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EXPLORING THE TREE OF NUMERICAL SEMIGROUPS

JEAN FROMENTIN AND FLORENT HIVERT

Abstract. In this paper we describe an algorithm visiting all numerical semigroups up to a given genus
using a well suited representation. The interest of this algorithm is that it fits particularly well the
architecture of modern computers allowing very large optimizations: we obtain the number of numerical
semigroups of genus g 6 67 and we confirm the Wilf conjecture for g 6 60.

Introduction

A numerical semigroup S is a subset of N containing 0, closed under addition and of finite complement
in N. For example the set

SE = {0, 3, 6, 7, 9, 10}∪ {x ∈ N, x > 12} (1)

is a numerical semigroup. The genus of a numerical semigroup S, denoted by g(S), is the cardinality
of N \ S. For example the genus of SE is 6, the cardinality of {1, 2, 4, 5, 8, 11}.

For a given positive integer g, the number of numerical semigroups of genus g is finite and is denoted
by ng. In J.A. Sloane’s on-line encyclopedia of integer sequences [13] we find the values of ng for g 6 52.
These values have been obtained by M. Bras-Amorós ([3] for more details for g 6 50). On his home
page [4], M. Delgado gives the value of n55.

M. Bras-Amorós used a depth first search exploration of the tree of numerical semigroups T up to a
given genus. This tree was introduced by J.C. Rosales and al. in [11] and it is the subject of Section 1.
Starting with all the numerical semigroups of genus 49 she obtained the number of numerical semigroups
of genus 50 in 18 days on a pentium D runing at 3GHz. In the package NumericalSgs [5] of GAP [7],
M. Delgado together with P.A. Garcia-Sanchez and J. Morais used the same method of exploration.

Here we describe a new algorithm for the exploration of the tree of numerical semigroups T and achieve
the computation of ng for g 6 67. The cornerstone of our method is a combinatorial representation of
numerical semigroups that is well suited and allows large code optimization essentially based on the
use of vectorial instructions and parallelization. The goal of the paper is twofold: first to present our
encoding of numerical semigroups and the associated algorithms, and second to present the optimization
techniques which allow, for those kinds of algorithms, to get speedups by factors of hundreds and even
thousands. We claim that these techniques are fairly general for those kinds of algorithms. As a support
for the claim, we applied it to an algorithm of N. Borie enumerating integer vector modulo permutation
groups [1] and got a speedup by a factor larger than 2000 using 8 cores.

The paper is divided as follows. In Section 1 we describe the tree of numerical semigroups and give
bounds for some parameters attached to a numerical semigroup. The description of our representation of
numerical semigroups is done in the second section. In Section 3 we describe an algorithm based on the
representation given in Section 2 and give its complexity. Section 4 is more technical, and is devoted to
the optimization of the algorithm introduced in Section 3. In the last section we emphasize the results
obtained using our algorithm.

1. The tree of numerical semigroups

We start this section with definitions and properties of numerical semigroups that will be used in
the sequel. For a more complete introduction, the reader can usefully consult the book Numerical

Semigroups by J.C. Rosales and P.A. Garćıa-Sánchez [12] or the book The Diophantine Frobenius Problem

by J.L. Ramı́rez Alfonśın [10].
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Definition 1.1. Let S be a numerical semigroup. We define
i) m(S) = min(S \ {0}), the multiplicity of S;
ii) g(S) = card(N \ S), the genus of S;
iii) f(S) = max(Z \ S), the Frobenius of S;
iv) c(S) = f(S) + 1, the conductor of S.

By definition a numerical semigroup is an infinite object and we need a finite description of such an
object. That is provided by generating sets.

Definition 1.2. A subset X = {x1 < x2 < ... < xn} of a semigroup is a generating set of S if every
element of S can be expressed as a sum of elements in X . In this case we write S = 〈x1, ..., xn〉.

If we reconsider the numerical semigroup of (1), we obtain

SE = {0, 3, 6, 7, 9, 10}∪ [12,+∞[= 〈3, 7〉 . (2)

A non-zero element x of a numerical semigroup S is said to be irreducible if it cannot be expressed as
a sum of two non-zero elements of S. We denote by Irr(S) the set of all irreducible elements of S.

Lemma 1.3 (Lemma 2.3 of [12]). For a numerical semigroup S, the set Irr(S) is the minimal generating
set of S relatively to the inclusion ordering.

