1} the sign of the

crossing. It is positive if the orientations of ς and ξs,t (in this order) at the crossing form

a positive base, and is negative otherwise.
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Let Sξs,t be the set of over arcs of ξs,t –oriented from left to right–. The element µs,t

is defined by:

µs,t =
∏

ς∈Sξs,t

asgn (ς)
ς ,

where aς is the word associate to the arc ς by the Arvola’s algorithm (see Subsection 3·2),

and the order in the product respects the order of the virtual crossings in the cycle ξs,t.

Note that µs,t is a product of conjugates of meridians.

Theorem 4·3. For i = 0, . . . , n, let αi be the meridians of the lines and let {εs,t} be a

set of cycles indexed by a generating system E of cycles of the incidence graph ΓA. Then

the fundamental group of BA is generated by {α0, . . . , αn, εs1,t1 , . . . , εsl,tl}, and the map

i∗ : π1(BA) → π1(EA) induced by the inclusion is described as follows :

i∗ :

{

αi 7−→ αi,

εs,t 7−→
(

δls,t
)−1

µs,t

(

δrs,t
)−1

,

It is worth noticing that using a recursive argument on the set of εs,t, the words
(

δls,t
)−1

µs,t

(

δrs,t
)−1

are products of conjugates of the meridians α1, . . . , αn.

Proof. Since BA ⊂ EA, then a class in π1(BA) can be viewed as a class in π1(EA),

and both are denoted in the same way.

By Proposition 4·1, each class δls,tεs,tδ
r
s,t in π1(BA) can be represented by a geometric

cycle Es,t, obtained as a parallel copy of ξs,t from WA to BA. Consider a 2-cell homotopic

to a disc with card(Sξs,t) holes. Then glue the boundary of the disc to Es,t and the other

boundary components to the meridians of over arcs ς ∈ Sξs,t . As the 2-cell is in EA,

then, in the exterior, Es,t can be retracted to the product µs,t of the aς , with ς ∈ Sξs,t .

It follows that in π1(EA), δ
l
s,tεs,tδ

r
s,t = µs,t.

In the construction of the boundary manifold (see Sub-section 2·2), the cycle es,t ap-

pearing as cycles in HNN-extension. In the previous theorem, we take es,t = εs,t as cycles

in the generating system of π1(BA). Now we consider the geometric cycles defined from

the projection of WA in BA (i.e. the δ(εs,t), noted Es,t). Their construction allows to

consider them as cycles for the HNN-extension too (i.e. es,t = Es,t). With this generating

system of π1(BA), we obtain a simpler version of Theorem 4·3:

Theorem 4·4. For i = 0, . . . , n, let αi be the meridians of the lines and let {Es,t} be a

set of cycles indexed by a generating system E of cycles of the incidence graph ΓA. Then

the fundamental group of BA is generated by {α1, . . . , αn, Es1,t1 , · · · , Esl,tl}, and the map

i∗ : π1(BA) → π1(EA) induced by the inclusion is described as follows :

i∗ :

{

αi 7−→ αi,

Es,t 7−→ µs,t,

4·3. Exact sequence

Theorem 4·5. The following sequence is exact

0 −→ K
φ

−→ π1(BA)
i∗−→ π1(EA) −→ 0,

where K is the normal subgroup of π1(BA) generated by all the elements of the form

δls,tεs,tδ
r
s,tµ

−1
s,t , and the product α0 · · ·αn.
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Proof. By Theorem 4·3, the map i∗ is onto and K is included in ker(i∗). It remains to

show that the relations induced by the images i∗(εs,t) are enough to determine a presen-

tation of π1(EA). We compare these relations to those coming from braid monodromy

and Zariski-Van Kampen’s method, see [10] for example.
Let P = Li1 ∩ · · · ∩ Lim (as in Figure 6), be a singular point of A, with i1 = ν(P ).

Consider a small ball in P
2 with center P and a local base point b in its boundary sphere.

Let λ be a path from X0 to b, and let yj be the (local) meridian of Lj with base b,

for j = 1, . . . ,m. The path λ can be chosen in such a way that Zariski-Van Kampen’s

relations associated to P are :

[yλi,im , · · · , yλi,i1 ].

We can assume that b is a point of εi1,j , for all j = i2, · · · , im. Then εi1,j = β−1
j βi1 where

βi1 goes from X0 to b, and β−1
j from b to X0. We get

[α
εi1,im

im
, · · · , α

εi1 ,i2

i2
, αi1 ] ⇔ [α

β
−1
im

βi1

im
, · · · , α

β
−1
i2

βi1

i2
, α

β
−1
i1

βi1

i1
],

⇔ [α
β
−1
im

im
, · · · , α

β
−1
i2

i2
, α

β
−1
i1

i1
]βi1 ,

⇔ [α
β
−1
im

im
, · · · , α

β
−1
i2

i2
, α

β
−1
i1

i1
],

⇔ [α
β
−1
im

im
, · · · , α

β
−1
i2

i2
, α

β
−1
i1

i1
]λ.

Note that during this computation, the base point may have changed, but the first and

the last relations are based in X0. Since α
β
−1
j

j = yi,j , for all j = i1, · · · , im, then:

[α
εi1 ,im

im
, · · · , α

εi1,i2

i2
, αi1 ] ⇔ [yim , · · · , yi2 , yi1 ]

λ,

⇔ [yλim , · · · , yλi2 , y
λ
i1
].

4·4. Homotopy type of the complement

From Theorem 4·3, we obtain a presentation of the fundamental group of π1(EA).

Corollary 4·6. For i = 1, . . . , n, let αi be the meridians of the lines Li. For any

singular point P = Li1 ∩ Li2 ∩ · · · ∩ Lim with i1 = ν(P ), let

RP = [α
cim
im

, · · · , α
ci2
i2

, αi1 ], where cij =
(

δli1,ij

)−1

µi1,ij

(

δri1,ij

)−1

for all j = 2, · · · ,m.

The fundamental group of EA admits the following presentation:

π1(EA) = 〈α1, · · · , αn |
⋃

P∈P

RP 〉.

Remark 4·7. This corollary can not be simplify using geometric cycles, since relations

in the presentation of π1(BA) –given in Proposition 2·13– are wrong with these cycles.

Proof. For each εs,t, let rs,t be the relation εs,t =
(

δls,t
)−1

µs,t

(

δrs,t
)−1

, and for each

point P ∈ P (with P = Li1 ∩ · · · ∩ Lim and i1 = ν(P )), we define the relation

R′
P : [α

εi1,im

im
, · · · , α

εi1,i2

i2
, αi1 ]. Then, Theorem 4·5 implies that we have the following

presentation:

π1(EA) = 〈α0, α1, · · · , αn, εs1,t1 , · · · , εsl,tl |
⋃

P∈P

R′
P ,

l
⋃

i=1

rsi,ti , α0 · · ·αn〉.
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Consider the total order on the set {εs,t}: (εs,t < εs′,t′) ⇔ (s ≤ s′ and t < t′). By con-

struction, δls,t and δrs,t depend on εs′,t′ if and only if εs′,t′ < εs,t. Since µs,t is a product

of meridians, then the smallest εs,t is a product of meridians. And by induction, the

relation rs,t expresses any εs,t as a product of αi.

Finally, using the relation α0, · · · , αn = 1, the meridian α0 can be removed from the

set of generators of π1(EA). Indeed no other relation contains α0.

Example 4·8. The presentation of the fundamental group of the didactic example is:

< α1, α2, α3, α4 | [α
α

−1
3

4 , α2, α1], [α3, α1], [α
α1α

−1
2 α

−1
1

3 , α4], [α
α1α

−1
4

3 , α2] >

Proposition 4·9. The 2-complex modeled on the minimal presentation given in Corol-

lary 4·6 is homotopy equivalent to EA.

Proof. The proof of Theorem 4·5 shows in particular that the relations of the presenta-

tion in Corollary 4·6 are equivalent to Zariski-Van Kampen’s relations, based on the braid

monodromy. It is shown in [10] that the 2-complex modeled on a minimal presentation

equivalent to Zariski-Van Kampen’s presentation is homotopy equivalent to EA.

5. The example of positive MacLane line arrangement

In this section, we illustrate Theorem 4·3 with an arrangement Q+ introduced by

S. MacLane, given by the following equations

L0 = {z = 0} ; L1 = {z − x = 0} ; L2 = {x = 0} ;

L3 = {y = 0} ; L4 =
{

z + ω2x+ ωy = 0
}

; L5 = {y − x = 0} ;

L6 =
{

z − x− ω2y = 0
}

; L7 = {z + ωy = 0} ,

where ω = exp(2iπ3 ) is a primitive root of unity of order 3.

The incidence graph Γ of Q+ is given in Figure 7.