The different parameters we have defined on a numerical semigroup, satisfy the following relations.

Proposition 1.4 (Proposition 2.12 and Lemma 2.14 of [12]). For every numerical semigroup S, we have

i) x ∈ Irr(S) implies x 6 c(S) +m(S)− 1;
ii) m(S) 6 g(S) + 1;
iii) c(S) 6 2g(S).

A consequence of Proposition 1.4 i) is that Irr(S) is finite and its cardinality is at most c(S)+m(S)−1.
Moreover, the cardinality of Irr(S) is at most m(S) since any two distinct elements of Irr(S) cannot be
congruent modulo m(S). See Section 2 of Chapter I of [12] for more details.

We now explain the construction of the tree of numerical semigroups. Let S be a numerical semigroup.
The set S′ = S ∪ {f(S)} is also a numerical semigroup and its genus is g(S)− 1. As each integer greater
than f(S) is included in S′ we have c(S′) 6 f(S). Therefore every semigroup S of genus g can be obtained
from a semigroup S′ of genus g − 1 by removing an element of S′ greater than or equal to c(S′).

Proposition 1.5 (Proposition 7.28 of [12]). Let S be a numerical semigroup and x an element of S. The

set Sx = S \ {x} is a numerical semigroup if and only if x is irreducible in S.

Proposition 1.5 implies that every semigroup S of genus g can be obtained from a semigroup S by
removing a generator x of S that is greater than or equal to c(S). Hence the relation S′ = Sx holds.

We construct the tree of numerical semigroups, denoted by T as follows. The root of the tree is the
unique semigroup of genus 0, i.e, 〈1〉 that is equal to N. If S is a semigroup in the tree, the sons of S
are exactly the semigroups Sx where x belongs to Irr(S) ∩ [c(S),+∞[. By convention, when depicting
the tree, the numerical semigroup Sx is in the left of Sy if x is smaller than y. With this construction,
a semigroup S has depth g in T if and only if its genus is g, see Figure 1. We denote by Tg the subtree
of T restricted to all semigroups of genus 6 g.

2. Decomposition number

The aim of this section is to describe a representation of numerical semigroups, which is well suited to
an efficient exploration of the tree T of numerical semigroups.

Definition 2.1. Let S be a numerical semigroup. For every x of N we set

DS(x) = {y ∈ S | x− y ∈ S and 2y 6 x}

and dS(x) = cardDS(x). We called dS(x) the S-decomposition number of x. The application dS : N → N

is the S-decomposition numbers function.

Assume that y is an element of DS(x). By definition of DS(x), the integer z = x− y also belongs to
S. Then x can be decomposed as x = y + z with y and z in S. Moreover the condition 2y 6 x implies
y 6 z. In other words if we define D′

S(x) to be the set of all (y, z) ∈ S × S with x = y + z and y 6 z

then DS(x) is the image of D′

S(x) under the projection on the first coordinate. Hence DS(x) describes
how x can be decomposed as sums of two elements of S. This justifies the name given to the function dS .
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Figure 1. The first four layers of the tree T of numerical semigroups, corresponding
to T4. A generator of a semigroup is it in gray if is not greater than c(S). An edge between
a semigroup S and its son S′ is labelled by x if S′ is obtained from S by removing x,
that is if S′ = Sx holds.

Example 2.2. Reconsider the semigroup SE given at (1). The integer 14 admits two decompositions as
sums of two elements of S, namely 14 = 0 + 14 and 14 = 7 + 7. Thus the set DSE

(14) is equal to {0, 7}
and dSE

= 2 holds.

Lemma 2.3. For every numerical semigroup S and every integer x ∈ N, we have dS(x) 6 1 +
⌊x

2

⌋

and

the equality holds for S = N.

Proof. As the set DS(x) is included in
{

0, ...,
⌊

x
2

⌋}

, the relation dS(x) 6 1 +
⌊

x
2

⌋

holds. For S = N we
have the equality for the set DS(x) and so for the integer dS(x). �

A straightforward consequence of the definition of S-decomposition numbers is :

Proposition 2.4. For a numerical semigroup S and x ∈ N \ {0}, we have:

i) x lies in S if and only if dS(x) > 0.
ii) x is in Irr(S) if and only if dS(x) = 1.