L0

P0,1,2

P0,3,4

P0,5,6

P0,7 L7

L6

L5

L4

L3

L2

L1

P1,5,7

P1,3

P1,4,6

P2,3,5

P2,4,7

P2,6

P3,6,7

P4,5

Fig. 7. Incidence graph of MacLane’s arrangement Q+

It is worth mentioning that Q+ is one of the only two topological realisations of this

combinatorial data by an arrangement in P2. The other realisation Q− corresponds to

ω = exp(−2iπ
3 ). These two arrangements do not admit real equations.
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Generating set of cycles of ΓQ+

Consider the maximal tree T in ΓQ+ indicated with thick lines in Figure 7. Let E be

the generating system of cycles induced by T (it is in one-to-one correspondance with

the dotted lines in Figure 7):

E = {ξ2,3, ξ2,5, ξ2,4, ξ2,7, ξ2,6, ξ4,5, ξ3,6, ξ3,7, ξ1,5, ξ1,7, ξ1,3, ξ1,4, ξ1,6} .

Group of the boundary manifold

By Section 4·1, the images εs,t of the cycles ξs,t in BQ+ form a family of cycles in

π1(BQ+). Proposition 2·13 applies to this explicit family, and π1(BQ+) admits a presen-

tation with generators:

{α0, α1, α2, α3, α4, α5, α6, α7, e2,3, e2,5, e2,4, e2,7, e2,6, e4,5, e3,6, e3,7, e1,5, e1,7, e1,3, e1,4, e1,6} ,

and relations:

[α
e1,7

7 , α
e1,5

5 , α1], [α
e1,3

3 , α1], [α
e1,6

6 , α
e1,4

4 , α1], [α
e2,5

5 , α
e2,3

3 , α2],

[α
e2,7

7 , α
e2,4

4 , α2], [α
e2,6

6 , α2], [α
e3,7

7 , α
e3,6

6 , α3], [α
e4,5

5 , α4].

Geometric cycles and unknotting map

1

2

3

4

5

6

7

ς1 ς2

ς3

Fig. 8. Wiring diagram of positive MacLane’s arrangement

Let WQ+ be the braided wiring diagram of Q+ given in Figure 8. Note that WQ+

differs from the wiring diagram considered in [6] by an axial symmetry and a local move

on the wires corresponding to L3, L5, L7.

The diagram WQ+ is used to compute the unknotting map δ, and the images of the

cycles ε in terms of geometric cycles, see Proposition 4·1. The thick lines in Figure 8

represent the cycle ξ4,5, divided into two arcs of L4 and L5.

- The first arc L4 meets the triple point vP2,4,7 . This gives δl4,5 = ε−1
2,4α

−1
2 ε2,4.

- The second arc L5 meets vP2,3,5 , and δr4,5 = ε−1
2,5(ε2,3α3ε

−1
2,3)α2ε2,5.

This implies that

δ(ε4,5) =
(

ε−1
2,4α

−1
2 ε2,4

)

. ε4,5 .
[

ε−1
2,5

(

ε2,3α3ε
−1
2,3

)

α2ε2,5
]

.

Similarly, one computes:

δ(ε2,3) = ε2,3,

δ(ε2,5) = ε2,5,

δ(ε2,4) = ε2,4,

δ(ε2,7) = ε2,7,
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δ(ε2,6) = ε2,6,

δ(ε4,5) =
(

ε−1
2,4α

−1
2 ε2,4

)

. ε4,5 .
[

ε−1
2,5

(

ε2,3α3ε
−1
2,3

)

α2ε2,5
]

δ(ε3,6) =
(

ε−1
2,3α

−1
2 ε2,3

)

. ε3.6 .
(

ε−1
2,6α2ε2,6

)

δ(ε3,7) =
(

ε−1
2,3α

−1
2 ε2,3

)

. ε3,7 .
[

ε−1
2,7

(

ε2,4α4ε
−1
2,4

)

α2ε2,7
]

δ(ε1,5) = ε1,5 .
[

(

ε−1
4,5α4ε4,5

)

(

ε−1
2,5 (ε2,3α3ε2,3)

−1 α2ε2,5

)]

δ(ε1,7) = ε1,7 .
[(

ε−1
3,7

(

ε3,6α6ε
−1
3,6

)

α3ε3,7
) (

ε−1
2,7

(

ε2,4α4ε
−1
2,4

)

α2ε2,7
)]

δ(ε1,3) = ε1,3 .
(

ε−1
2,3α2ε2,3

)

δ(ε1,4) = ε1,4 .
(

ε−1
2,4α2ε2,4

)

δ(ε1,6) = ε1,6 .
[(

ε−1
3,6α3ε3,6

) (

ε−1
2,6α2ε2,6

)]

Retractions of geometric cycles

We now compute the family of µs,t, required to obtain the inclusion map, see Sec-

tion 4·2. The arcs of the wiring diagram WQ+ are labelled by the algorithm of W. Arvola,

see Section 3·2.