We note that 0 is never irreducible despite the fact dS(0) is 1 for all numerical semigroups S. We now
explain how to compute the S-decomposition numbers function of a numerical semigroup from that of
its father.

Proposition 2.5. Let S be a numerical semigroup and x be an irreducible element of S. Then for

all y ∈ N \ {0} we have

dSx(y) =

{

dS(y)− 1 if y > x and dS(y − x) > 0,

dS(y) otherwise.

Proof. A direct consequence of DSx(y) = DS(y) \ {y − x, x}. �

3. A new algorithm

We can easily explore the tree of numerical semigroups up to a genus G using a depth first search
algorithm (see Algorithm 1). This approach does not seem to have been used before. In particular,
M. Bras-Amorós and M. Delgado use instead a breadth first search exploration. The main advantage in
our approach is the small memory needs. Indeed, in the case of breadth first search algorithm one needs
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to compute and store the list Lg of all numerical semigroups of genus g before visiting the numerical
semigroups of genus g+1, which is not required for a depth first search exploration. In this paper we are
interested in the exploration of the list Lg for g ∈ N, not in storing it. This is the reason we use a depth
first search algorithm for the exploration of the tree Tg. The only limitation is then the duration of the
exploration and not the amount of available memory. For example the list L54 needs several terabytes to
be stored.

Algorithm 1 Recursive Depth first search exploration of the tree Tg .

1: procedure ExploreRec(S, G)
2: if g(S) < G then

3: for x from c(S) to c(S) +m(S) do
4: if x ∈ Irr(S) then
5: ExploreRec(Sx, G)
6: end if

7: end for

8: end if

9: end procedure

Equivalently, we can use an iterative version which uses a stack:

Algorithm 2 Iterative Depth first search exploration of the tree Tg

1: procedure Explore(G)
2: Stack stack ⊲ the empty stack
3: stack.push(N)

4: while stack is not empty do

5: S← stack.top()

6: stack.pop()

7: if g(S) < G then

8: for x from c(S) to c(S) +m(S) do
9: if x ∈ Irr(S) then

10: stack.push(Sx)
11: end if

12: end for

13: end if

14: end while

15: end procedure

In Algorithm 1 we do not specify how to compute c(S), g(S) and m(S) from S neither how to test if
an integer is irreducible. It also misses the characterization of Sx from S. These items depend heavily of
the representation of S. Our choice is to use the S-decomposition numbers function. The first task is to
use a finite set of such numbers to characterize the whole semigroup.

Proposition 3.1. Let G be an integer and S be a numerical semigroup of genus 0 < g 6 G. Then

S is entirely described by the vector δS = (dS(0), ..., dS(3G)) ∈ N
3G+1. More precisely we can obtain

c(S), g(S),m(S) and Irr(S) from δS.

Proof. By Proposition 1.4 iii) we have the relation c(S) 6 2g(S) and so the S-decomposition number
of c(S) occurs in δS . Proposition 3.1 implies

c(S) = 1 +max{i ∈ {0, ..., 3G}, dS(i) = 0}.

As all elements of N \ S are smaller than c(S), their S-decomposition numbers are in δS and we obtain

g(S) = card{i ∈ {0, ..., 3G}, dS(i) = 0}.

By Proposition 1.4 ii), the relationm(S) 6 g(S)+1 holds. This implies that the S-decomposition number
of m(S) appears in δS :

m(S) = min{i ∈ {0, ..., 3G}, dS(i) > 0}.

By Proposition 1.4, all irreducible elements are smaller than c(S) + m(S) − 1, which is itself smaller
than 3G. Hence, Proposition 2.4 gives

Irr(S) = {i ∈ {0, ..., 3G}, dS(i) = 1}. �
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The previous representation of numerical semigroup (in terms of the vector δS) is similar but a little
different from this used in [2] and by people concerned with coding theory.

Even though it is quite simple, the computation of c(S),m(S) and g(S) from δS has a non negligible
cost. We represent a numerical semigroup S of genus g 6 G by (c(S), g(S), c(S), δS). In an algorithmic
context, if the variable S stands for a numerical semigroups we use:

– S.c, S.g and S.m for the integers c(S), g(S) and m(S);
– S.d[i] for the integer dS(i).
For example the following Algorithm initializes a representation of the semigroup N ready for an

exploration of the tree TG (the tree of numerical semigroup of genus at most G.)

Algorithm 3 Returns the root of TG

function Root(G)
R.c ← 0 ⊲ R stands for N

R.g ← 0
R.m ← 1
for x from 0 to 3 G do

R.d[x]← 1 +
⌊

x
2

⌋

end for

return R

end function

We can now describe an algorithm that returns the representation of the semigroup Sx from that of
the semigroup S where x is an irreducible element of S greater than c(S).

Algorithm 4 Returns the son Sx of S with x ∈ Irr(S) ∩ [c(S), c(S) +m(S)[.

1: function Son(S,x,G)
2: Sx.c ← x+ 1
3: Sx.g ← S.g+ 1
4: if x > S.m then

5: Sx.m ← S.m

6: else

7: Sx.m ← S.m+ 1
8: end if

9: Sx.d ← S.d ⊲ copy all the decomposition numbers
10: for y from x to 3 G do

11: if S.d[y− x] > 0 then

12: Sx.d[y]← S.d[y]− 1 ⊲ decrease the decomposition number by 1
13: end if

14: end for

15: return Sx

16: end function

Proposition 3.2. Running on (S, x,G) with g(S) 6 G, x ∈ Irr(S) and x > c(S), Algorithm 4 returns

the semigroup Sx in time O(log(G) ×G).

Proof. Let us check the correctness of the algorithm. By construction Sx is the semigroup S \ {x}. Thus
the genus of Sx is g(S) + 1, see Line 3. Every integer of I = [x + 1,+∞[ lies in S since x is greater
than c(S), so the interval I is included in Sx. As x does not belong to Sx, the conductor of Sx is x+1, see
Line 2. For the multiplicity of Sx we have two cases. First, if x > m(S) holds then m(S) is also in Sx and
so m(Sx) is equal to m(S). Assume now x = m(S). The relation x(S) > c(S) and the characterization
of m(S) implies x = m(S) = c(S). Thus Sx contains m(S) + 1 which is m(Sx). The initialization
of m(Sx) is done by Lines 4 to 8. The correctness of the computation of δSx (see Proposition 3.1 for the
definition of δSx) done from Line 9 to Line 15 is a direct consequence of Proposition 2.4.

Let us now prove the complexity statement. Since by relations ii) and iii) of Proposition 1.4 we have
x 6 3G together with m(S) 6 G+1, each line from 2 to 8 is done in time O(log(G)). The for loop needs
O(G) steps and each step is done in time O(log(G)). Summarizing, these results give that the algorithm
runs in time O(log(G) ×G). �
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Proposition 3.3. Running on G ∈ N, Algorithm 5 returns the values of ng for g 6 G in time

O

(

log(G)×G×

G
∑

g=0

ng

)

and its space complexity is O(log(G) ×G3).

Proof. The correctness of the algorithm is a consequence of Proposition 3.2 and of the description of the
tree T of numerical semigroups.

For the time complexity, let us remark that Algorithm Son is called for every semigroup of the tree TG
(the tree of semigroups of genus 6 G). Since there are exactly N =

∑G

g=0
ng such semigroups, the

time complexity of Son established in Proposition 3.2 guarantees that the running time of Count is
in O(log(G)×G×N), as stated.

Let us now prove the space complexity statement. For this we need to describe the stack through the
run of the algorithm. Since the stack is filled with a depth first search algorithm, it has two properties.
The first one is that reading the stack from the bottom to the top, the genus increases. The second one
is that, for all g ∈ [0, G], every semigroup of genus g in the stack has the same father. As the number
of sons of a semigroup S is the number of S-irreducible elements in the set {c(S), ..., c(S) +m(S) − 1},
a semigroup S has at most m(S) sons. By Proposition 1.4 ii), this implies that a semigroup of genus g
has at most g + 1 sons. Therefore the stack contains at most g + 1 semigroups of genus g + 1 for g 6 G.
So the size of the stack is bounded by

M =
G
∑

g=0

g =
G(G+ 1)

2
.