The case of µ4,5 is drawn in thick in Figure 8. The over arcs ς1, ς2 and ς3 are dotted

in Figure 8. Arvola’s labellings of these arcs are respectively : aς1 = α4, aς2 = α7 and

aς3 = α−1
7 α4α7. Furthermore, sgn(ς1) = −1, sgn(ς2) = 1 and sgn(ς3) = 1. We obtain

µ4,5 =
(

α−1
7 α4α7

)

α7α
−1
4 , which gives

µ4,5 =
(

α−1
7 α4α7

)

. α7 . α−1
4 .

Similarly:

µ2,3 = 1,

µ2,5 = −α4,

µ2,4 = 1,

µ2,7 = 1,

µ2,6 = α7,

µ4,5 =
(

α−1
7 α4α7

)

. α7 . α−1
4 ,

µ3,6 =
[(

α−1
4 α5α4

) (

α−1
7

) (

α−1
7 α4α

2
7α

−1
4 α−1

5 α4α
−2
7 α−1

4 α7

)

(α7)
]

.
[(

α−1
7

) (

α−1
7 α−1

4 α7

)

(α7)
]

,

µ3,7 =
[(

α−1
4 α5α4

) (

α−1
7

) (

α−1
7 α4α

2
7α

−1
4 α−1

5 α4α
−2
7 α−1

4 α7

)

(α7)
]

,

µ1,5 =
(

α−1
7

) (

α−1
7 α4α7

)

(α7)
(

α−1
4

)

,

µ1,7 = 1,

µ1,3 =
(

α−1
7 α−1

4 α2
7 α−1

6 α−2
7 α4α7

) (

α−1
7

)

(

α−1
7 α4α

2
7α

−1
4 α5 α4α

−2
7 α−1

4 α7

)

(α7)
(

α−1
4 α−1

5 α4

)

,

µ1,4 = 1,

µ1,6 =
(

α−1
7 α4α7

) (

α−1
7

) (

α−1
7 α−1

4 α7

)

(α7) .

Images in the group of the complement

Following Theorem 4·3, we can compute i∗ : π1(BQ+) ։ π1(EQ+). The computations

above describe the relations induced by the images of the cycles ε in π1(EQ+). By the

previous computations, ε2,3, ε2,4, ε2,7 are equal to 1 (i.e. they are contractible in EQ+),

and they are relations r2,3, r2,4 and r2,7. Without additional computation, we obtain:

r2,5 : ε2,5 = α−1
4 , r2,6 : ε2,6 = α7.
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The case of r4,5:

r4,5 : (ε−1
2,4α

−1
2 ε2,4) . ε4,5 . [ε−1

2,5(ε2,3α3ε
−1
2,3)α2ε2,5] =

(

α−1
7 α4α7

)

. α7 . α−1
4 .

Then using r2,4, r2,5 and r2,3, we obtain that:

r4,5 : ε4,5 = (α2) .
((

α−1
7 α4α7

)

. α7 . α−1
4

)

.
(

α4α
−1
2 α−1

3 α−1
4

)

.

The others relations can be computed by the same way, and from the proof of Corollary

4·6, we obtain:

Property 5·1. The fundamental group of EQ+ admits the following presentation:

π1(EQ+) = 〈α1, α2, α3, α4, α5, α6, α7,

ε2,3, ε2,5, ε2,4, ε2,7, ε2,6, ε4,5, ε3,6, ε3,7, ε1,5, ε1,7, ε1,3, ε1,4, ε1,6 |

r2,3, r2,5, r2,4, r2,7, r2,6, r4,5, r3,6, r3,7, r1,5, r1,7, r1,3, r1,4, r1,6,

[α
ε1,7
7 , α

ε1,5
5 , α1], [α

ε1,3
3 , α1], [α

ε1,6
6 , α

ε1,4
4 , α1], [α

ε2,5
5 , α

ε2,3
3 , α2],

[α
ε2,7
7 , α

ε2,4
4 , α2], [α

ε2,6
6 , α2], [α

ε3,7
7 , α

ε3,6
6 , α3], [α

ε4,5
5 , α4], α0 · · ·αn〉.
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