A semigroup S is represented by a quadruple (c(S), g(S),m(S), δS). By relations ii) and iii) of Propo-
sition 1.4, we have c 6 2g(S) and m 6 g(S) + 1. As g(S) 6 G holds, the integers c, g and m of the
representation of S require a memory space in O(log(G)). The size of δS = (dS(0), ..., dS(3G)) is ex-
actly 3G+ 1. Each entry of δS is the S-decomposition number of an integer smaller than 3G and hence
requires O(log(G)) bytes of memory space. Therefore the space complexity of δS is in O(log(G) × G),
which implies that the space complexity of the Count algorithm is

O(log(G)×G×M) = O(log(G)×G3). �

4. Technical optimizations and results

Even though there are asymptotically faster algorithms than the one presented here, thank to careful
optimizations, we were able to compute ng for much larger genuses than before. This is due to the fact
that our algorithm is particularly well suited for the current processor architecture. In particular, it
allows to use parallelism at various scales (parallel branch exploration, vectorization)...

Algorithm 5 Returns an array containing the value of ng for g 6 G

1: function Count(G)
2: n ← [0, ..., 0] ⊲ n[g] stands for ng and is initialized to 0
3: Stack stack ⊲ the empty stack
4: stack.push(Root(G))

5: while stack is not empty do

6: S← stack.top()

7: stack.pop()

8: n[S.g]← n[S.g] + 1
9: if S.g < G then

10: for x from S.c to S.c+ S.m do

11: if S.d[x] = 1 then

12: stack.push(Son(S, x, G))
13: end if

14: end for

15: end if

16: end while

17: return n

18: end function
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To get the greatest speed from modern processors, we used several optimization tricks, which we will
elaborate in the following section:

– Vectorization (MMX, SSE instructions sets) and careful memory alignment;
– Shared memory multi-core computing using Cilk++ for low level enumerating tree branching;
– Partially derecursived algorithm using a stack;
– Avoiding all dynamic allocation during the computation: everything is computed “in place”;
– Avoiding all unnecessary copy (the cost of the Son algorithm is roughly the same as copying);
– Aggressive loop unrolling: the main loop is unrolled by hand using some kind of Duff’s device;
– Careful choice of data type (uint_fast8_t for decomposition number, vs uint_fast64_t for all
indexes).

The source code of our algorithm is available in [6].

4.1. Vectorization. Assume for example that we want to construct the tree T100 of all numerical semi-
groups of genus smaller than 100. In this case, the representation of numerical semigroups given in
Section 2 uses decomposition numbers of integers smaller than 300. By Lemma 2.3, such a decomposition
number is smaller than 151 and requires 1 byte of memory. Thus at each for step of Algorithm Son, the
CPU actually works on 1 byte. However current CPUs usually work on 8 bytes and even on 16 bytes
using vector extensions. The first optimization uses this point.

To go further we must specify that the array of decomposition numbers in the representation of a
semigroup corresponds to consecutive bytes in memory. In the for loop of Algorithm Son we may
imagine two cursors: the first one, denoted src pointing to the memory byte of S.d[0] and the second
one, denoted dst pointing to the memory byte T.d[y]. Using these two cursors, Lines 10 to 14 of
Algorithm 4 can be rewritten as follows:

src← address(S.d[0])
dst← address(T.d[x])
i← 0
while i 6 3G− x do

if content(src) > 0 then

decrease content(dst) by 1
end if

increase src,dst,i by 1
end while

In this version we can see that the cursors src and dst move at the same time and that the modification of the
value pointed by dst only needs to access the values pointed by src and dst. We can therefore work in multiple
entries at the same time without collision. Current CPUs allow this thanks to the SIMD technologies as MMX, SSE,
etc. The acronym SIMD [19] stands for Single Operation Multiple Data. We used SSE4.1 [20, 8] technology as it
allows for the largest speedup1. This need to respect some constraints in the memory organization of the data,
namely “memory alignment”. Recall that an address is 16 bytes aligned if it is a multiple of 16. SSE memory
access are much faster for aligned memory.

The computation of the children is then performed as follows. First, the parent’s decomposition numbers are
copied in the children’s using the following C++ code

void copy_blocks(dec_blocks &dst, dec_blocks const &src)

for (ind_t i=0; i<NBLOCKS; i++) dst[i] = src[i];

Here dec blocks is a type for arrays of 16 bytes blocks whose size NBLOCKS are just large enough to store the
decomposition numbers (that is 3G rounded up to a multiple of 16). The instruction dst[i] = src[i] actually
copies a full 16 bytes block.

Then the core of the while loop in the preceding algorithm is translated as a for loop as follows (recall that
x denotes the generator of the father which is to be removed in the children):

start = x >> 4; // index of the block containing x

shift = x & 0xF; // offset of x inside the block

... // some specific instructions to handle the first incomplete block.

for (long int i=start+1; i<NBLOCKS; i++)

block = load_unaligned_epi8(src + ((i-start)<<4) - shift);

dst[i] -= ((block != zero) & one);

1A much greater speedup can be certainly obtained using AVX2 technology [16]. However, at this time, we cannot access
a performant computer with this set of instructions.
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The instruction load unaligned epi8 (specific to SSE technology) loads 16 consecutive entries of the decompo-
sition number of the parent (called src semigroup) in the variable block. Those entries will be used to compute
the entries 16i, . . . 16i+15 of the children semigroups. Since the removed generator x is not necessarily a multiple
of 16, the data are not aligned in memory, hence the use of a specific instruction. The zero (resp. one) constants
are initialized as 16 bytes equal to 0 (resp. 1). The comparison (block != zero) therefore returns a block which
contains 0 in the bytes corresponding the 0 entries of block and 255 in the non zero one. This result is then
bitwise and-ed with one so that the instruction actually performs a 16 bytes parallel version of

dst← dst− if block 6= 0 then 1 else 0

which is equivalent to Lines 10 to 14 of Algorithm 4.

As we previously said, to gain more speed this core loop is actually unrolled using some kind of Duff device [17].

4.2. Parallel tree exploration using Cilk++. Our second optimization is to use parallelism on exploration
of the tree. Today, CPUs of personal computers have several cores (2, 4 or more). The given version of our
exploration algorithm uses a single core and so a fraction only of the power of a CPU. The idea here is that
different branches of the tree can be explored in parallel by different cores of the computer. The tricky part
is to ensure that all cores are busy, giving a new branch when a core is done with a former one. Fortunately
there is a technology called Cilk++ [14, 15] which is particularly well suited for those kinds of problems. For our
computation, we used the free version which is integrated in the latest version of the GNU C compiler [9].

Cilk is a general-purpose language designed for multithreaded parallel computing. The C++ incarnation is
called Cilk++. The biggest principle behind the design of the Cilk language is that the programmer should be
responsible for exposing the parallelism, identifying elements that can safely be executed in parallel; it should
then be left to the run-time environment, particularly the scheduler, to decide during execution how to actually
divide the work between cores.

The crucial thing is that two keywords are all that are needed to start using the parallel features of Cilk++:

– cilk spawn: used on a procedure call, indicates that the call can safely operate in parallel with the
remaining code of the current function. Note that the scheduler is not obliged to run this procedure in
parallel; the keyword merely alerts the scheduler that it can do so.

– cilk sync: indicates that execution of the current procedure cannot proceed until all previously spawned
procedures have completed and returned their results to the current frame.

As a consequence, to get a parallel version of the recursive Algorithm 1, one only needs to modify it as

Algorithm 6 Cilk version of Algorithm 1

procedure ExploreRec(S, G)
if g(S) < G then

for x from c(S) to c(S) +m(S) do
if x ∈ Irr(S) then

cilk spawn ExploreRec(Sx, G)
end if

end for

end if

end procedure

We just tell Cilk++ that the subtrees rooted at various children can be explored in parallel. Things are actually
only a little bit more complicated. First we have to gather the results of the exploration. If we simply write

result[g(S)] ← result[g(S)] + 1

then we face the problem of two cores incrementing the same variable at the same time. Incrementing a variable
is actually done in 3 steps: reading the value from the memory, adding one, storing back the result. Since there
is by default non synchronization, the following sequence of actions for two cores is possible: Read1 / Read2 /
Add1 / Add2 / Store1 / Store2. Then the two cores perform the same modification resulting in incrementing the
variable only once. This is called a data race and leads to nondeterministic wrong results. To cope with those
kinds of synchronization problems, Cilk++ provides the notion of reducer which are variables local to each thread
which are gathered (here added) when a thread is finishing its job.

A more important problem is that the cost of a recursive call in non negligible. Using Cilk++ recursive calls
instead of C++ calls makes it even worse. The solution we use is to switch back to the non recursive version using
a stack when the genus is close to the target genus. This leads to the following Cilk++ code:
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void explore(const Semigroup &S) {

unsigned long int nbr = 0;

if (S.g < MAX_GENUS - STACK_BOUND) {

auto it = generator_iter<CHILDREN>(S);

while (it.move_next()) { //iterate along the children of S

auto child = remove_generator(S, it.get_gen()).

cilk_spawn explore(child);

nbr++;

}

cilk_results[S.g] += nbr;

}

else explore_stack(S, cilk_results.get_array());

}

Note that in our version, we found that the STACK BOUND optimal value was around 10 to 12 for genus in the
range 45 . . . 67 so that explore stack is used more than 99% of the time. The Cilk++ recursive function does
actually very little work but ensures that the work is balanced between the different cores.

4.3. Various technical optimizations. Using vectorization and loop unrolling as described previously leads
to an extremely fast Son algorithm. Indeed, its cost is comparable to the cost of copying a semigroup. It is
therefore crucial for performance to avoid any extra cost. We list here various places where unnecessary cost can
be avoided.

Avoiding all unnecessary copy. We also used a trick to avoid copying from and to the top of the stack. Indeed,
the main loop performs the following sequences of operations:

S← stack.top()

stack.pop()

for all children Sx of S do

S.push(Sx)
end for

If we use a stack of semigroup, we can construct Sx directly into the stack memory but we have to copy the
top of the stack to S. In [23], A. Zhai establishes that the limit of the quotient

ng

ng−1

, when g go to infinity, is

the golden ratio φ ≈ 1.618. Therefore this single copy is far from being negligible. The trick is to use a level of
indirection, replacing the stack by an array of semigroups A and an array of indexes I pointing to the array of
semigroups. The array I can be viewed as a permutation of the array A. Now instead of copying S out of the
stack, we keep it on the stack, pushing the children in the second position by exchanging the indexes in I . Here
is the relevant part of the code:

Semigroup data[MAX_GENUS-1], *stack[MAX_GENUS], *current;

Semigroup **stack_pointer = stack + 1;

for (ind_t i=1; i<MAX_GENUS; i++) stack[i] = &(data[i-1]);

[...]

while (stack_pointer != stack) {

--stack_pointer;

current = *stack_pointer;

[...] for each children {

*stack_pointer = *(stack_pointer + 1);

[...] construct the children in **stack_pointer

[...] using the parent in *current

stack_pointer++;

[...]

}

*stack_pointer = current;

}

Avoiding dynamic allocation. Compared to the Son algorithm, dynamic allocation costs orders of magnitude
more. Therefore, during the derecursived stack algorithm, we only allocate (on the system stack rather than on
the heap) the stack of semigroups. No further allocations are done.

Pointer arithmetic and indexes. Due to the way C++ does its pointer arithmetic, even if the index in the array
are less than 3G and therefore fits in 8 bits, we use 64 bits indexes (namely uint_fast64_t) to avoid conversion
and sign extension when computing addresses of indexed elements. This single standard trick save 10% of speed.
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5. Results

Running the Cilk version of our optimized algorithm we have explored the tree of numerical semigroups up
to genus 67. The computations were done on a shared 64 core AMD OpteronTM Processor 6276. As other heavy
calculations were running on the machine, we only used 32 cores. The computations took 18 days. The values
of ng for g 6 67 are:

g ng g ng g ng

0 1 23 170 963 46 14 463 633 648
1 1 24 282 828 47 23 527 845 502
2 2 25 467 224 48 38 260 496 374
3 4 26 770 832 49 62 200 036 752
4 7 27 1 270 267 50 101 090 300 128
5 12 28 2 091 030 51 164 253 200 784
6 23 29 3 437 839 52 266 815 155 103
7 39 30 5 646 773 53 433 317 458 741
8 67 31 9 266 788 54 703 569 992 121
9 118 32 15 195 070 55 1 142 140 736 859

10 204 33 24 896 206 56 1 853 737 832 107
11 343 34 40 761 087 57 3 008 140 981 820
12 592 35 66 687 201 58 4 880 606 790 010
13 1 001 36 109 032 500 59 7 917 344 087 695
14 1 693 37 178 158 289 60 12 841 603 251 351
15 2 857 38 290 939 807 61 20 825 558 002 053
16 4 806 39 474 851 445 62 33 768 763 536 686
17 8 045 40 774 614 284 63 54 749 244 915 730
18 13 467 41 1 262 992 840 64 88 754 191 073 328
19 22 464 42 2 058 356 522 65 143 863 484 925 550
20 37 396 43 3 353 191 846 66 233 166 577 125 714
21 62 194 44 5 460 401 576 67 377 866 907 506 273
22 103 246 45 8 888 486 816

As the reader can check the convergence of sequence
ng

ng−1
established by A. Zhai in [23] is very slow: n67

n66
≈ 1.62.

5.1. Wilf’s conjecture. In the paper [22] of 1978, H.S. Wilf conjectured that all numerical semigroup S satisfy
the relation

card(Irr(S)) >
c(S)

c(S)− g(S)
.

Since the work of M. Bras-Amorós, see [3], we yet know that all numerical semigroups of genus g 6 50 satisfy
Wilf’s conjecture. With our exploration algorithm we have proved that there is no counterexample to Wilf’s
conjecture up to genus 60. We have tested the Wilf’s conjecture on a different machine than the one used to
determine n67. As its performance is lower we have only tested the conjecture for g 6 60.

5.2. Timings. In this section we summarize the timing improvements through the different optimizations of our
algorithm.

The following table shows the time needed by the algorithm for computing the values of ng for g 6 G with
30 6 G 6 40 on a machine equipped with an IntelTM i5-3570K CPU running at 3.4GHz and 8GB of memory. All
algorithms are executed on only one core. Algorithm breadth is based on a breadth exploration of the tree while
Algorithm depth use a depth exploration. These two algorithms are based on the same naive representation of
numerical semigroups. The only difference concerns the tree exploration algorithm used. Algorithm depth+δ is
a refinement of depth based on the S-decomposition function. Algorithm δ+sse in an optimization of depth+δ
using the SIMD extension SSE. Times are in seconds.

Algorithm 30 31 32 33 34 35 36 37 38 39 40

breadth 5.0 8.3 14 23 38 1251
depth 3.4 5.8 9.2 16 27 45 75 125 204 346 557
depth+δ 0.3 0.6 1.0 1.7 2.7 4.2 7.4 12 20 32 74
δ+sse 0.1 0.2 0.3 0.4 0.8 1.2 2.0 3.1 5.1 9.0 14

The computation of ng for g 6 35 with algorithm breadth is very long because all the 8GB of memory are
consumed and the system must use swap memory to finish the computation. This algorithm was not launched
for genus g > 36.

The following table illustrates the impact of parallelization on the same machine based on the IntelTM i5-3570K

CPU which have 4 physical cores that are able to run four threads.
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Threads 30 35 40 45 50

1 0.11 1.26 14.9 182 2201
2 0.06 0.65 7.50 92 1110
3 0.05 0.44 5.14 63 747
4 0.04 0.34 4.02 48 489

The time of the one threaded algorithm must be compared with the δ+sse version of the previous table : it
illustrates the additional cost induced by the use of Cilk technology.

It should be noticed that the TurboBoost technology [21] is present on the CPU. Therefore the clock of the
CPU is a bit higher when the number of threads is smaller. Therefore the gain of using more threads is a bit over
than the one suggestested by the table.

Finally we tested our algorithm on a machine holding two IntelTM XeonTM X5650 CPU running at 2.67GHz.
Each of those CPU has 6 physical cores that are able to run 12 threads thanks to the Hyper-Threading tech-
nology [18]: the machine has also 12 physical cores and is able to run 24 threads. However, when more than 12
threads are running, the computation engines are shared between two threads and the speedup should be much
less when adding more cores. The following table resumes the time needed by the algorithm to explore T50 on
different numbers of threads (the double vertical line delimite the use of Hyper Threading). For reference, we
put in the column called C++ the computation time of the same program compiled without Cilk.

Threads C++ 1 2 4 8 12 16 20 24

Time (s) 3588 3709 1865 932.4 486.8 325.7 311.2 302.3 290.2

Further improvements on the computation of ng or on the verification of Wilf’s conjecture will be published
on our home pages and on [6].
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2003), volume 11 of Sémin. Congr., pages 21–28. Soc. Math. France, Paris, 2005.
[3] M. Bras-Amorós. Fibonacci-like behavior of the number of numerical semigroups of a given genus. Semigroup Forum,

76(2):379–384, 2008.
[4] M. Delgado. Homepage. http://cmup.fc.up.pt/cmup/mdelgado/numbers/.
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